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Abstract

We derive TVD remeshing formulas for particle methods. The derivation is inspired from a finite-difference

analysis but the method retains the essential features of particle methods. Numerical illustrations give evidence

of the improved stability and computational cost resulting from these new algorithms.

Résumé

Schémas de remaillage TDV en méthodes particulaires. On décrit dans cette note des techniques de

remaillage TVD pour les méthodes particulaires, en s’insipirant de la méthodologie différences finies. Des exemples

numériques montrent les gains obtenus par ces nouveaux algorithmes tant en stabilité qu’en coût de calcul.

Version française abrégée

Méthodes particulaires avec remaillage Des techniques de remaillage sont souvent utilisées en conjonc-
tion avec les méthodes particulaires pour en garantir la précision. Si le remaillage est effectué à chaque
pas de temps, on obtient des méthodes de différences finies. L’analyse conduite dans [2] montre que les
méthodes particulaires peuvent alors être vues comme des généralisation sans condition CFL de schémas
de différences finies multi-dimensionnels. Dans cette note nous poursuivons cette approche en empruntant
aux méthodologies différences finies pour construire des méthodes particulaires TVD.

D’une manière générale les formules de remaillage sont construites pour conserver autant de moments
que voulus dans la distribution de particules. La formule générale conservant n moments, et utilisant
n points de remaillage en 1D, conduit au schéma (4) (voir aussi la figure 1 pour n = 3). Dans le cas
non-linéaire, il est démontré dans [2] que, pour obtenir l’ordre 2 en temps, il suffit d’évaluer la vitesse des
particules grâce à la formule (5). La suite de la note concerne le schéma de remaillage dit Λ2, correspondant
à n = 3. L’extension à des formules TVD ou préservant la monotonie d’ordre plus élevé pourra être trouvée
dans la référence [3].
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Le cas linéaire - Dans le cas linéaire, sous CFL inférieure à un, la formule (6) est équivalente au schéma
de Lax-Wendroff. L’utilisation des limiteurs classiques dans ce contexte (voir par exemple [5]) conduit à
la formule de remaillage modifiée (9).

Le cas non-linéaire - Dans le cas non linéaire, le traitement particulaire du flux écrit sous la forme
g(u)u nécessite une analyse spécifique pour définir des limiteurs appropriés. En supposant g ≥ 0 et sous
CFL 1 une méthode particulaire avec remaillage Λ2 peut se réécrire sous la forme incrémentale (12). Les
calculs sont menés dans le cas de l’équation de Burgers, et permettent de définir de limiteurs à partir des
formules (12)), (13). Le schéma de remaillage résultant est TVD sous CFL 2/3.

Illustrations numériques et relaxation de la condition CFL - On commence par un exemple dans le cas
non-linéaire, pour l’équation de Burgers. La condition initiale est un créneau périodique qui engendre un
choc et une détente se propageant vers la droite. La comparaison de la formule TVD avec le schéma Λ2

brut (figure 1) montre une nette amélioration à la fois dans résolution du choc et de la détente.
On considère ensuite le cas du transport d’un scalaire passif dans un champ de vitesse incompressible.

Cet exemple permet d’illustrer le passage au cas multi-dimensionnel, et comment relaxer la condition
CFL. L’option choisie est une technique de splitting où les particules sont successivement poussées et
remaillées dans chaque direction. Ce schéma n’est plus équivalent à un schéma de différences finies simple
mais les limiteurs conservent sont caractère TVD. Pour s’affranchir de la condition CFL, une stratégie
consiste à définir localement des vitesses uniformes dont ne diffère que de peu la vitesse réelle. La figure 2
est une comparaison entre un remaillage TVD Λ2 à 9 points et la formule à 16 points Λ3 souvent utilisée
en pratique, dans la cas de la rotation dans une boite [−1,+1] d’un disque de rayon 0.1. Cette expérience,
menée sous CFL4, met en évidence à la fois la meilleure qualité des résultats de la méthode TVD et le
fait qu’elle génère beaucoup moins de particules, ce qui la rend plus économique.

1. Introduction

Remeshing techniques are often used in conjunction with particle methods for the numerical simula-
tion of advection-dominated problems. These formulas are devised to maintain regularity in the particle
distribution. They are necessary to ensure accuracy and have been an essential ingredient for performing
reliable DNS of both compressible and incompressible flows. Remeshing techniques are based on interpo-
lation formulas that are designed to conserve a certain number of moments of the particle distribution.

In [2] we proposed an analysis of remeshed particle methods in the framework of finite-difference me-
thods. We in particular proved that remeshed particle methods can be viewed as CFL-free, multidimen-
sional generalization of high order finite-difference methods. Remeshed particle simulations in particular
share with high order finite-difference schemes the possible problems related to oscillations. In the present
note, we continue to exploit the analogy between remeshed particle and finite-difference methods to design
non-oscillatory remeshing formulas.

The outline of this note is as follows. In section 2 we recall the results of [2]. In section 3 we derive
TVD remeshing formulas for linear and non-linear advection equation. Section 4 is devoted to preliminary
numerical illustrations and to a discussion of the CFL number and of the sign independence of the
method. Further developments of this approach and applications to gas dynamics, passive advection and
incompressible flows will be given elsewhere [3,4].

2. Previous work

Let us consider the model non-linear scalar equation, describing the evolution of the quantity u carried
by the flow at the material velocity g(u) :

ut + (g(u)u)x = 0 (1)

Particle methods consist of sampling u on particles advected with velocity g(u) and constant strength :
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u(x) ≃
∑

p

αpδ(x − xp) , ẋp = g(up) (2)

The strength of particles combines local volumes vp and local u values up : αp = vpup. Note that, while
particle strengths are constant, volumes and local values evolve according to

v̇p = (∂g(u)/∂x)(xp)vp , u̇p = −(∂g(u)/∂x)(xp)up (3)

In purely lagrangian particle methods, velocities and their derivatives are computed by smoothing particle
strength over a space scale containing a few particles. The smoothing range must adapt to the flow
conditions to smooth out irregular motions. In remeshed particle methods, every few time-steps particles
are remeshed on a predefined regular grid. Remeshing is done by distributing after advection each particle
strength on nearby grid points. At the end of this process, old particles are discarded and grid points have
received a strength above a given threshold give rise to a fresh particle.The conservation of successive
moments of the particle distribution can be enforced by increasing the number of grid points.

In [2] an analysis of remeshed particle methods is done on the basis of their analogy with Finite
Difference schemes. We consider the case when particles are remeshed at every time-step (we will call this
particle method ”push-and-remesh”). In the case of a linear advection equation, g(u) = au, with constant
advection velocity a > 0, when a∆t ≤ h, if a particle initialized at ih is located at x after an advection
step, one has λ = x−ih

h = a∆t/h and we obtain the following scheme :

un+1
i =

∑

−[ n−1

2
]≤j≤[ n

2
]

wi
ju

n
i−j , wi

j = ck

∏

−[ n−1

2
]≤k 6=j≤[ n

2
]

(λ − k) (4)

where ck = (−1)[
n−1

2
]+k ([n−1

2 ] + k) ! ([n
2 ] + k) !. For n = 3 we obtain wi

0 = 1 − λ2, wi
±1 = ∓λ(1 ∓ λ)/2,

which results in the Lax-Wendroff scheme. Following the terminology of [1], we will call this scheme the
left-Λ2 remeshing scheme.

In the more general non linear case (1), it is proved in [2] that if particle velocities are evaluated at
time tn by the formula

u
n+1/2
j = g̃(un

j ) = un
j

[

1 −
∆t

4h

(

g(un
j+1) − g(un

j−1

)

]

. (5)

the push-and-remesh scheme (4) with n = 3 and λj = g̃(un
j )∆t/h ≤ 1 is equivalent to a stable second-

order (both in space and time) finite-difference scheme. For a sake of clarity we denote by αi, βi, γi the
weights in formula (4), associated to grid points from left to right (see figure (1)) for the left-Λ2 remeshing,
wich thus reads :

un+1
i = un

i−1γi−1 + un
i βi + un

i+1αi+1. (6)

3. TVD remeshing formulas

In this section we show how Finite-Difference inspired limiters allow to construct TVD remeshing
formulas. We here restrict ourselves to the case n = 3 and refer to [3] for higher order TVD and Monotony
Preserving formulas.

3.1. The 1D, linear, constant-coeffiecient, case.

We first consider the case g(u) = au, a > 0 , and set λ = a∆t/h and ∆ui+1/2 = ui+1 − ui. We start
from classical flux-limited versions of the Lax-Wendroff scheme [5] :
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un+1
i = un

i − λ(ui − ui−1) − λ(1 − λ)(φi+1/2∆ui+1/2 − φi−1/2∆ui−1/2)/2 (7)

where

φi+1/2 = φ(ri+1/2), ri+1/2 = ui−ui−1

ui+1−ui

. (8)

This gives the limited left-Λ2 remeshing formula (6) with

αi+1 = −
λ

2
(1 − λ)φi+1/2, βi = 1 − λ +

λ

2
(1 − λ)(φi−1/2 + φi+1/2), γi−1 = λ −

λ

2
(1 − λ)φi−1/2. (9)

This remeshing scheme is TVD under the usual conditions on the function φ, |φ(r)/r − φ(s)| ≤ Φ with :

1 − (1 − λ)φ/2 ≥ 2, 1 + (1 − λ)φ/2 ≤ 1/λ.

If a < 0, the remeshing formula is equivalent to a Beam-Warming upwind. One can then show, and this
important from a practical point of view, that the equations (9) can be used to determine the remeshing
weights. This property will be illustrated below in the example of a rotating patch.

3.2. The non-linear case

We consider the equation (1) and the push-and-remesh method with left-Λ2 remeshing, with particle
velocities evaluated through (5). We assume here that g̃ > 0 and set ν = ∆t/h, f̃j = g̃juj , hj = f̃j(1−νg̃j).

The push-and-remesh method can then be rephrased as the following centered finite-difference scheme

un+1
i = un

i − ν∆f̃i − ν(∆hi+1/2 − ∆hi−1/2)/2 (10)

We look for a TVD modification of the above scheme under the form

un+1
i = un

i − ν∆f̃i − ν(φi+1/2∆hi+1/2 − φi−1/2∆hi−1/2)/2, (11)

from which he remeshing weights can be recovered by (9). Because if the way particle methods handle
fluxes, we need a specific derivation of the limiter φ that we outline here. We set ri+1/2 = ∆hi−1/2/∆hi+1/2

so that (11) can be rewritten in incremental form

un+1
i = un

i − ∆ui−1/2Di−1/2 , Dj−1/2 = ν
∆hi−1/2

∆ui−1/2

[

∆fi−1/2

∆hi−1/2
+

1

2
(
φi+1/2

rI+1/2
− φi−1/2)

]

(12)

To obtain a TVD scheme we need to construct φ such that 0 ≤ Di+1/2 ≤ 1 under some CFL conditions.
We derive these conditions below in the particular case of the Burgers equation g(u) = u/2, with u > 0.
We set λ = ν max |u| and we further assume the usual CFL condition λ ≤ 1.

We have f ′(u) = u, h′(u) = u(1−3u/4) so that ∆hi−1/2/∆ui−1/2 ≥ 0,∆fi−1/2/∆hi−1/2 ≥ 0. Moreover

∣

∣

∣

∣

∆hi−1/2

∆ui−1/2

∣

∣

∣

∣

≤ λ(1 − 3λ/4) ≤ 1/3,

∣

∣

∣

∣

∆fi−1/2

∆hi−1/2

∣

∣

∣

∣

≤
1

1 − 3λ/4

so that the scheme (12 is TVD provided the function φ satisfies (see [5])
∣

∣

∣

∣

φ(r)

r
− φ(s)

∣

∣

∣

∣

≤ Φ ,
1

1 − 3λ/4
+

Φ

2
≤ 3 ,

1

1 − 3λ/4
−

Φ

2
≥ 0. (13)

It is readily checked that the value Φ = 2 is allowed provided the CFL condition is reduced to λ ≤ 2/3.
In that case, the usual TVD limiters, such as Van-Leer or Superbee can be used.
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Fig. 1. Left picture : sketch of push-and-remesh Λ2 scheme. Right picture : simulation of the Burgers equation original
(green crosses) or TVD (red continuous line) compared to exact solution (blue dotted lines).

4. Numerical illustrations, sign independence and extension to CFL larger than 1

We first consider the Burgers equation. The initial condition is a step function in [−1,+1],u0(x) = 0
if x ≤ 0, u0(x) = 1 otherwise, with periodic boundary conditions. It develops a shock and a rarefaction
wave propagating to the right.

Figure 1 shows the solution obtained at t = 0.8 for the original and TVD Λ2 remeshing, for h = 0.02
and, following the above analysis, a CFL number 2/3. The TVD remeshing formula used a Van-Leer
limiter. The improvement obtained by the limiter is clear.

We continue with the case of the passive transport of a scalar in a 2D incompressible flows. Although
it does not enter the general case, this case is useful to illustrate how the TVD formulas are extended
to the multidimensional case and how the CFL condition can be relaxed. To deal with advection in
a multidimensional field, the approach we choose follows the classical splitting used in finite-difference
methods. In a push and remesh methods, it means that particles are advected in one direction, then
remeshed, then advected in a second direction and so on. This is clearly a first order in time method
and higher order strategies can be devised as for classical differential equations. Note that this method,
for not constant velocity values, is no longer equivalent to a finite-difference method, because particle
in the second and following advection stages ”see” velocity values at the location where they have been
remeshed.

In this experiment we consider the evolution of a circular in a rotating rigid velocity field. We used
a splitting method with the left-Λ2 TVD remeshing after advection of particle in each direction. In this
example we used the superbee limiter. As announced earlier, despite the sign changes we were able to use
the same remeshing weights at all particle locations. The derivation of the TVD remeshing formulas are
based on the assumption of a CFL number less than 1. However one specific feature of particle methods
is that they are CFL free, which often enables to use much larger time-step than for Eulerian methods. It
is therefore very much desirable to relax the CFL condition for the TVD remeshing formulas. The CFL
condition is clearly not necessary for the constant velocity case, because in this case particles conserve
their slopes during advection. One way to relax the CFL condition in the general case is to determine
zones of the flow where the velocity is close to a constant value. If a(x) = ā + ã(x), and if ∆t is such that
ā∆ = Nh and max |ã|∆t ≤ h, the idea is to advect particles with ā, without remeshing, and to follow this
advection with a push-and-remesh TVD method. This algorithm will be given in more details in [3]. In
the present example, a CFL number equal to 4 could be used by partitioning the computational domain
in 16 boxes.

Figure 2 shows, for the left-Λ2 TVD scheme and the orignal Λ3 scheme, a cross-section and contours
of the patch after one turn. The patch had a radius of 0.1. The particle spacing is 0.01. For a better
comparison we have translated the patch obtained by the TVD remeshing formulas by 0.25 in the vertical
direction. It also shows the time-evolution of the number of particles, initially located inside the patch.
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Fig. 2. Passive transport of circular patch in a rigid vorticity field, after one turn. Left picture : contours for values 0.1, 0.5

and 0.95. Middle picture : cross sections. Right picture : time evolution of the number of particles. Green crosses : classical

Λ3 remeshing ; red continuous line : TVD Λ2 ; blue dotted line : exact solution.

This figure illustrates the improved accuracy obtained by TVD formulas. It also shows that, because it is
less dispersive, the number of particles generated by the TVD formula is remarkably lower than for the
original Λ3 remeshing formula. In this example the TVD formula is much less expensive by the combined
effects of the following factors : it generates less particles and it uses a smaller stencil. Moreover, one can
observe that the splitting strategy is by itself less expensive than the traditional remeshing strategy :
in 3D, for a Λ2 formula, the cost of the splitting method is O(9N) instead of O(64N) for a regular Λ3

formula.

5. Conclusion

We have introduced a methodology inspired from finite-difference methods to design TVD remeshing
formulas for the simulation of advection dominated problems by particle methods. We have shown that
these methods can retain the important features of particle methods with respect to localization and
time-step limits. Preliminary validations illustrate the gain offered by the new remeshing formulas not
only in stability but also in computational cost.
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Références

[1] G.-H. Cottet & P. Koumoutsakos, Vortex methods, Cambridge University Press, 2000.

[2] G.-H. Cottet, & L. Weynans, Particle methods revisited : a class of high order finite-difference methods, C. R. Acad.
Sci. PParis, I, 343, 51-56, 2006.

[3] A. Magni & G.-H. Cottet, New remeshing formulas for particle methods I : design and validations, in preparation

[4] A. Magni, L. Weynans & G.-H. Cottet, New remeshing formulas for particle methods II : applications to gas dynamics

and vortex flows, in preparation

[5] E. Godlewski & P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied

Mathematical Sciences, Volume 118, Springer, 1996.

6


