Empirical invariance principle for ergodic torus automorphisms; genericity.

Abstract : We consider the dynamical system given by an algebraic ergodic automorphism $T$ on a torus. We study a Central Limit Theorem for the empirical process associated to the stationary process $(f\circ T^i)_{i\in\N}$, where $f$ is a given $\R$-valued function. We give a sufficient condition on $f$ for this Central Limit Theorem to hold. In a second part, we prove that the distribution function of a Morse function is continuously differentiable if the dimension of the manifold is at least 3 and Hölder continuous if the dimension is 1 or 2. As a consequence, the Morse functions satisfy the empirical invariance principle, which is therefore generically verified.
Type de document :
Article dans une revue
Stochastics and Dynamics, World Scientific Publishing, 2008, 8 (2), pp.173-195. 〈10.1142/S0219493708002287〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00322351
Contributeur : Olivier Durieu <>
Soumis le : mercredi 17 septembre 2008 - 14:29:18
Dernière modification le : mercredi 15 novembre 2017 - 16:00:01

Identifiants

Collections

Citation

Olivier Durieu, Philippe Jouan. Empirical invariance principle for ergodic torus automorphisms; genericity.. Stochastics and Dynamics, World Scientific Publishing, 2008, 8 (2), pp.173-195. 〈10.1142/S0219493708002287〉. 〈hal-00322351〉

Partager

Métriques

Consultations de la notice

69