A. Benzerga, Micromechanics of coalescence in ductile fracture, Journal of the Mechanics and Physics of Solids, vol.50, issue.6, pp.1331-1362, 2002.
DOI : 10.1016/S0022-5096(01)00125-9

N. Bilger, F. Auslender, M. Bornert, and R. Masson, New bounds and estimates for porous media with rigid perfectly plastic matrix, Comptes Rendus M??canique, vol.330, issue.2, pp.127-132, 2002.
DOI : 10.1016/S1631-0721(02)01438-9

URL : https://hal.archives-ouvertes.fr/hal-00111344

V. Buryachenko, The overall elastopIastic behavior of multiphase materials with isotropic components, Acta Mechanica, vol.18, issue.3, pp.93-117, 1996.
DOI : 10.1007/BF01274241

R. Canon, J. Roberts, and R. Beals, Deformation of UO2 at High Temperatures, Journal of the American Ceramic Society, vol.242, issue.5, pp.105-112, 1971.
DOI : 10.1016/0001-6160(65)90034-9

F. Dherbey, F. Louchet, A. Mocellin, A. Leclercq, and S. , Elevated temperature creep of polycrystalline uranium dioxide: from microscopic mechanisms to macroscopic behaviour, Acta Materialia, vol.50, issue.6, pp.1495-1505, 2002.
DOI : 10.1016/S1359-6454(02)00007-1

L. Dormieux, A. Molinari, and D. Kondo, Micromechanical approach to the behavior of poroelastic materials, Journal of the Mechanics and Physics of Solids, vol.50, issue.10, pp.2203-2231, 2002.
DOI : 10.1016/S0022-5096(02)00008-X

URL : https://hal.archives-ouvertes.fr/hal-00140491

R. Dubourg, H. Faure-geors, G. Nicaise, and M. Barrachin, Fission product release in the first two PHEBUS tests FPT0 and FPT1, Nuclear Engineering and Design, vol.235, issue.20, pp.2183-2208, 2005.
DOI : 10.1016/j.nucengdes.2005.03.007

D. Fabrègue and T. Pardoen, A constitutive model for elastoplastic solids containing primary and secondary voids, Journal of the Mechanics and Physics of Solids, vol.56, issue.3, 2008.
DOI : 10.1016/j.jmps.2007.07.008

J. Gatt, Y. Monerie, D. Laux, and D. Baron, Elastic behavior of porous ceramics: application to nuclear fuel materials, Journal of Nuclear Materials, vol.336, issue.2-3, pp.145-155, 2005.
DOI : 10.1016/j.jnucmat.2004.09.009

URL : https://hal.archives-ouvertes.fr/hal-00327841

M. Gologanu, J. Leblond, and J. Devaux, Approximate models for ductile metals containing non-spherical voids???Case of axisymmetric prolate ellipsoidal cavities, Journal of the Mechanics and Physics of Solids, vol.41, issue.11, pp.1723-1754, 1993.
DOI : 10.1016/0022-5096(93)90029-F

M. Gologanu, J. Leblond, and J. Devaux, Approximate Models for Ductile Metals Containing Nonspherical Voids???Case of Axisymmetric Oblate Ellipsoidal Cavities, Journal of Engineering Materials and Technology, vol.116, issue.3, pp.290-297, 1994.
DOI : 10.1115/1.2904290

M. G?-ar?-ajeu and P. Suquet, Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles, J. Mech. Phys. Solids, vol.45, pp.873-902, 1997.

Y. Guerin, Etude par compression a hautes temperatures de la deformation plastique du bioxyde d'uranium polycristallin, Journal of Nuclear Materials, vol.56, issue.1, pp.61-75, 1975.
DOI : 10.1016/0022-3115(75)90197-X

A. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I -yield criteria and flow rules for porous ductile media, J. Eng. Mat. Tech, vol.99, pp.1-15, 1977.

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, vol.11, issue.2, pp.127-140, 1963.
DOI : 10.1016/0022-5096(63)90060-7

E. Hervé and A. Zaoui, inclusion-based micromechanical modelling, International Journal of Engineering Science, vol.31, issue.1, pp.1-10, 1993.
DOI : 10.1016/0020-7225(93)90059-4

G. Hu, A method of plasticity for general aligned spheroidal void or fiber-reinforced composites, Int. J. Plasticity, vol.12, pp.439-449, 1996.

S. Kashibe and K. Une, Effects of Temperature Cycling and Heating Rate on Fission Gas Release of BWR Fuels, Journal of Nuclear Science and Technology, vol.17, issue.11, pp.1090-1099, 1991.
DOI : 10.1016/0022-3115(88)90003-7

S. Kashibe, K. Une, and K. Nogita, Formation and growth of intragranular fission gas bubbles in UO2 fuels with burnup of 6???83 GWd/t, Journal of Nuclear Materials, vol.206, issue.1, pp.22-34, 1993.
DOI : 10.1016/0022-3115(93)90229-R

J. Koplik and A. Needleman, Void growth and coalescence in porous plastic solids, International Journal of Solids and Structures, vol.24, issue.8, pp.835-853, 1988.
DOI : 10.1016/0020-7683(88)90051-0

W. Kreher and W. Pompe, Field fluctuations in a heterogeneous elastic material???an information theory approach, Journal of the Mechanics and Physics of Solids, vol.33, issue.5, pp.419-445, 1985.
DOI : 10.1016/0022-5096(85)90008-0

J. Leblond, Mécanique de la Rupture fragile et ductile, 2002.
DOI : 10.1016/s1251-8069(98)80033-x

J. Leblond, G. Perrin, and P. Suquet, Exact results and approximate models for porous viscoplastic solids, International Journal of Plasticity, vol.10, issue.3, pp.213-235, 1994.
DOI : 10.1016/0749-6419(94)90001-9

P. Lösönen, On the behaviour of intragranular fission gas in UO2 fuel, Journal of Nuclear Materials, vol.280, issue.1, pp.56-72, 2000.
DOI : 10.1016/S0022-3115(00)00028-3

B. Marini, F. Mudry, and A. Pineau, Experimental study of cavity growth in ductile rupture, Engineering Fracture Mechanics, vol.22, issue.6, pp.989-996, 1985.
DOI : 10.1016/0013-7944(85)90038-4

D. Martin, The elastic constants of polycrystalline uo 2 and u,pu mixed oxides: a review and recommendations, High Temperatures-High Pressures, vol.21, pp.13-24, 1989.

J. Michel, H. Moulinec, and P. Suquet, Effective properties of composite materials with periodic microstructure: a computational approach, Computer Methods in Applied Mechanics and Engineering, vol.172, issue.1-4, pp.109-143, 1999.
DOI : 10.1016/S0045-7825(98)00227-8

Y. Monerie and J. M. Gatt, Overall viscoplastic behavior of non-irradiated porous nuclear ceramics, Mechanics of Materials, vol.38, issue.7, pp.608-619, 2006.
DOI : 10.1016/j.mechmat.2005.11.004

T. Mura, Micromechanics of Defects in Solids, 1987.

D. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, 1976.
DOI : 10.2172/7343826

T. Pardoen and J. Hutchinson, An extended model for void growth and coalescence, Journal of the Mechanics and Physics of Solids, vol.48, issue.12, pp.2467-2512, 2000.
DOI : 10.1016/S0022-5096(00)00019-3

G. Perrin, ContributionàContributionà l'´ etude théorique et numérique de la rupture ductile des métaux, 1992.

G. Perrin and J. Leblond, Analytical study of a hollow sphere made of plastic porous material and subjected to hydrostatic tension-application to some problems in ductile fracture of metals, International Journal of Plasticity, vol.6, issue.6, pp.677-699, 1990.
DOI : 10.1016/0749-6419(90)90039-H

P. Castañeda and P. , The effective mechanical properties of nonlinear isotropic composites, Journal of the Mechanics and Physics of Solids, vol.39, issue.1, pp.45-71, 1991.
DOI : 10.1016/0022-5096(91)90030-R

P. Castañeda, P. Willis, and J. , The effect of spatial distribution on the effective behavior of composite materials and cracked media, Journal of the Mechanics and Physics of Solids, vol.43, issue.12, pp.1919-1951, 1995.
DOI : 10.1016/0022-5096(95)00058-Q

P. Castañeda, P. Zaidman, and M. , The finite deformation of nonlinear composite materials???I. Instantaneous constitutive relations, International Journal of Solids and Structures, vol.33, issue.9, pp.1271-1286, 1996.
DOI : 10.1016/0020-7683(95)00099-2

Y. Qiu and G. Weng, A Theory of Plasticity for Porous Materials and Particle-Reinforced Composites, Journal of Applied Mechanics, vol.59, issue.2, pp.261-268, 1992.
DOI : 10.1115/1.2899515

F. Sauter and S. Leclercq, Modeling of the non-monotonous viscoplastic behavior of uranium dioxide, Journal of Nuclear Materials, vol.322, issue.1, pp.1-14, 2003.
DOI : 10.1016/S0022-3115(03)00276-9

P. Suquet, Introduction, Homogenization Techniques for Composite Media, pp.193-278, 1987.
DOI : 10.1007/3-540-17616-0_15

URL : https://hal.archives-ouvertes.fr/hal-00404025

P. Suquet, Overall Properties of Nonlinear Composites, C.R. Acad. Sc. Paris, vol.320, pp.563-571, 1995.
DOI : 10.1007/978-94-009-1756-9_19

V. Tvergaard, Material failure by void growth to coalescence Advances in Applied Mechanics, pp.83-151, 1990.

V. Tvergaard, Interaction of very small voids with larger voids, International Journal of Solids and Structures, vol.35, issue.30, pp.3989-4000, 1998.
DOI : 10.1016/S0020-7683(97)00254-0

P. Vincent, Y. Monerie, and P. Suquet, Ductile damage of porous materials with two populations of voids, Comptes Rendus M??canique, vol.336, issue.1-2, pp.245-259, 2008.
DOI : 10.1016/j.crme.2007.11.017

URL : https://hal.archives-ouvertes.fr/hal-00214157

J. Willis, Variational and related methods for the overall properties of composites Advances in Applied Mechanics 21, pp.1-78, 1981.

M. Zaidman, P. Castañeda, and P. , The finite deformation of nonlinear composite materials???II. Evolution of the microstructure, International Journal of Solids and Structures, vol.33, issue.9, pp.1287-1303, 1996.
DOI : 10.1016/0020-7683(95)00100-X

P. Castañeda and W. , have derived an upper bound for composite materials composed of a linear-elastic matrix containing linear-elastic inclusions with a (spheroidal) ellipsoidal shape and whose centers are arranged in space according to an ellipsoidal distribution. This bound involves two different P tensors, 1995.