The $\Lambda$-coalescent speed of coming down from infinity

Abstract : Consider a $\Lambda$-coalescent that comes down from infinity (meaning that it starts from a configuration containing infinitely many blocks at time 0, yet it has a finite number $N_t$ of blocks at any positive time $t>0$). We exhibit a deterministic function $v:(0,\infty)\to (0,\infty)$, such that $N_t/v(t)\to 1$, almost surely and in $L^p$ for any $p\geq 1$, as $t\to 0$. Our approach relies on a novel martingale technique.
Type de document :
Pré-publication, Document de travail
30 pages. 2008
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00321969
Contributeur : Julien Berestycki <>
Soumis le : mardi 16 septembre 2008 - 12:15:17
Dernière modification le : mercredi 12 octobre 2016 - 01:01:48

Identifiants

  • HAL Id : hal-00321969, version 1
  • ARXIV : 0807.4278

Collections

Citation

Julien Berestycki, Nathanael Berestycki, Vlada Limic. The $\Lambda$-coalescent speed of coming down from infinity. 30 pages. 2008. <hal-00321969>

Partager

Métriques

Consultations de la notice

110