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Abstract: A method for multi-sensor Fault Detection and Isolation (FDI) is
proposed for bilinear systems whose model structure is known but whose model
parameters are not known. Thus, the proposed FDI method uses only available
data: control signals and measured outputs and do not need an explicit model
formulation. System output variables are expressed on a given time window as
functions of input variables and initial unknown state. Under stability hypothesis,
the influence of initial state may be neglected compared with inputs contribution.
Furthermore, considering on-line outputs aggregation and orthogonal projection
w.r.t. inputs, computable model-free residuals may be obtained. An academic
example is provided to show the efficiency of the proposed method.

Keywords: fault detection and isolation (FDI), bilinear systems, model-free
residuals

1. INTRODUCTION

On-line Fault Detection and Isolation (FDI) meth-
ods consists in verifying the consistency of the
known signals (control signals and measured out-
put) with respect to a behavioral model M of the
system. In the literature, methods are classified
with respect to the kind of model that is used.
M may be analytical (state space or input/output
models), rules-based, learning-based, statistical or
qualitative.

When M is analytical, the first step aims at
generating fault indicator signals, namely resid-
uals. Two approaches are classically used to gen-

erate these signals: parity space based approach
(A.Y.Chow and A.Willsky, 1984; J.Chen et al.,
1995; P.M.Frank and X.Ding., 1997; J.Gertler,
1998) and observer-based approaches (P.M.Frank
and X.Ding., 1997; R.Patton and J.Chen, 1997).

These methods consider that the system model
M is entirely known. However in some cases only
the structure (SM) of the model is available and
the parameters (PM) are unknown. In that case,
the previous cited methods can not be used. To
solve the FDI problem in that situation, two
ways may be followed. The first one uses as a
first step identification techniques (R.Isermann,
1984; R.Isermann, 1993) to determine parameters



PM and applies eventually the previous methods
as a second step (S.Simani et al., 2003). The
second way try to generate residuals without a
pre-determination of the model parameters. This
paper is concerned with that kind of method when
SM is a bilinear structure.

Many practical systems can be represented by bi-
linear models and this kind of system has been the
subject of intensive investigations in all fields of
control theory ((D. Yu, 1996),(R.Mohler, 1991)).
These models are nonlinear ones but it is often
possible to extend the known results obtained in
the linear case to this special nonlinear case. In
this paper, we extend the FDI method developed
in (K.M.Pekpe et al., 2004) for systems with linear
structure. This kind of method is called data-
driven method since it does not use an explicit
model M but only collected inputs/outputs data.

The paper is organized as follows. In section
2 the Fault Detection and Isolation problem is
described and the principle and objectives of our
data driven approach are presented. The data
driven method for systems of bilinear structure is
detailed in sections 3 and 4. A simulation example
is provided in section 5 to show the effectiveness
of our approach.

2. PROBLEM FORMULATION

2.1 General point of view

Residuals are signals that allow to verify the con-
sistency of the known signals (control signals and
measured outputs) with respect to a reference
model. These residuals equal zero in no fault situ-
ation and becomes different from zero when faults
occur. Classical model-based methods, namely
parity space based and observer based methods,
need the perfect knowledge of the model equations
i.e. the structure SM and the parameters PM.

The objective of our approach is to generate resid-
uals by emphasizing a link between the known
signals on a given time window without knowing
the parameters PM.

Suppose that the stable system under considera-
tion may be modeled using a discretized model M
under the form:

{
xk+1 = g(xk, uk)
y∗

k = h(xk, uk) + wk + fk
(1)

where

• g and h are functions whose structure is
known but whose parameters are unknown.
It is supposed in that paper that these two
functions are linear or bilinear ones.

• uk is the known control vector of dimension
m and y∗

k the measured output vector of
dimension l.

• wk represents output noise with zero mean.
• fk represents the sensor fault vector:

fk =
(
f1

k f2
k ... f ℓ

k

)T
(2)

Let introduce the following notation:

yk = y∗
k − wk − fk (3)

yk may be viewed as the "perfect" output since
yk = y∗

k in no fault situation and without consid-
ering output noise.

Consider a time window of size i and let ūk−i,k

represent the vector of the input u on this time

window: ūk−i,k =
(
uT

k−i uT
k−i+1 ... uT

k

)T

The output of the system is a function of ūk−i,k

and initial state xk−i

yk = G(xk−i, ūk−i,k). (4)

Of course, if model parameters PM are unknown,
G can not be explicitly written. However, its
structure may be deduced from the structure SM

that is supposed to be known.

If the system is stable and integer i is sufficiently
large, the state influence may be neglected in com-
parison with input and output noise influences.
Therefore, the system output may be written as:

yk = Γ(ūk−i,k) + δk−i

≃ Γ(ūk−i,k) =
∑r

j=1 αjnj (ūk−i,k)
(5)

where

• δk−i represents the initial state influence on
yk value,

• nj (ūk−i,k) is a monomial function. r is the
number of the different monomials which
compose Γ(ūk−i,k).

Because SM is a linear or bilinear structure,
equation (5) may be rewritten as

yk ≃ HN (ūk−i,k)

H =
(
α1 α2 ... αr

) (6)

where H ∈ R
ℓ×r depends on PM and SM and

N (ūk−i,k) ∈ R
r is a function of input vector which

is independent of PM.

Writing the above equation on a sliding time
window of size L (L is an integer which satisfied
L > r, further information on integer L will be
given below) leads to

Yk ≃ HUk (7)



where the output matrix Yk and the extended
input Hankel matrix Uk are defined as:

Yk =
(
yk−L+1 yk−L+2 ... yk

)
∈ R

ℓ×L

Uk = [N (ūk−i−L+1,k−L+1) N (ūk−i−L+2,k−L+2)
... N (ūk−i,k)]

(8)

Illustration for linear system structure:
Consider a state space model with linear structure:

{
xk+1 = Axk + Buk

yk = Cxk + Duk
(9)

The output can be expressed as:

yk = CAixk−i +
[
CAi−1B · · · CB D

]



uk−i

...
uk




(10)
Identifying this expression with equation (6) leads
to

H =
[
CAi−1B · · · CB D

]

N (ūk−i,k) =




uk−i

...
uk


 (11)

Finally the input Hankel matrix is obtained

Uk =




uk−L−i+1 uk−L−i+2 ... uk−i

...
... ...

...
uk−L uk−L+1 ... uk−1

uk−L+1 uk−L+2 ... uk


 ∈ R

m(i+1)×L

(12)

2.2 Model-free Residual Generation

Consider now the projection on the right kernel
of the extended input Hankel matrix Uk. Note Πk

the projection matrix. This matrix is such that

UkΠk = 0 (13)

Right multiplying eq. (7) by Πk leads to

YkΠk = ∆i
k ≃ 0 (14)

where ∆i
k corresponds to the contribution of the

initial states.

Note that, the dimension of the kernel of Uk is
L− r, that implies L− r ≥ ℓ since ℓ sensor faults
have to be detected and isolated.

Because additive noise and faults are considered
in the output equation, we have:

Yk = Y∗
k −Fk −Wk (15)

where

Fk =
(
fk−L+1 fk−L+2 ... fk

)
∈ R

ℓ×L (16)

and

Wk =
(
wk−L+1 wk−L+2 ... wk

)
∈ R

ℓ×L (17)

Define ǫk as follows:

ǫk = Y∗
kΠk (18)

ǫk is a computable signal since Y∗
k contains actual

outputs of the system.

From eq. (15) and (14), the expression (called
evaluation form) of ǫk may be obtained:

ǫk = FkΠk + WkΠk + ∆i
kΠk (19)

For actual system, Πk may be computed on-line
using actual inputs values. ǫk may also be deduced
considering the actual measured outputs i.e. y∗

k.
In normal ideal situation, it means when actual
system works exactly as model (eq. 1), with no
output noise and no fault, ǫk equals zero. How-
ever, in practical situation, outputs are corrupted
by noise wk. The mean value, or mathematical
expectation, of ǫk: E[ǫk] has thus to be considered.
To be a residual signal, E[ǫk] must equal zero in
no fault situation (fk = 0) and must be different
from zero when a fault occurs (fk 6= 0). These
two properties have been proved for linear systems
((K.M.Pekpe et al., 2004)). This result is extended
in the rest of the paper for system with bilinear
structure.

3. BILINEAR MODEL STRUCTURE

Consider a bilinear model as follows

xk+1 = Axk + Gxk ⊗ uk + Buk

yk = Cxk + Duk = y∗
k − wk − fk

(20)

where ⊗ represents the Kronecker product.

It is assumed that the system is strongly stable
and thus:

• ‖max(eig(A))‖ < 1 ⇒ linear part is stable
• ‖max(eig(G ⊗ I))‖ < 1 ⇒ all the bilinear

parts are stable

By applying the same methodology as explained
previously, equation (7) may be obtained (see
appendix for detailed computation). This leads to
the following expression of Uk:

Uk =

(
ũk−L+1,i ũk−L+2,i ... ũk,i

ūk−L+1,i ūk−L+2,i ... ūk,i

)
(21)

where

ūk,i =
(
uT

k−i+1 uT
k−i+2 ... uT

k

)T
∈ R

mi (22)



and

ũk,i =




uk−i ⊗ uk−i+1 ⊗ ... ⊗ uk−1

uk−i+1 ⊗ uk−i+2 ⊗ ... ⊗ uk−2

...
uk−2 ⊗ uk−1


 ∈ R

Sm,i

(23)
where

Sm,i =

i−2∑

j=0

C
i−j
i mi−j (24)

and where

Cp
n =

n!

(n − p)!p!
(25)

Expression of H may also be obtained but is
omitted here since it will not be used in the
following developments.

The size of the sliding window L is chosen such
that L > Sm,i+mi+ℓ. This choice guarantees that

the right orthogonal space Πk of Uk ∈ R
m(2i−1)×L

exists. The signal ǫk can be generated as:

ǫk = Y∗
kΠk (26)

In order to consider ǫk as a residual for FDI, it
must be proved that

• The mean value of ǫk is close to zero when
no sensor fault occurs even if outputs are
corrupted by noise wk.

• The mean value of ǫk is different from zero
when a sensor fault occurs

The expression of the mean value of ǫk is:

E[ǫk] = E[FkΠk] + E[WkΠk] + E[∆i
kΠk] (27)

Because deterministic faults are considered, and
∆i

k is also a deterministic vector we have

E[ǫk] = FkΠk + E[Wk]Πk + ∆i
kΠk (28)

Since output noise is of zero mean, E[Wk] = 0
On the other hand, ∆i

kΠk represents the contri-
bution of the initial state vector, i.e. the neglected
dynamics. From a theoretical point of view, it is
not equal to zero. However, as it will be discussed
in the next section, its value may be made very
small with an appropriate choice of the time win-
dows sizes. In the no fault situation, the mean
value of ǫk is thus close to zero and when a fault
occurs, we have:

E[ǫk] ≃ FkΠk. (29)

E[ǫk] will be sensitive to sensor faults if the
following condition holds

span(Fk) 6⊂ span(Πk) ⇒ FkΠk 6= 0 (30)

This condition is not restrictive and corresponds
to a very special case. Under this hypothesis on
the fault vector, ǫk may be considered as a model-
free residual for FDI.

4. FAULT DETECTION AND ISOLATION

In this section, it is shown that the model-free
residual ǫk is already structured with respect
to sensor faults. Fault isolation is thus directly
performed. The value of ǫk depends on the sizes
i and L of the two time windows that are needed
to compute this value. The decision threshold has
to be chosen w.r.t. these sizes. This choice is also
discussed in the second subsection.

4.1 Sensor fault isolation

It has been proved in the previous section that the
mean value of ǫk may be approximated as:

E[ǫk] ≃ FkΠk. (31)

ǫk is a vector of size l: ǫk =




ǫ1k
ǫ2k
...
ǫℓ
k


.

From the definition of Fk, it is evident that
each component ǫ

j
k,∀j ∈ 1, 2, ..l depends only on

the jth component of the fault vector fk. As a
consequence, the residual vector ǫk is structured
w.r.t. the sensor faults and these faults may be
directly isolated.

4.2 Computation windows determination

Two time windows are used to compute a residual
vector ǫk. The first one, named Ī, of size i, allows
to express each output at time k in function of
the inputs on this time window and the initial
state i.e. xk−i. The size i must be sufficiently
large to be able to neglect the state influence.
The second window of size L allows to construct
the extended input Hankel matrix. L must be
chosen to guarantee the existence of the projection
matrix Πk. Of course, L is connected to i and
must be as small as possible in order to guaranty
not only a minimal detection delay but also an
acceptable computational complexity.

The choice of an optimal size i may be done using
a set of output data y∗

k collected in a no fault
situation. Consider the following criterion:

J(i) = ‖Y∗
kΠk‖ (32)

This criterion is also equal to

J(i) =
∥∥∆i

kΠk + WΠk

∥∥ (33)

The general evolution of this criterion is plotted
on figure (1). J(i) is of course a decreasing func-
tion of i but two parts, separated by a value i0



may be distinguished: when i is small (i < i0), the
value of J(i) is very large and its value is highly
dependent on i. When i > i0, the value of J(i) is
small and do not evolve significantly w.r.t. i.

From the figure that may be drawn using actual
data in no fault situation, a correct choice i may
be done, i ≥ i0.
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Fig. 1. Illustration of the criterion J(i)

5. ILLUSTRATIVE EXAMPLE

Consider the following bilinear system:

A =




0.2 −0.3 0.3 0
0 0.2 −0.3 0
−1 0 0 0.4
0 0 0.3 0.4


 , B =




0.45 0.5
0.3 0.55
0.2 0.6
0.4 0.3




Ḡ =




0.3 0.4
−0.4 0.1
0.35 0.45
0.5 −0.2


 , G =

(
Ḡ Ḡ Ḡ Ḡ

)

C =




0.5 0.35 0.3 0.4
0.8 0.2 0.26 0.45
0.37 0.5 0.4 0.6


 , D =




0.35 0.85
0.65 0.75
0.45 0.69




The system input uk is a Pseudo-Random Binary
Sequence (PRBS). The signal to noise ratio of the
outputs with respect to the measurement noises is
20dB. A process noise vk has also been added with
a covariance var(vk) ≃ 7 × 10−4I3. The system
inputs are plotted in figure (2) and the system
outputs in figure (3).
The size i of the time window Ī is determined by
drawing criterion J(i) in healthy situation like in
figure (1). The figure shows that i0 may be chosen
equal to 3 since the criterion does not decrease
noticeably when i is greater. Integer i must be
chosen greater or equal to i0, here this integer is
fixed at 4. The size of the sliding window L is 160
; (L > Sm,i + mi = 80, see (24)).

The residuals and the fault are plotted in figure
(4) to (6). All faults are clearly detected using
these residuals.

6. CONCLUSION

A sensor fault detection for bilinear systems has
been proposed in the paper. The method is based
only on the knowledge of the input-output data
and the model structure. Model parameters are
not required. An academic example was provided
to illustrate the performance of the method. Fu-
ture works will focus on process faults and more
general nonlinear model structures.
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Fig. 2. System input

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

−2

0

2

4

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

−2

0

2

4

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−4

−2

0

2

4

Fig. 3. System output
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Fig. 4. First row residual ǫ1k and fault occurrence
(solid: residual, dashed: fault signal)
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Fig. 5. Second row residual ǫ2k and fault occurrence
(solid: residual, dashed: fault signal)
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Fig. 6. Third row residual ǫ3k and fault occurrence
(solid: residual, dashed: fault signal)
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7. APPENDIX

Here relation (5) is established for bilinear systems (20). By using model equations (20) the system
output can be expressed as:

yk = CAxk−1 + CGxk−1 ⊗ uk−1 + CBuk−1 + Duk (34)

Replacing xk−1 in function of xk−2 leads to

yk = CA2xk−2 + CAGxk−2 ⊗ uk−2 + CGA ⊗ Ixk−2 ⊗ uk−1 + CG ⊗ IGxk−2 ⊗ uk−2 ⊗ uk−1

+CGB ⊗ Iuk−2 ⊗ uk−1 + CABuk−2 + CBuk−1 + Duk
(35)

where I is the identity matrix of size n.

Replacing xk−2 in function of xk−3 leads to

yk = CA3xk−3 + CA2Gxk−3 ⊗ uk−3 + CAGA ⊗ Ixk−3 ⊗ uk−2 + CAGG ⊗ Ixk−3 ⊗ uk−3 ⊗ uk−2

+CGA ⊗ IA ⊗ Ixk−3 ⊗ uk−1 + CGA ⊗ IG ⊗ Ixk−3 ⊗ uk−3 ⊗ uk−1

+CG ⊗ IGA ⊗ Ixk−3 ⊗ uk−2 ⊗ uk−1 + CG ⊗ IG ⊗ IGxk−3 ⊗ uk−3 ⊗ uk−2 ⊗ uk−1

+CG ⊗ IGB ⊗ Iuk−3 ⊗ uk−2 ⊗ uk−1 + CGA ⊗ IB ⊗ Iuk−3 ⊗ uk−1 + CAGB ⊗ Iuk−3 ⊗ uk−2

+CGB ⊗ Iuk−2 ⊗ uk−1 + CA2Buk−3 + CABuk−2 + CBuk−1 + Duk

(36)

Replacing xk−3 in function of xk−4 leads to

yk = CA4xk−4 + CA3Gxk−4 ⊗ uk−4 + CA2GA ⊗ Ixk−4 ⊗ uk−3 + CA2GG ⊗ Ixk−4 ⊗ uk−4 ⊗ uk−3

+CAGA ⊗ IA ⊗ Ixk−4 ⊗ uk−2 + CAGA ⊗ IG ⊗ Ixk−4 ⊗ uk−4 ⊗ uk−2 + CAGG ⊗ IA ⊗ Ixk−4 ⊗ uk−3

+CAGG ⊗ IG ⊗ Ixk−4 ⊗ uk−4 ⊗ uk−3 + CGA ⊗ IA ⊗ IA ⊗ Ixk−4 ⊗ uk−1

+CGA ⊗ IA ⊗ IG ⊗ Ixk−4 ⊗ uk−4 ⊗ uk−1 + CGA ⊗ IG ⊗ IA ⊗ Ixk−4 ⊗ uk−3 ⊗ uk−1

+CGA ⊗ IG ⊗ IG ⊗ Ixk−4 ⊗ uk−4 ⊗ uk−3 ⊗ uk−1 + CG ⊗ IGA ⊗ IA ⊗ Ixk−4 ⊗ uk−2 ⊗ uk−1

+CG ⊗ IGA ⊗ IG ⊗ Ixk−4 ⊗ uk−4 ⊗ uk−2 ⊗ uk−1 + CG ⊗ IG ⊗ IGA ⊗ Ixk−4 ⊗ uk−3 ⊗ uk−2 ⊗ uk−1

+CG ⊗ IG ⊗ IGG ⊗ Ixk−4 ⊗ uk−4 ⊗ uk−3 ⊗ uk−2 ⊗ uk−1

+CG ⊗ IG ⊗ IGB ⊗ Iuk−4 ⊗ uk−3 ⊗ uk−2 ⊗ uk−1 + CG ⊗ IGA ⊗ IB ⊗ Iuk−4 ⊗ uk−2 ⊗ uk−1

+CGA ⊗ IG ⊗ IB ⊗ Iuk−4 ⊗ uk−3 ⊗ uk−1 + CAGG ⊗ IB ⊗ Iuk−4 ⊗ uk−3 ⊗ uk−2

+CG ⊗ IGB ⊗ Iuk−3 ⊗ uk−2 ⊗ uk−1 + CGA ⊗ IA ⊗ IB ⊗ Iuk−4 ⊗ uk−1 + CAGA ⊗ IB ⊗ Iuk−4 ⊗ uk−2

+CA2GB ⊗ Iuk−4 ⊗ uk−3 + CGA ⊗ IB ⊗ Iuk−3 ⊗ uk−1 + CAGB ⊗ Iuk−3 ⊗ uk−2

+CGB ⊗ Iuk−2 ⊗ uk−1 + CA3Buk−4 + CA2Buk−3 + CABuk−2 + CBuk−1 + Duk

(37)

Continuing this procedure up to order i, leads to the system output expression:

yk = CAixk−i + C
i∑

α=1
q(Aα, G, (A ⊗ I)γ , (G ⊗ I)i−1−α−γ , xk−i, P (ui−1−α−γ))

+
i∑

s=2

∑
i≥rs>...>r1≥1

ρrs,...,r1
uk−rs

⊗ ... ⊗ uk−r1
+

∑i
s=0 hs−1uk−s

(38)

∆i
k = CAixk−i + C

i−1∑
α=1

∑
γ<i−α

q(Aα, G, (A ⊗ I)γ , (G ⊗ I)i−1−α−γ , xk−i, P (ui−1−α−γ)) (39)

where q(Aα, G, (A ⊗ I)γ , (G ⊗ I)i−2−α−γ , xk−i, P (ui−2−α−γ)) is a product of Aα, G, (A ⊗ I)γ , (G ⊗
I)i−2−α−γ , xk−i, and a Kronecker product of i − 2 − α − γ inputs.

By using the triangular inequality one can obtain:

∥∥q(Aα, G, (A ⊗ I)γ , (G ⊗ I)i−1−α−γ , xk−i, P (ui−1−α−γ))
∥∥ ≤

‖A‖α ‖G‖ ‖A ⊗ I‖γ ‖G ⊗ I‖i−1−α−γ ‖max(x)‖ ‖max(u) ⊗ max(u) ⊗ ... ⊗ max(u)‖︸ ︷︷ ︸
i−2−α−γ Kronecker product

(40)

where max(x) = max(xk) and max(u) = max(|uk|).

∥∥q(Aα, G, (A ⊗ I)γ , (G ⊗ I)i−2−α−γ , xk−i, P (ui−2−α−γ))
∥∥ ≤

‖M‖i−1 ‖G‖ ‖max(u) ⊗ max(u) ⊗ ... ⊗ max(u)‖︸ ︷︷ ︸
i−2−α−γ Kronecker product

(41)



where
‖M‖ = max(‖A‖ , ‖A ⊗ I‖ , ‖G ⊗ I‖) (42)

Since A is stable, A ⊗ I =




A 0 ... 0
0 A ... 0
...

...
...

...
0 0 ... A


 is also stable (A and A ⊗ I = have the same eigenvalues).

Then, ∆i
k tends to zero when integer i increases. Therefore, for a suitable choice of integer i equation

(38) becomes:

yk =
i∑

s=2

∑
i≥rs>...>r1≥1

ρrs,...,r1
uk−rs

⊗ ... ⊗ uk−r1
+

∑i
s=0 hs−1uk−s (43)

yk = H̃ũk,i + H̄ūk,i (44)

with

H̃ =
(
ρri,...,r1

ρri−1,...,r1
... ρr1

)
, H̄ =

(
hi−1 hi−2 ... h−1

)
(45)

and where ũk,i and ūk,i are respectively defined in (23) and (22). The above equation can be rewritten
as:

yk =
(
H̃ H̄

)

︸ ︷︷ ︸
H

(
ũk,i

ūk,i

)
(46)

Finally, this equation can be stacked on time window of size L, which leads to

Yk = H

(
ũk−L+1,i ũk−L+2,i ... ũk,i

ūk−L+1,i ūk−L+2,i ... ūk,i

)
(47)

where Yk is defined by (8).


