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Multi-asset American options and parallel quantization

Anne Laure Bronstein∗ Gilles pagès†and Jacques Portès‡

September 10, 2008

Abstract

We present a parallel implementation of the optimal quantization method on a

grid computing. Its purpose is to price instantaneously multidimensional American

options. Numerical tests are proceeded with variable number of processors, from 4 to

128. Finally a spatial extrapolation of Richardson-Romberg is introduced to speed up

the convergence rate and stabilize the results.

Keywords: American options, optimal quantization, Parallel computing, Romberg extrapola-

tion.

1 Introduction

This paper is devoted to a numerical study of a probabilistic method for options pricing.
We focus on multi-asset American options. We assume that the underlying assets dynam-
ics follow a classical Black and Scholes model. Numerical methods for multidimensional
American options have attracted significant interest in the literature. Important contribu-
tions include Longstaff and Schwartz [LS01], Tsitsiklis and Van Roy [TVR99], Broadie and
Glasserman [BG07], Fournié al [FLLLT99], [FLLL01], Lions and Régnier [LS01].

We consider a probabilistic approach designed by Bally, Pagès and Printems, (see [BP03]
and [BPP05]). This method is based on a spatial discretization of processes on optimal
grids. In the fifties, optimal quantization has emerged in the fields of Signal processing and
Information Theory, see Gersho and Gray [GG92] and Graf and Luschgy [GL00].

In financial institutions, quickness of execution as well as high accuracy are important
criteria in the choice of a pricing method. With this observation in mind, we suggest some
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improvements to the original quantization method. The quantization tree algorithm (or
pricing procedure) is divided into three parts: the computation of the quantization grids,
the estimation of the transition probabilities and the premium evaluation. As the first
two tasks are time consuming, one usually proceeds these estimations off-line. To reduce
drastically the computation time and proceed on-line, we suggest the application of a fast
weight estimation method, which allows for a parallel implementation of our procedure on
a grid.

The fast weight estimation method was first introduced in the paper by Bardou, Bouthemy
and Pagès, (see [BBP07a]). It is based on centered Gaussian first order auto-regressive
processes and yield time independent transition probabilities. The computation of these
transition probabilities consists on large Monte Carlo simulations of couples of independent
Gaussian random vectors. To improve the execution time of this procedure, we split into
several processes the Monte Carlo simulations. The number of processes used to do the
computations is function of the number of Monte Carlo simulations, the option dimension
and the required accuracy. This parallel implementation reduces from several minutes to
several seconds the execution time of this fast weight estimation procedure and allows for
an almost instantaneously pricing algorithm.

With regard to computations accuracy, we suggest the application of a spatial Richardson-
Romberg extrapolation method. This extrapolation is a powerful technique for improving
the convergence rate of the algorithm. As in the American case the spatial term has a strong
weight in the error bound, we consider a spatial extrapolation. Furthermore, the Richardson-
Romberg extrapolation strongly improves the stability of the pricing method. We observe
a decrease of the premium sensitivity with regard to the time discretization parameter, and
therefore we get more accurate premium.

Section 2 is devoted to Bermuda options pricing. Section 3 recalls some basic notions
on optimal quantization. In Section 4, following some results by Bally, Pagès and Printems,
(see [BPP05]), some error bounds are estimated. In Section 5, we present a numerical study
of American exchange options with a parallel implementation of the pricing algorithm on
the CCR grid of Jussieu. A spatial Richardson-Romberg extrapolation method is introduced
into the pricing procedure.

2 Bermuda option: an optimal stopping problem

Let (Ω,A,P) be a given probability space and let define on this probability space a Markov
structure process (Xk)0≤k≤n = (X1

k , . . . , X
d
k )0≤k≤n. This process will denote the discrete

price of d-traded assets at time tk, k = 0, . . . , n on a given market. Let (Fk)0≤k≤n be the
natural completed filtration generated by (Xk)0≤k≤n on (Ω,A,P). We assume that P is the
risk-neutral probability. The holder of a Bermuda option has the right to receive at a time
tk ∈ {t0, . . . , tn} a flow of payoff h(tk, Xk). The Bermuda option pricing problem is associated
to the following optimal stopping problem

Vk := ess sup {E (h(τ,Xτ )|Fk) , τ {tk, . . . , tn}-valued stopping times} ,
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where Vk is identified to the option price at time tk. To solve this problem, we rely on the
dynamic programming formula:

Vn := h(tn, Xn),

Vk := max{h(tk, Xk),E(Vk+1|Xk)}, k = 0, . . . , n− 1. (1)

Observation of this formula leads to the following question: how to approximate the
conditional expectations E(Vk+1|Xk) at the exercise dates tk, k = 0, . . . , n. This paper
is based on a spatial discretization method of X initiated by Bally, Pagès and Printems,
(see [BPP05]).

3 Quantization of the underlying structure process

3.1 Optimal quantization

Given k = 0, . . . , n, Xk is approximated by a random vector X̂k taking valued in a finite
subspace of R

d, named quantization grid, i.e.

X̂k = qk(Xk), qk : R
d → Γk := {xk

1, . . . , x
k
Nk
}.

Let xk = (xk
1, . . . , x

k
Nk

) denotes the Nk-tuple induced by Γk.

Let Xk ∈ Lp(Ω,A,P), p ∈ [1,∞[. The Lp-mean error induced by replacing Xk by X̂k

is called the Lp-mean quantization error and is given by ||Xk − qk(Xk)||p. To optimize this
spatial discretization method, one hopes to minimize in qk and in x the quantization error.
Recall that a partition (Ci(x

k))1≤i≤Nk
of R

d is a Voronoi tessellation of the Nk-quantizer xk,
if for every i ∈ {1, . . . , Nk}, Ci(x

k) is a Borel set satisfying

Ci(x
k) ⊂ {u ∈ R

d | |u− xk
i | = min

1≤j≤Nk

|u− xk
j |}.

Then, the solution of this minimization problem is given by the nearest neighbor projection
induced by the Voronoi tessellation (Ci(x

k))1≤i≤Nk
, on an optimal grid. Several procedures

are available to design an optimal grid, e.g. the Competitive Learning Vector Quantization
algorithm, the Lloyd’s procedure. For a detailed version of this method, see Pagès and
Printems [PP03].

3.2 The quantization tree

This spatial dicretization is applied to the backward dynamic programming formula (1).
However it results a loss of the Markov property for X̂k. We force the Markov property and
define by induction the following quantized dynamic programming formula given by

V̂n := h(tn, X̂n),

V̂k := max{h(tk, X̂k),E(V̂k+1|X̂k)}, k = 0, . . . , n− 1,
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and the quantization tree algorithm given by

v̂n(xn
i ) := hn(xn

i ), i = 1, . . . , Nn,

v̂k(x
n
i ) := max{hk(x

k
i ),

Nk+1
∑

j=1

v̂k+1(x
k+1
j )πk

ij}, i = 1, . . . , Nk, k = 0, . . . , n− 1, (2)

where

πk
ij = P(X̂k+1 = xk+1

j | X̂k = xk
i ) = P(Xk+1 ∈ Cj(x

k+1)|Xk ∈ Ci(x
k)). (3)

3.3 Complexity

Operation cost for a quantization tree descent is proportional to

n−1
∑

k=0

NkNk+1.

4 From Bermuda option to American option

Set tk = kT
n

, k = 0, . . . , n and let n goes to ∞. By taking this limit, we get an American
option analogue to the Bermuda one. Now, the derivative holder has the right to receive once
at a time t ∈ [0, T ] a flow of payoff h(t,Xt). Also, the American option price is identified to
the solution of a continuous optimal stopping problem given by

ϑt := ess sup {E (h(τ,Xτ )|Ft) , τ [t,T]-valued stopping times} .
Hence, it seems natural to approximate the price of an American option by the price of its
Bermuda counterpart. A premium error bound follows from theorems 2.1 and 2.2 in Bally,
Pagès and Printems, (see [BPP05]) and is given for semi-convex payoff by

‖ϑ0 − V̂0‖p ≤
C1

n
+ C2

n
∑

k=0

‖Xk − X̂k‖p,

for C1 and C2 positive constants.
Combining Zador’s Theorem [Z82] with an optimal dispatching rule of the elementary

quantizers among n time discretization steps, i.e., for n ≥ 1 and N ≥ n+ 1, we have

Nk :=









t
d

2(d+1)

k (N − 1)

t
d

2(d+1)

1 + . . .+ t
d

2(d+1)
n









, (4)

where ⌈x⌉ := min{k ∈ N : k ≥ x}, yields an a priori error bound in time and space for
semi-convex payoff given by

‖ϑtk − V̂k(X̂k)‖p ≤ Cpe
CpT

(

1 + |s0|
n

+
n1+1/d

N1/d

)

.
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5 Numerical study of American exchange option pre-

mium

In this Section, we proceed to numerical tests on American exchange options.

5.1 The framework

We consider a d-dimensional Black-Scholes model for the underlying assets dynamics given
by

dSl
t = (r − µl)S

l
tdt+ σlS

l
tdW

l
t , t ∈ [0, T ], l = 1, . . . , d,

where (Wt)0≤t≤T is a d-dimensional standard Brownian motion.
If the derivative holder exercises its contract, he’ll receive a reward based on the value of

the underlying assets at the exercise date and defined by

h(y) := max(y1 · . . . · yp − yp+1 · . . . · y2p, 0), with d := 2p.

To simplify the computations, w.l.o.g. we set the interest rate to 0. (Indeed h doesn’t
depend on r).

5.1.1 A more accurate computation: the introduction of a European control

variable

To reduce the price estimation variance, we introduce a sequence of control variate variables
in the quantization tree algorithm, (see [BPP05], Section 5). In the exchange case, the
variable considered is the European exchange option with similar maturity as the American
one. The European premium has a closed form solution given by

ExBS(Θ, y, y
′, σ̃, µ) := erf(d1) exp(−µΘ)y − erf(d1 − σ̃

√
Θ)y′,

d1(y, y
′, σ̃,Θ, µ) :=

log(y/y′) + (σ̃2/2 − µ)Θ

σ̃
√

Θ

and erf(y) =

∫ y

−∞

e−u2/2du/
√

2π,

with

Θ := T − t, σ̃ :=

(

d
∑

l=1

σ2
l

)1/2

, µ :=

p
∑

l=1

µl −
d
∑

l=p+1

µl, y :=

p
∏

l=1

Sl
t, y

′ :=
d
∏

l=p+1

Sl
t.

5.1.2 Exchange option parameters

We focus on American exchange options in dimensions 2, 4 and 6 in and out of the money.
The model parameters are the following:
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- a maturity T of one year,

- a dividend rate µ of 5%,

- a volatility σ of 20%.

5.2 A new quantization tree

With the introduction of a sequence of European control variables, the quantization tree
given by (2) turns into the following pricing algorithm.

vh,n
i := hn

i i = 1, . . . , Nn,

vh,k
i := Mk

i + max

{

(hk
i −Mk

i ),

Nk+1
∑

j=1

πk
ijv

(h−M),k+1
j

}

, i = 1, . . . , Nk, k = 0, . . . , n− 1. (5)

where the obstacle is given by

hk
i := h(sk,1

i , . . . , sk,d
i ),

the European control variable by

Mk
i := ExBS(T − tk,

p
∏

l=1

sk,l
i ,

d
∏

l=p+1

sk,l
i , σ̃, µ),

with

sk,l
i := sl

0 exp

(

−(µl +
σ2

l

2
)k∆t+ σlx

k,l
i

)

, l = 1, . . . , d,

and the transition probabilities by

πk
ij = P(X̂k+1 = xk+1

j | X̂k = xk
i ). (6)

Here xk is an optimal Nk-quantizer of Xk.

5.2.1 An algorithm in three steps

To compute the quantization tree algorithm, one proceeds step by step.

- Step 1: the computation of optimal Nk-quantizer of Stk .

In the Black-Scholes model, the asset price can be seen as function of the Brownian
motion, i.e. Stk = ψ(tk, Xk), with Xk := Wtk . Thus, optimal quantizers of Stk can be
computed as function of optimal quantizers of Wtk . Recalling Section 3.1, there exist
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several algorithms to compute the Lp-optimal Nk-quantizer xk of Wtk . However, one
notices that it also could be obtained by a dilatation of the optimal Nk-quantizer x̄k

of the normal distribution. That is for k ∈ {0, . . . , n},
xk =

√
tkx̄

k

where x̄k is already known. Indeed, quantizers of the normal law have already been
computed for several dimensions and several grids sizes and are downlable at the url:

http://quantification.finance-mathematique.com

In view of these observations, one could execute step one instantaneously.

- Step 2: the computation of the transition probabilities (6).

To proceed this step, one appeals to Monte Carlo simulations. The execution time
depends on the option dimension and variates between 15 minutes and several hours.
Computations are usually proceeded off-line during the night.

- Step 3: the option premium computation.

Once the two first steps are executed, the algorithm execution time is very quick and
we instantaneously get option prices.

The objective of this numerical work is to study several methods to improve drastically the
execution time of step 2.

5.2.2 The transition probabilities computation

- The diffusion method: accurate but too long.

We simulate some standard Brownian motion trajectories from t0 = 0 to the maturity
of the exchange option tn = T . This simulation is based on the independence and
stationary properties of the Brownian motion increments. Indeed, one will notice
that the law of the family (Wtk+1

− Wtk)0≤k≤n−1 , with tk = kT
n
, k = 0, . . . , n, is

similar to a family of i.i.d. random vectors with N (0, T
n
Id) distribution. Therefore for

k ∈ {1, . . . , n}, Wtk is simulated by

√

T

n

k−1
∑

i=0

ǫi+1, (7)

where ǫi, i ∈ {1, . . . , k} are i.i.d random variables, with normal distribution. The Monte
Carlo proxies of the theorical transitions (6) are then simulated for k ∈ {0, . . . , n− 1},
i ∈ {1, . . . , Nk} and j ∈ {1, . . . , Nk+1} by

π̃k
ij =

1
M

∑M
m=1 1Cj(xk+1)(W̃

m
tk+1

)1Ci(xk)(W̃
m
tk

)

1
M

∑M
m=1 1Ci(xk)(W̃

m
tk

)
(8)
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and by

π̃0
1j =

1

M

M
∑

m=1

1Cj(x1)(W̃
m
t1

), (9)

where for k ∈ {0, . . . , n}, (W̃m
tk

)1≤m≤M are M copies of the random vector Wtk given by
(7). This method is very consistent as the quantization tree is built step by step and
gives very accurate results. However, this advantage is also a problem as it implies lots
of simulations and doesn’t allow a split of the transition probabilities computations
since the dynamics plays an important role here.

- The fast weight estimation method (FWE): accurate and quick!

This method, introduced in the paper of Bardou, Bouthemy and Pagès, (see [BBP07a])
appeals to centered Gaussian first order auto-regressive processes. In order to apply this
method to the American exchange option, we consider the centered Gaussian first order

auto-regressive Brownian motion process in R
d given by Wtk+1

= Wtk +
√

T
n
ǫk+1, for

k ∈ {0, . . . , n− 1} where (ǫk)1≤k≤n are i.i.d random vectors with N (0, Id) distribution.

Let W be the auto-regressive process described above and let (η1, η2) be a couple of
independent random vectors normally distributed. Then, the transition probabilities
(6) satisfy for k ∈ {1, . . . , n− 1}, i ∈ {1, . . . , Nk} and j ∈ {1, . . . , Nk+1}

πk
ij =

P(αk+1η1 + βk+1η2 ∈ Cj(x̄
k+1), η1 ∈ Ci(x̄

k))

P(η1 ∈ Ci(x̄k))
(10)

and for j ∈ {1, . . . , N1}
π0

1j = P(η2 ∈ Cj(x̄
1)), (11)

where for k ∈ {0, . . . , n− 1},

αk+1 =

√

k

k + 1
and βk+1 =

1√
k + 1

,

and x̄k is the Lp-optimal Nk-quantizer of the normal distribution. Therefore each tran-
sition probability can be computed independently and all the computations are exe-
cutable separately with an unique sample of (η1, η2). However, to keep a certain consis-
tency in the tree foundation, we simulate at each time step tk a sample (η̃m

1 , η̃
m
2 )1≤m≤M

and we compute the transition probabilities estimations for i ∈ {1, . . . , Nk} and j ∈
{1, . . . , Nk+1} by

π̃k
ij =

1
M

∑M
m=1 1Cj(x̄k+1)(αk+1η̃

m
1 + βk+1η̃

m
2 )1Ci(x̄k)(η̃

m
1 )

1
M

∑M
m=1 1Ci(x̄k)(η̃

m
1 )

.

Since these computations are time independent, the computations (π0
ij)i,j

, (π1
ij)i,j

,. . .

(πn−1
ij )

i,j
could be done simultaneously on different processors.
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d =2 d =4 d =6
n 25 11 9
N̄ 335 750 1000

Table 1: Quantization parameters.

5.3 A parallel implementation of the transition probabilities: an

incredible time reward!

We will study a parallel implementation of the fast weight estimation method on the CCR
grid of Jussieu.

5.3.1 Parallel computing

In computer science, parallel computing consists in the partitioning of a computation in
elementary tasks that will be simultaneously proceeded by several processors. This method
is used to speed up algorithm execution time and to increase the number of tasks executed.
Today’s computer have between one and four processors. To optimize computing resources,
numerous processors are coupled together through a support named grid computing. These
grids offer appropriate support to do parallel computing. Computations are proceeded on
these grids through a Message Passing Interface (MPI). This interface defines a library of
functions used to send messages on the grids. These functions are compatible with the C
language.

5.3.2 From 14 minutes to 14 seconds

We have proceeded several tests on the American exchange options described above in di-
mensions 2, 4 and 6. The model parameters are similar as in the Section 5.1.2 for maturity,
drift and volatility and we consider S0 =(40,36). The quantization parameters (number of
layers n, average number of points per layer N̄ := N/n), are given by Table 1 and satisfy the
optimal dispatching rule (4). The reference price amounts to 5.6468 and was computed by
a two dimensional finite difference algorithm devised by Villeneuve et Zanette [VZ02]. The
control variate variable (European Black and Scholes premium) is equal to 5.2674. These
tests have been done on the CCR grid of Jussieu. First, following the FWE method, we im-
plement a sequential procedure to estimate the transition probabilities (10)-(11) and insert
these results in the quantization tree algorithm to check the quantized premium accuracy.
Then, following a similar procedure with exactly the same parameters, we split the Monte
Carlo simulations between several processes. For M Monte Carlo simulations and x pro-
cesses, denoted between 0 and x − 1, each process, (from 1 to x − 1), receive ⌈ M

x−1
⌉ Monte

Carlo simulations to execute. MPI functions are used to send the data and receive the re-
sults. The process 0 plays the role of an orchestra conductor. It coordinates these transfers
and proceeds to final computation.
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An incredible result in dimension 2: if one wishes to get a very accurate estimation of the
transition probabilities, one could execute 50 million trials on 128 processors in 14 seconds.
A similar procedure, with a sequential implementation lasts 14 minutes and 18 seconds. I.e.,
the parallel procedure is 61 times quicker than the sequential one. The quantized premium is
equal to 5,6484, i.e., we have an error of 0,026% with regard to the reference price of 5,6468.

However, accurate estimations are obtained with fewer trials. Several tests have been
done for American exchange in dimension 6. For example, transition probabilities were
estimated with 900 000 trials split on 8 processors (2 computers). Parallel computing lasts
8 seconds, whereas the sequential one lasts 3 minutes 35 seconds. I.e., parallel computing is
almost 27 times quicker than sequential computing in this case. The quantized premium is
here equal to 5,6634, i.e., we have an error of 0,29% in dimension 6.

To get an understanding of the grid capacity, several tests have been done for 32 proces-
sors and 900 000 Monte Carlo trials. In dimension 2, for an accuracy of 0,026% the parallel
procedure lasts 6 seconds, whereas the sequential one lasts 44 seconds. I.e., the parallel pro-
cedure is 7 times quicker than the sequential one. In dimension 4, for an accuracy of 0,15%
the parallel procedure lasts 10 seconds whereas the sequential one 1 minute 37 seconds. So
here, the parallel procedure is almost 10 times quicker than the sequential one. In dimension
6, for an accuracy of 0,18% we have an execution time of 11 seconds in parallel computing
and 3 minutes 35 seconds in the sequential one. That is, parallel computing is 20 times
quicker than sequential computing.

Remark 1 Here, as the number of processors is large and the number of Monte Carlo low,

sending message and final computation take longer with 32 processors than with 8 processors

in dimension 6.

5.4 Pricing accuracy

Recalling Section 4 , one observes, for semi convex payoffs, an error bound given by

| p(N̄ , n) − pV Z | ≤
C1

n
+ C2

n

N̄
1
d

. (12)

Here p(N̄ , n) represents the quantized premium of the American exchange option computed
with n time steps and N̄ := N

n
average elementary quantizers per layer. And pV Z is the

Villeneuve and Zanette reference premium. Several tests are executed to observe the depen-
dency of the error bound in N and n. first, we note the ascendency of the spatial term on
the temporal one. Then, we observe a convergence rate closer to 2/d in the spatial term
which is stronger than the theoretical rate of 1/d. These tests suggest that heuristically we
have

| p(N̄ , n) − pV Z | ∼
C1

n
+ C2

n

N̄
2
d

. (13)

In view of these observations, a spatial Richardson-Romberg extrapolation is applied on
quantized results.
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5.5 A more stable method: a spatial Richardson-Romberg extrap-

olation

5.5.1 A spatial Richardson-Romberg extrapolation

Let F : R
d → R be a 2-times differentiable functional with Lipschitz Hessian D2F . Let

(X̂(N))N≥1 be a sequence of quatratic optimal quantizations. Then a Taylor expansion yields

E(F (X)) = E(F (X̂(N))) +
1

2
E

(

D2F (X̂(N))(X − X̂(N))⊗2
)

+ O
(

E(|X − X̂(N)|3)
)

.

We can see in [GLP06] that for the normal distribution we have,

E

(

|X − X̂(N)|3
)

= O(N−
3−ǫ

d ), ǫ > 0,

if we suppose that

E(D2F (X̂(N))(X − X̂(N))⊗2) =
cF,X

N
2
d

+ O
(

E(|X − X̂(N)|3)
)

,

then,

E(F (X)) = E(F (X̂(N))) +
cF,X

2N
2
d

+ O(N−
3−ǫ

d ).

So, one can appeal to a spatial Richardson-Romberg extrapolation to compute E(F (X)).
Let N̄1 and N̄2 be two optimal quantizer sizes, then we have

E(F (X)) =
N̄

2
d

2 E(F (X̂(N2))) − N̄
2
d

1 E(F (X̂(N1)))

N̄
2
d

2 − N̄
2
d

1

+ O(N−
3−ǫ

d ).

5.5.2 How to proceed?

One will compute two quantized prices following the quantization tree algorithm given by
(5), that we denote by p(N̄1, n) and p(N̄2, n). The model parameters are similar as in the
Section 5.3.2 for maturity, drift, volatility and initial condition. The average number of
points per layer, N̄ , is fixed and the number of layers, n, is variable (see Table 2). The
Villeneuve and Zanette reference price amounts to 5.6468 and the control variate variable
(European Black and Scholes premium) is equal to 5.2674.

Then applying Section 5.5.1, an estimation of the American exchange premium is given
by

pV Z ∼ N̄
2
d

2 p(N̄2, n) − N̄
2
d

1 p(N̄1, n)

N̄
2/d
2 − N̄

2/d
1

. (14)

One will observe that this extrapolation strongly stabilizes the premium estimations and
speed up the convergence rate. An additional attribute of Richardson-Romberg method is
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d =2 d =4 d =6
N̄1 100 750 1000
N̄2 400 1000 1500
n 5 to 65 4 to 32 4 to 16

Table 2: Quantization parameters.

S0 Ref VZ Diff D Error FWE FWE Error
(80,40) 40 40 < 10−4% 40 < 10−4%
(60,40) 20 20 < 10−4% 20 < 10−4%
(44,40) 5.9822 5.9827 0,008358% 5.9813 0,01504 %
(36,40) 1.9969 1.9969 < 10−4% 1.9965 0,02003%
(40,44) 2.3364 2.3375 0.04708% 2.3370 0.02568%
(40,60) 0.31339 0.31276 0.2010% 0.31284 0.1755%
(40,80) 0.021208 0.021064 0.6790% 0.021076 0.6224%

Table 3: American exchange option premiums in dimension 2: σ =20, µ =5 and T =1. All
the prices have been computed with the same transitions given by (10)-(11).

the following: we observe in Figures 1-4, for N̄1 and N̄2 fixed, a translation to the right of the
optimal number of time steps which should be used in the quantization tree. This feature
has little impact in low dimension, but becomes crucial for high dimensions. Since at least
6 or 8 time steps are necessary to get accurate results and since the optimal number of time
steps is a decreasing function of the dimension.

6 Conclusion

- Strength of the quantization method : once the transition probabilities computed,
many options can be price simultaneously and instantaneously with these data.

- A drawback of this method was the off-line computation of the transition probabili-
ties. Parallel implementation brings an answer to this problem and allow an on-line
computation of these estimations.

- Then several American options with different structures and different parameters, (e.g.
volatility, dividend rate, initial condition), can be prices on an excel file simultaneously
and instantaneously, (see Table 3).

12



 5.25

 5.3

 5.35

 5.4

 5.45

 5.5

 5.55

 5.6

 5.65

 5.7

 5.75

 10  20  30  40  50  60

Number of time steps

100-tuple average quantizer
400-tuple average quantizer

Reference price
European BS

Figure 1: Quantized premium for d =2.
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Figure 3: Quantized premium for d =4.

 5.25

 5.3

 5.35

 5.4

 5.45

 5.5

 5.55

 5.6

 5.65

 5.7

 5.75

 5.8

 5  10  15  20  25  30

P
ri
c
e

Number of time steps

American exchange option in dimension 4

Quantization 750
Quantization 1000

Romberg
Reference price

European BS

Figure 4: Richardson-Romberg for d =4.
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[FLLL01] Fournié É., Lasry J.M., Lebouchoux J. and Lions P.L, (2001), Applica-
tions of Malliavin calculus to Monte Carlo methods in Finance II, Finance Stoch., vol
5, pp. 201-236.
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