TVD remeshing formulas for particle methods
Georges-Henri Cottet, Adrien Magni

To cite this version:

HAL Id: hal-00321323
https://hal.archives-ouvertes.fr/hal-00321323
Submitted on 12 Sep 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
TVD remeshing formulas for particle methods

G.-H. Cottet*, A. Magni*

*Université de Grenoble and CNRS, Laboratoire Jean Kuntzmann, BP 53 Grenoble Cédex 9

Received *****; accepted after revision +++++
Presented by £££££

Abstract

We derive TVD remeshing formulas for particle methods. The derivation is inspired from a finite-difference analysis but the method retains the essential features of particle methods. Numerical illustrations give evidence of the improved stability and computational cost resulting from these new algorithms.

Résumé

Schémas de remaillage TDV en méthodes particulaires. On décrit dans cette note des techniques de remaillage TVD pour les méthodes particulaires, en s’inspirant de la méthodologie différences finies. Des exemples numériques montrent les gains obtenus par ces nouveaux algorithmes tant en stabilité qu’en coût de calcul.

Version française abrégée

Méthodes particulaires avec remaillage. Des techniques de remaillage sont souvent utilisées en conjonction avec les méthodes particulaires pour en garantir la précision. Si le remaillage est effectué à chaque pas de temps, on obtient des méthodes de différences finies. L’analyse conduite dans [2] montre que les méthodes particulaires peuvent alors être vues comme une généralisation sans condition CFL de schémas de différences finies multi-dimensionnels. Dans cette note nous poursuivons cette approche en empruntant aux méthodologies différences finies pour construire des méthodes particulaires TVD.

D’une manière générale les formules de remaillage sont construites pour conserver autant de moments que voulus dans la distribution de particules. La formule générale conservant n moments, et utilisant n points de remaillage en 1D, conduit au schéma (4) (voir aussi la figure 1 pour n = 3). Dans le cas non-linéaire, il est démontré dans [2] que, pour obtenir l’ordre 2 en temps, il suffit d’évaluer la vitesse des particules grâce à la formule (5). La suite de la note concerne le schéma de remaillage dit Λ₂, correspondant à n = 3. L’extension à des formules TVD ou préservant la monotonie d’ordre plus élevé pourra être trouvée dans la référence [3].

Email addresses: georges-henri.cottet@imag.fr (G.-H. Cottet), adrien.magni@imag.fr (A. Magni).

Preprint submitted to Elsevier Science
Le cas linéaire - Dans le cas linéaire, sous CFL inférieure à un, la formule (6) est équivalente au schéma de Lax-Wendroff. L'utilisation des limiteurs classiques dans ce contexte (voir par exemple [5]) conduit à la formule de remaillage modifiée (9).

Le cas non-linéaire - Dans le cas non linéaire, le traitement particulier du flux écrit sous la forme \(g(u)u \) nécessite une analyse spécifique pour définir des limiteurs appropriés. En supposant \(g \geq 0 \) et sous CFL 1 une méthode partielle avec remaillage \(\Lambda_2 \) peut se réécrire sous la forme incrémentale (12). Les calculs sont menés dans le cas de l’équation de Burgers, et permettent de définir de limiteurs à partir des formules (12), (13). Le schéma de remaillage résultant est TVD sous CFL 2/3.

Illustrations numériques et relaxation de la condition CFL - On commence par un exemple dans le cas non-linéaire, pour l’équation de Burgers. La condition initiale est un crêneau périodique qui engendre un choc et une détente se propageant vers la droite. La comparaison de la formule TVD avec le schéma \(\Lambda_2 \) brut (figure 1) montre une nette amélioration à la fois dans résolution du choc et de la détente.

On considère ensuite le cas du transport d’un scalaire passif dans un champ de vitesse incompressible. Cet exemple permet d’illustrer le passage au cas multi-dimensionnel, et comment relaxer la condition CFL. L’option choisie est une technique de splitting où les particules sont successivement poussées et remaillées dans chaque direction. Ce schéma n’est plus équivalent à un schéma de différences finies simple mais les limiteurs conservent sont caractère TVD. Pour s’affranchir de la condition CFL, une stratégie consiste à définir localement des vitesses uniformes dont ne diffère que de peu la vitesse réelle. La figure 2 est une comparaison entre un remaillage TVD \(\Lambda_2 \) à 9 points et la formule à 16 points \(\Lambda_3 \) souvent utilisée en pratique, dans la cas de la rotation dans une boîte \([-1, +1] \) d’un disque de rayon 0.1. Cette expérience, menée sous CFL4, met en évidence à la fois la meilleure qualité des résultats de la méthode TVD et le fait qu’elle génère beaucoup moins de particules, ce qui la rend plus économique.

1. Introduction

Remeshing techniques are often used in conjunction with particle methods for the numerical simulation of advection-dominated problems. These formulas are devised to maintain regularity in the particle distribution. They are necessary to ensure accuracy and have been an essential ingredient for performing reliable DNS of both compressible and incompressible flows. Remeshing techniques are based on interpolation formulas that are designed to conserve a certain number of moments of the particle distribution.

In [2] we proposed an analysis of remeshed particle methods in the framework of finite-difference methods. We in particular proved that remeshed particle methods can be viewed as CFL-free, multidimensional generalization of high order finite-difference methods. Remeshed particle simulations in particular share with high order finite-difference schemes the possible problems related to oscillations. In the present note, we continue to exploit the analogy between remeshed particle and finite-difference methods to design non-oscillatory remeshing formulas.

The outline of this note is as follows. In section 2 we recall the results of [2]. In section 3 we derive TVD remeshing formulas for linear and non-linear advection equation. Section 4 is devoted to preliminary numerical illustrations and to a discussion of the CFL number and of the sign independence of the method. Further developments of this approach and applications to gas dynamics, passive advection and incompressible flows will be given elsewhere [3,4].

2. Previous work

Let us consider the model non-linear scalar equation, describing the evolution of the quantity \(u \) carried by the flow at the material velocity \(g(u) \):

\[
\frac{du}{dt} + \left(g(u)u \right)_x = 0
\]
(1)

Particle methods consist of sampling \(u \) on particles advected with velocity \(g(u) \) and constant strength:
moments of the particle distribution can be enforced by increasing the number of grid points.

In purely lagrangian particle methods, velocities and their derivatives are computed by smoothing particle strength over a space scale containing a few particles. The smoothing range must adapt to the flow conditions to smooth out irregular motions. In remeshed particle methods, every few time-steps particles are remeshed on a predefined regular grid. Remeshing is done by distributing after advection each particle strength over a space scale containing a few particles. The conservation of successive strength on nearby grid points. At the end of this process, old particles are discarded and grid points have been remeshed on a predefined regular grid. Remeshing is done by distributing after advection each particle strength over a space scale containing a few particles.

In this section we show how Finite-Difference inspired limiters allow to construct TVD remeshing formulas. We here restrict ourselves to the case \(n = 3 \) and refer to [3] for higher order TVD and Monotony Preserving formulas.

\[
\begin{align*}
 u(x) &\simeq \sum_p \alpha_p \delta(x-x_p), \quad \dot{x}_p = g(u_p) \\
 \text{The strength of particles combines local volumes } v_p \text{ and local } u \text{ values } u_p : \alpha_p = v_p u_p. \text{ Note that, while particle strengths are constant, volumes and local values evolve according to} \\
 \dot{v}_p = (\partial g(u)/\partial x)(x_p) v_p, \quad \dot{u}_p = -(\partial g(u)/\partial x)(x_p) u_p \\
\end{align*}
\]

In purely lagrangian particle methods, velocities and their derivatives are computed by smoothing particle strength over a space scale containing a few particles. The smoothing range must adapt to the flow conditions to smooth out irregular motions. In remeshed particle methods, every few time-steps particles are remeshed on a predefined regular grid. Remeshing is done by distributing after advection each particle strength on nearby grid points. At the end of this process, old particles are discarded and grid points have been remeshed on a predefined regular grid. Remeshing is done by distributing after advection each particle strength over a space scale containing a few particles. The conservation of successive moments of the particle distribution can be enforced by increasing the number of grid points.

In [2] an analysis of remeshed particle methods is done on the basis of their analogy with Finite Difference schemes. We consider the case when particles are remeshed at every time-step (we will call this particle method "push-and-remesh"). In the case of a linear advection equation, \(g(u) = au \), with constant advection velocity \(a > 0 \), when \(a \Delta t \leq h \), if a particle initialized at \(ih \) is located at \(x \) after an advection step, one has \(\lambda = \frac{x-ih}{a \Delta t} = \frac{a \Delta t}{h} \) and we obtain the following scheme :

\[
\begin{align*}
 u_{i}^{n+1} &= \sum_{-\lfloor \frac{n-1}{2} \rfloor \leq \lambda \leq \lfloor \frac{n+1}{2} \rfloor} w_{j}^{n} u_{i-j}^{n}, \quad w_{j}^{n} = c_{k} \prod_{\lambda-k \leq \frac{h}{2}} (1 - \lambda-k) \\
\end{align*}
\]

where \(c_{k} = (-1)^{\lfloor \frac{n-1}{2} \rfloor + k} \lfloor \frac{n+1}{2} \rfloor k! \lfloor \frac{n}{2} \rfloor ! \). For \(n = 3 \) we obtain \(w_{0}^{3} = 1 - \lambda^{2}, w_{1}^{3} = \lambda(1 + \lambda)/2, \) which results in the Lax-Wendroff scheme. Following the terminology of [1], we will call this scheme the left-\(\Lambda_{2} \) remeshing scheme.

In the more general non linear case (1), it is proved in [2] that if particle velocities are evaluated at time \(t_{n} \) by the formula

\[
\begin{align*}
 u_{j}^{n+1/2} &= \tilde{g}(u_{j}^{n}) = u_{j}^{n} \left[1 - \frac{\Delta t}{4h} \left(g(u_{j+1}^{n}) - g(u_{j-1}^{n}) \right) \right]. \\
\end{align*}
\]

the push-and-remesh scheme (4) with \(n = 3 \) and \(\lambda_{j} = \tilde{g}(u_{j}^{n}) \Delta t/h \leq 1 \) is equivalent to a stable second-order (both in space and time) finite-difference scheme. For a sake of clarity we denote by \(\alpha_{i}, \beta_{i}, \gamma_{i} \) the weights in formula (4), associated to grid points from left to right (see figure (1)) for the left-\(\Lambda_{2} \) remeshing, which thus reads :

\[
\begin{align*}
 u_{i}^{n+1} &= u_{i-1}^{n} \gamma_{i-1} + u_{i}^{n} \beta_{i} + u_{i+1}^{n} \alpha_{i+1} \\
\end{align*}
\]

3. TVD remeshing formulas

In this section we show how Finite-Difference inspired limiters allow to construct TVD remeshing formulas. We here restrict ourselves to the case \(n = 3 \) and refer to [3] for higher order TVD and Monotony Preserving formulas.

3.1. The 1D, linear, constant-coefficient, case.

We first consider the case \(g(u) = au, a > 0 \), and set \(\lambda = a \Delta t/h \) and \(\Delta u_{i+1/2} = u_{i+1} - u_{i} \). We start from classical flux-limited versions of the Lax-Wendroff scheme [5] :
where
\[\phi_{i+1/2} = \phi(r_{i+1/2}), \quad r_{i+1/2} = \frac{u_i - u_{i-1}}{u_{i+1} - u_i}. \]

This gives the limited left-Λ2 remeshing formula (6) with
\[\alpha_{i+1} = -\frac{\lambda}{2} (1 - \lambda) \phi_{i+1/2}, \quad \beta_i = 1 - \lambda + \frac{\lambda}{2} (1 - \lambda) (\phi_{i-1/2} + \phi_{i+1/2}), \quad \gamma_{i-1} = \lambda - \frac{\lambda}{2} (1 - \lambda) \phi_{i-1/2}. \]

This remeshing scheme is TVD under the usual conditions on the function \(\phi \), \(|\phi(r)/r - \phi(s)| \leq \Phi \) with:
\[1 - (1 - \lambda) \phi/2 \geq 2,1 + (1 - \lambda) \phi/2 \leq 1/\lambda. \]

If \(a < 0 \), the remeshing formula is equivalent to a Beam-Warming upwind. One can then show, and this important from a practical point of view, that the equations (9) can be used to determine the remeshing weights. This property will be illustrated below in the example of a rotating patch.

3.2. The non-linear case

We consider the equation (1) and the push-and-remesh method with left-Λ2 remeshing, with particle velocities evaluated through (5). We assume here that \(\tilde{g} > 0 \) and set \(\nu = \Delta t/h, \tilde{f}_j = \tilde{g}_i u_j, h_j = \tilde{f}_j(1 - \nu \tilde{g}_j). \)

The push-and-remesh method can then be rephrased as the following centered finite-difference scheme
\[u^{n+1}_i = u^n_i - \nu \Delta \tilde{f}_i - \nu (\Delta h_{i+1/2} - \Delta h_{i-1/2})/2 \]

We look for a TVD modification of the above scheme under the form
\[u^{n+1}_i = u^n_i - \nu \Delta \tilde{f}_i - \nu (\phi_{i+1/2} \Delta h_{i+1/2} - \phi_{i-1/2} \Delta h_{i-1/2})/2, \]

from which the remeshing weights can be recovered by (9). Because if the way particle methods handle fluxes, we need a specific derivation of the limiter \(\phi \) that we outline here. We set \(r_{i+1/2} = \Delta h_{i-1/2} / \Delta h_{i+1/2} \) so that (11) can be rewritten in incremental form
\[u^{n+1}_i = u^n_i - \Delta u_{i-1/2} D_{i-1/2}, \quad D_{i-1/2} = \nu \frac{\Delta h_{i-1/2}}{\Delta u_{i-1/2}} \left[\frac{\Delta \tilde{f}_{i-1/2}}{\Delta h_{i-1/2}} + \frac{1}{2} \left(\frac{\phi_{i+1/2}}{r_{i+1/2}} - \phi_{i-1/2} \right) \right] \]

To obtain a TVD scheme we need to construct \(\phi \) such that \(0 \leq D_{i+1/2} \leq 1 \) under some CFL conditions. We derive these conditions below in the particular case of the Burgers equation \(g(u) = u/2 \), with \(u > 0 \).

We set \(\lambda = \nu \max |u| \) and we further assume the usual CFL condition \(\lambda \leq 1 \).

We have \(f'(u) = u, k'(u) = u(1 - 3u/4) \) so that \(\Delta h_{i-1/2}/\Delta u_{i-1/2} \geq 0, \Delta \tilde{f}_{i-1/2}/\Delta h_{i-1/2} \geq 0 \). Moreover
\[\frac{\Delta h_{i-1/2}}{\Delta u_{i-1/2}} \leq \lambda (1 - 3\lambda/4) \leq 1/3, \quad \frac{\Delta \tilde{f}_{i-1/2}}{\Delta h_{i-1/2}} \leq \frac{1}{1 - 3\lambda/4} \]

so that the scheme (12 is TVD provided the function \(\phi \) satisfies (see [5])
\[\left| \frac{\phi(r)}{r} - \phi(s) \right| \leq \Phi, \quad \frac{1}{1 - 3\lambda/4} + \Phi \leq 3, \quad \frac{1}{1 - 3\lambda/4} - \Phi \geq 0. \]

It is readily checked that the value \(\Phi = 2 \) is allowed provided the CFL condition is reduced to \(\lambda \leq 2/3 \). In that case, the usual TVD limiters, such as Van-Leer or Superbee can be used.
4. Numerical illustrations, sign independence and extension to CFL larger than 1

We first consider the Burgers equation. The initial condition is a step function in $[-1,+1], u_0(x) = 0$ if $x \leq 0$, $u_0(x) = 1$ otherwise, with periodic boundary conditions. It develops a shock and a rarefaction wave propagating to the right.

Figure 1 shows the solution obtained at $t = 0.8$ for the original and TVD Λ_2 remeshing, for $h = 0.02$ and, following the above analysis, a CFL number $2/3$. The TVD remeshing formula used a Van-Leer limiter. The improvement obtained by the limiter is clear.

We continue with the case of the passive transport of a scalar in a 2D incompressible flows. Although it does not enter the general case, this case is useful to illustrate how the TVD formulas are extended to the multidimensional case and how the CFL condition can be relaxed. To deal with advection in a multidimensional field, the approach we choose follows the classical splitting used in finite-difference methods. In a push and remesh methods, it means that particles are advected in one direction, then remeshed, then advected in a second direction and so on. This is clearly a first order in time method and higher order strategies can be devised as for classical differential equations. Note that this method, for not constant velocity values, is no longer equivalent to a finite-difference method, because particle in the second and following advection stages “see” velocity values at the location where they have been remeshed.

In this experiment we consider the evolution of a circular in a rotating rigid velocity field. We used a splitting method with the left-Λ_2 TVD remeshing after advection of particle in each direction. In this example we used the superbee limiter. As announced earlier, despite the sign changes we were able to use the same remeshing weights at all particle locations. The derivation of the TVD remeshing formulas are based on the assumption of a CFL number less than 1. However one specific feature of particle methods is that they are CFL free, which often enables to use much larger time-step than for Eulerian methods. It is therefore very much desirable to relax the CFL condition for the TVD remeshing formulas. The CFL condition is clearly not necessary for the constant velocity case, because in this case particles conserve their slopes during advection. One way to relax the CFL condition in the general case is to determine zones of the flow where the velocity is close to a constant value. If $a(x) = \bar{a} + \tilde{a}(x)$, and if Δt is such that $\bar{a}\Delta = Nh$ and $\max|\tilde{a}|\Delta t \leq h$, the idea is to advect particles with \bar{a}, without remeshing, and to follow this advection with a push-and-remesh TVD method. This algorithm will be given in more details in [3]. In the present example, a CFL number equal to 4 could be used by partitioning the computational domain in 16 boxes.

Figure 2 shows, for the left-Λ_2 TVD scheme and the original Λ_3 scheme, a cross-section and contours of the patch after one turn. The patch had a radius of 0.1. The particle spacing is 0.01. For a better comparison we have translated the patch obtained by the TVD remeshing formulas by 0.25 in the vertical direction. It also shows the time-evolution of the number of particles, initially located inside the patch.
Fig. 2. Passive transport of circular patch in a rigid vorticity field, after one turn. Left picture : contours for values 0.1, 0.5 and 0.95. Middle picture : cross sections. Right picture : time evolution of the number of particles. Green crosses : classical Λ_3 remeshing; red continuous line : TVD Λ_2; blue dotted line : exact solution.

This figure illustrates the improved accuracy obtained by TVD formulas. It also shows that, because it is less dispersive, the number of particles generated by the TVD formula is remarkably lower than for the original Λ_3 remeshing formula. In this example the TVD formula is much less expensive by the combined effects of the following factors: it generates less particles and it uses a smaller stencil. Moreover, one can observe that the splitting strategy is by itself less expensive than the traditional remeshing strategy: in 3D, for a Λ_2 formula, the cost of the splitting method is $O(9N)$ instead of $O(64N)$ for a regular Λ_3 formula.

5. Conclusion

We have introduced a methodology inspired from finite-difference methods to design TVD remeshing formulas for the simulation of advection dominated problems by particle methods. We have shown that these methods can retain the important features of particle methods with respect to localization and time-step limits. Preliminary validations illustrate the gain offered by the new remeshing formulas not only in stability but also in computational cost.

Acknowledgements
This work was partially supported by ANR under grant # ANR-06-BLAN-0306.

Rédérences