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ON THE FLUX OF PSEUDO-ANOSOV HOMEOMORPHISMS
VINCENT COLIN, KO HONDA, AND FRANCOIS LAUDENBACH

ABSTRACT. We exhibit a pseudo-Anosov homeomorphism of a surfaeehich acts trivially on
H,(S;Z) and whose flux is honzero.

1. INTRODUCTION

Let .S be a compact oriented surface with nonempty boundabg an area form oA, andh be
an area-preserving diffeomorphism(¢f, w). Consider the mapping tora¥ S, i) of (.S, k), which
we define a$S x [0,1])/(z,1) ~ (h(x),0). Here(x, t) are coordinates of x [0, 1]. If there is a
contact forma: on X(S, h) for which da|s. 0y = w and the corresponding Reeb vector fiéld is
directed byo,, then we say. is the first return map oR,,. In this note we investigate the following
guestion:

Question 1.1. What is the difference between an area-preserving diffephiem/ of a surface
(S,w) and the first return map of a Reeb flavy, defined ork (.S, w)?

One easily computes that the first return magfis w-area-preserving (cf. LemnjaR.1). Ques-
tion [L.1 can then be rephrased as follows:

Question 1.2. Can every area-preservinfy be expressed as the first return map of a Reeb flow
R.?

We emphasize that we are interested in the rigid problemaiizieg agiven diffeomorphism
h, instead of its realizationp to isotopy This question is of particular importance when one tries
to compute theontact homologyf a contact structure adapted to an open book decomposition
[CHZ]. The periodic orbits of an adapted Reeb flow that areyafn@m the binding of the open
book correspond to periodic points of the first return mapndéewe would like to understand
which monodromy maps can be realized by first return maps ebRews.

It turns out that the answer to Quest[on 1.2 is negative. &isan invariant of an area-preserving
diffeomorphismh, called theflux, which is an obstruction téd being the first return map of a
Reeb flow. In Sectiofi]2 we define the flux and also show that iasy ¢o modify the flux of a
diffeomorphism within its isotopy class.

The case of particular interest to us is whieis pseudo-Anosov. Recall that a homeomorphism
h: S = S is pseudo-Anosol there exist\ > 1 and two transverse singular measured foliations
— the stable measured foliatigsF*, 1.°) and the unstable measured foliatiofi*, ;.*) — such that
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hF*, ) = (F*, +p°) andh(F*, p*) = (F*, Au*). The homeomorphisth is a diffeomorphism
away from the singular points of the measured foliations.sAyzlo-Anosov representatikeof a
mapping class is unique in the sense that any two pseudoeXrimsneomorphisma,, h, in the
same mapping class are conjugate via an everywhere smdi@bndorphismy which is isotopic
to the identity. In particular, such@sends the stable foliation @f; to the stable foliation of,
and the unstable foliation df, to the unstable foliation of,. (See [FCP, Exposé 12, Théoreme
Il and Lemma 16 for smoothness].) We define the area forta be given by the product of*
andy. The formw is the uniqué-invariant area form up to a constant multiple, and is siagin
the sense that it vanishes at the singular points of theiamaioliations. Now, the pseudo-Anosov
case is of special interest since the pseudo-Anosov honmpbisa is a rigid representative in its
mapping class (hence the flux can be seen as an invariant wfapping class) and also since it is
known that every contact structure is carried by an open ll@glomposition whose monodromy
is isotopic to a pseudo-Anosov homeomorphism JCH1]. Heneask the following question:

Question 1.3. Can every pseudo-Anosov homeomorphisbe expressed as the first return map
of a Reeb flowr,?

The main theorem of this paper is Theorgnj 2.4, which statgslie answer to this question is
also negative, i.e., the flux is not always zero for pseudosdn homeomorphisms.

2. THE FLUX

The goal of this section is to give basic properties of the;faee [Ch]. The discussion will be
done more generally on a compact symplectic manifold, sinogght be more transparent in that
context.

2.1. Flux. Let(S,w) be a compact symplectic manifold ahdbe a symplectomorphism 6f, w).
Leth, : Hi(S;Z) — H,(S;Z) be the map on homology induced frdirand letK be the kernel
of h, —id. Also letI" be a lattice ofR generated by, w, where[X] ranges ovet,(S;Z). Then
define the map

F,: K —-R/T
as follows: Let[y] € K. Since~ is homologous td:(v), one can find an oriented singular
cobordismC' (mapped intaS) whose boundary consists bfy) — ~. We then define

) = [

Two cobordismg”, C” with the same boundary differ by an elementHf(.S; Z); hence the quan-
tity is well-defined only up td". It is straightforward to verify thak}, () also only depends on the
homology class of;. The numberF,([y]) € R/I" is thus well-defined and is called tfiex of i
along~. We say the flux of: is nonzeraif the image ofK is not[0] € R/T".

If hy, he are two symplectomorphisms @$,w) and[y] = [h1(7)] = [h2(7)], then

Fh2 © Fh1(h]) = th(h]) + Fhl(h])'
In other words, the flux is a homomorphism, when viewed as afneap the groupSymp, (S, w)
of symplectomorphisms which act trivially di, (S; Z) to Hom(H,(S;Z),R/T) = H'(S;R/T).
We can also easily modify the flux of allye Sympy(S,w) by composing with time-1 maps of
locally Hamiltonian flows.
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If in additionw = d3, then the formh* 3 — (3 is a closed -form and the flux of, along~ can be
rewritten as

Fa(l]) = /h*ﬁ 8,

by the use of Stoke’s formula. The flux éfis nonzero if and only ifA*3 — 3] # 0 on K.
Moreover,I' = 0.

2.2. 2-forms on the mapping torus. Let (S, k) = (S x [0,1])/(x,1) ~ (h(zx),0) be the map-
ping torus of(.S,w). It fibers over the circle with fibef.

There is a natural closedformwy, on X (.S, h), which is obtained by setting, = w on S x [0, 1]
and identifying via the symplectomorphigmThe2-form wy, pulls back tav on S x {t}, ¢ € [0, 1],
and its kernel is directed hy;, wheret is the coordinate fojo0, 1].

We have the following lemmas:

Lemma 2.1. Supposev is exact. Ifh is the first return map of a Reeb vector figk) wherea
satisfiesia|sx 0y = w, thenh is a symplectomorphism @f, w). Moreoverda = wy,.

Proof. Consider the contadtform o = fdt+ fonsS x [0, 1], wheref = f(z,t) is a function and
B = B(z,t) is al-form in the S-direction. Writeg,(z) = ((z,t). We compute

da =dgf Ndt + dgf; +dt/\5t7

wheredy is the exterior derivative in thg-direction and?t = %. By the conditionla|sx 0y = w,
we havedsf, = w. Since we can normaliz&, = g¢0;,, whereg = g(z,t), it follows that
in.da = g(—dsf + ;) = 0andj3, = dgf is an exact form orf. Hencedsf, is independent
of ¢t and equalsv. This shows thatla = ds08; = wy. By the invariance oty under the map
(x,t) — (h(z),t — 1), we see thak preserves. O

Lemma2.2. Suppose is exact and the flux dfis nonzero. Thefwy,] is nonzero inH?(3(S, h); Z).
Henceh cannot be realized as the first return map of a Reeb vector figld

Proof. Let v be a curve inS such thatF}, () is nonzero. Then-v andh(vy) bound a subsurface
C c S x {0} sothatf,w # 0. We construct a closezicycle C' in X(S, h) by gluingy x [0, 1]
with C. Now we see thaf,, w, = [,w # 0. Hencelw,| # 0in H*(3(S, h); Z). By Lemma[211,
h cannot be the first return map of a Reeb vector field. O

Conversely, whew is exact and: is the identity neat)S, we have a criterion, due to Giroux
(see [Ch]), to realizé as the first return map of a Reeb vector field. The conditiotvtha id near
0S5 is not realized in general for pseudo-Anosov homeomorpéidnt in practice it is possible to
deform the diffeomorphism neaS so that it is the identity, without altering the sets of pdit
points too much; se¢ [CH2].

Lemma 2.3 (Giroux). Let (S,w = df3) be a compact exact symplectic manifold dnde a sym-
plectomorphism ofS, w), which is the identity neadsS. If [2*3 — 3] = 0in H'(S;R), then there
exists a contact form on 3(S, h) and a Reeb vector fiel®, whose first return map on one fiber
is h.
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Proof. We have that*3 — 8 = df. Note thatdf = 0 neardS sinceh = id neardS. One can
always translatg¢ so thatf is strictly positive onS and is constant neaS. Thel-forma = dt+f
is a contact form ob’ x R whose Reeb vector field &. It is invariant under the diffeomorphism

H: (2,t) = (W), t = f(2)),
and thus induces a contact formon 3(S, h) ~ (S x R)/((x,t) ~ H(x,1)). O

2.3. Surfacecase. Let us now specialize to the case of interésts a compact oriented surface,

is an area form oW, andh is an area-preserving diffeomorphism(6f w). Let us assume without

loss of generality that the-area ofS is 1. If 9S = (), thenT" = Z since H,(.S; Z) is generated by

[S]. On the other hand, #S # 0, thenI" = 0 and the exactness ofis automatically satisfied.
The goal of this note is to prove the following:

Theorem 2.4. There exist a compact surfacewith empty (resp. non-empty) boundary and a
pseudo-Anosov homeomorphignof S with h, = id, whose flux with respect to the singular
h-invariant area formw is nonzero, as viewed iR/Z (resp.R).

We now discuss a technical issue, namely the fact thistonly C° at the singular sel. =
{p1,...,px} Of the stable/unstable foliations. Letbe theh-invariant singular area form given by
the produci™ ® p* of both transverse measures. Itis singular in the sensé that2-form which
vanishes or.. As a measure it is equivalent to any Lebesgue measufe éfence, according to
a theorem of Oxtoby-Ulani QU] it is conjugated by a homeagphism to a smooth area form.

Instead of the Oxtoby-Ulam approach, our approach will ls=tan Moser’s lemma. Lé? be
an arbitrarily small open neighborhoodbfo that each connected componenbaf a polygonal
region whose boundary consists of subarcs of leavesS’ar 7*. Then we have the following:

Lemma 2.5. There exist an everywhere smooth area farmn S and a diffeomorphism’, which
coincide respectively witly and h outside ofD and satisfy (i)fDO w= fDO w' for each connected
componenD, of D and (ii) (h')*w’ = w'.

Proof. Let w’ be an area form which coincides withon S — (D N h(D)), and has the same
area asv on each connected compondng of D. (By using an auxiliary area form ofi, the
construction of such an’ becomes equivalent to the extension of a positive smootttifumwith

a fixed integral.) There also exists a smooth diffeomorphjsof S which coincides with. on
S—D. Note that the germ df alongd D extends to an embedding bfinto S. By the construction
of w" andvy, we havey*w’ = w' onS — D.

We now claim that
'l/}*w, :/ C()/
Do Do

for each componend, of D. We havef,, v" = [, w = [, h*'w = [, , w, by our choice
of w’ and theh-invariance ofu. On the other hand, we hayf%o Y = fh(DO) w’ by a change
of variables. IfDj, is the component oD that nontrivially intersect& (D), then [, Ah(Do)

0
Joponoy @' Sincefp, w =[5, w andw = w’ on Dy —h(Dy). From this we deduce thdt , | w =
fh(DO) w'. The claimed equality follows.

Finally, Moser’s lemma applies oP to the pair of area forms’ and«*w’. It yields a diffeo-
morphismy of D which is the identity near the boundary (hence extendslig the identity ofS”)

w =



ON THE FLUX OF PSEUDO-ANOSOV HOMEOMORPHISMS 5

such thatp*(y*w’) = w'. We seth/ = 1) o ¢. This diffeomorphism meets the required condition
both onS” and D, hence orf. O

If we choosey so that bothy andh’(+y) avoid the small neighborhoad of the singular locud.
(after isotopy), then we see that(y) = Fj (7). Since the flux only depends on the curve up to
isotopy, it follows thatF), = F,.

Remark. WhenF? and F* are orientable, the transverse measures déffoems that are closed
but not exact. They are eigenvectors fdrwith eigenvalues and%. Thus if h, = id, then the
foliations are not orientable.

3. PROOF OFTHEOREMP.4

Let.S = S, be a closed oriented surface of geguenda andg be twol-dimensional subman-
ifolds of S, i.e., the union of disjoint simple closed curves.

We recall thatv andg fill S'if o andg intersect transversely and minimally and if each region of
S — (U B) is a2n-gon withn > 1. Such a system of curves allows one to define two systems of
flat charts, thev- and thes-charts, in the following way: The setU ( gives a cell decomposition
of S. Consider its dual cell decomposition. (By this we mean vee@la vertexp, in the interior
of each componen®, of S — (U ). If P, andP; share an edge ef U 3, then take an edge from
vp, to vp, Which passes through the common edge: af 3 exactly once.) LetZ; be the union of
edges of the dual cellular decomposition that mieethenEj; cutsS into annuli whose cores are
the components af that we call thex-charts. Thes-charts are defined similarly. Note that there

FIGURE 1. Dual cell decomposition meeting the curves, together with flat
geodesics parallel to.

is one chart for each curve and hence each chart can be viengethackening of an appropriate
a- or B-curve. These charts are equipped with a singular flat metwbich is standard on each
little square, corresponding to intersectionswefand 3-charts, as explained if [FLP, Exposé 13,
Section 1l1]. (In particular, thex-metric and thes-metric coincide on the squares.)

We will construct our example on a surfaggof genuss.

Lemma 3.1. There exist two multicurves = o U ap and 3 = 3; U 33 on S5 where:
e cvandg fill Ss;
e o, andp; are disjoint and form a bounding pair;
e o, and (3, are separating curves;
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o #(a1 N pGy) =#(azNPr) =2
L] #(042 N 62) = 16.

Proof. We start with a genu3 surfaces’,, together with simple closed curva$ and g, which are
both nullhomologous irb, fill S5 and intersecg times. See Figurf 2. (To see th#tseparates,
take the algebraic intersection number with a suitablestfasit(.S5; Z).) Now, two regionsH|

FIGURE 2. The genusg surfaces,.

andH), of S, \ (of, U 3}) are8-gons. For = 1,2, pick a diskD} C Int(H]).

We now take a second copyy,, oy, 55, DY, DY) of (S}, o, 55, D}, D)) and glueS;, \ (D] U D})
to SJ \ (DY U DY) by identifyingoD; andoD/, 1 = 1,2. We call S5 the resulting surface. See
Figure[B. Letoy = 0D = 0D7 andp, = 0D} = 0Dj.

Next, take one connected componentipfy 0H; and one connected componentfn 0HY,
and make the connected sum of these two components along aiah crosses; exactly once
and stays insideH| \ Int(D})) U (H{ \ Int(D7)). We call 3, the result of this sum of, and3;,.
By construction#(«; N fB2) = 2. Now do the same operation with componentsipfandas in
OH), and0H/, so that the resulting curve, satisfies#(as N 51) = 2.

By construction, we see th#t(a;NfG2) = 848 = 16. The familiesh = a; Ua, andp = ;U5
fill S5. Sinceos, anda; were nullhomologous, the same also holdsder Finally it is clear that
aq andf; are disjoint and cobordant ist. O

The systemy = o; U o, provided by Lemm& 3.1, comes with two (orientedyhartsU; O o,
andU; D aw, WherelU; = [0,n;] x [0,1]/(0,y) ~ (n;,y), n; denotes#(a; N (), namelyn; = 2,
ny = 18, ando; = [0, ] X {%}/ ~. Similarly, there are twgi-chartsV; and V5, of the form
0,1] x [0,m;]/(x,0) ~ (z,m;), wherem; = #(0; N «), i.e., m; = 2, my = 18, andf; =
{3} x [0,m;]/ ~. In what follows, we equifp; with the flat metric associated to the systerand
[ and compute areas using this metric, normalized so thaothkarea ofS is 1.

We will denote|r,] the mapping class of a positive Dehn twist about the closedeoy The
class[r,,] admits an affine representativg which is given orl; by the matrix

].’I’LZ'
0 1)
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FIGURE 3. The genus$ surfaceSs.

and is the identity ot/; for j # 4. Similarly, [rﬁ‘il] admits an affine representatiw’g1 which is
given onV; by the matrix
1 0
m; 1)/’
9

Lemma3.2. The maph = 7,, 0 75, © Tg, © 76‘21 is a pseudo-Anosov homeomorphism which acts
by the identity orff,(S; Z).

and is the identity of¥; for j # «.

Proof. On bothU; andU,, the compositior,, o 731 is given by the matrix

b )

and thus is a smooth representative of its mapping classdeutise singular points of the flat
structure. Similarly, on both; andVs, the compositiom;f ) Tﬁ_; is given by the matrix

1 0
18 1/)°
As a result, the homeomorphisins given away from the singular points of the flat structure by

the matrix
325 18
18 1 /°
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Since the trace of the matrix is 2, h is pseudo-Anosov. It preserves the area coming from the
singular flat metric on the charts.

Sincea, and 3, are homologous to zero and and 3, form a bounding pairf induces the
identity on homology. O

Lemma 3.3. The flux ofh is nonzero, when viewed R/Z. More precisely, ify is a curve so that
75, (7) has geometric intersection one with eachwefand 3, thenF;, ([]) # 0.

Proof. Let 6 be a closed geodesic with respect to the singular flat metnichwcorresponds to
the singular flat coordinate system. In other words a piecewise affine curve, with corners at
singularities of the affine structure.

First we claim thaii-sz1 has zero flux, i.e., the area betweﬁ'eandrﬁj(é) is zero for ally. (Note
thatrﬁ;1 (0) is not necessarily a flat geodesic even i§.) Indeed, sinc%;1 is the identity onVj,
we only have to look ofv;. The curve intersectd/; along a finite union of affine ares, . . ., a,.
For any suchu;, the concatenation; of —a; and Tﬁj(ai) divides V; into two components with
the same area. This means that the area bet@weand 3, = {3} x [0,18]/ ~ is zero. Thusg;
bounds a subsurface 8 with the same area as the surface boundegd:by- {1} x [0,18]/ ~.
The sign of this area depends on the sign of the intersecfian with 5,. Now observe that
75*21(5) — 0 = U1<i<n@;. Sincef, is homologous to zero, it has as many positive intersectiotis
0 as negative intersections. Thus the total signed area bBﬂl\E’ldTBj(é) is the total signed area
bounded by, <;<,a;, which in turn is zero. Similarly, we see that, has zero flux.

Next suppose the geodesihias geometric intersection one with eachnvgfand ;. We claim
that the area betweenandr,, o 7511(5) equals the areal bounded bya; U 8, in S. Since
a; N By = 0, it follows that Int(U;) N Int(Vy) = 0 and the affine representativeg and 76‘11
commute. The curveé intersectd/; along a connected affine ar@andU; along a connected affine
arca. The concatenation ofb andfgll(b) is a closed curvé which cutsV; into two components
of the same area. Similarly, obtained as the concatenation-ef andr,, (a), dividesU, into two

components of the same area. Thegno 7, ' (§) — 0 equalszUb, ands andr,, o7, ' (4) cobound a
subsurface irs’; of aread. By the commutativity of,, andr; ', we haver) o7;? = (74, 075 ')”.
Hence the area betweérandr o 7519(5) IS9A.

We now claim thatd = 1Area(S) = 1. This is due to the symmetry of the and 5-charts:
The chartl/; is decomposed by, = [0,2] x {3}/ ~ into two pieces with the same area. On the
other hand[/; is decomposed by, into two rectangles?; and R,. On eachR;, the number of
intersections betweem, andj, is 8. Hence Are&R,) = AreaRy). We conclude that the area
betweens andr)) o 7,°(0)is9A = § = § € R/Z.

By putting together the above calculations and observiag#f([v]) only depends on the iso-
topy class ofy, we see thaf},([7]) = A = 3. O

This completes the proof of Theordm|2.4 whigh = ().

To treat the case with boundary, we notice that the homedmsnpwe have constructed fixes
the singular points of the invariant foliations. We pick afeéhem and blow up the surface at this
point. The homeomorphisilifts to a pseudo-Anosov homeomorphism on the blown-upeserf

S which fixes the blown-up foliations. It also inducies on H,(S; Z) and has nonzero flux.
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On the other hand, it is easy to construct pseudo-Anosov doragmhisms with vanishing flux
that act trivially onH,(S; Z). Letay, 5, be simple closed curves which fil and are both nullho-
mologous. As explained ifi [FI.P, Exposé 13, Section Illjyé compose twists along these curves
(positive Dehn twists along; represented by,, and negative Dehn twists aloriy represented
by Tﬁ_ll, where we use at least omg, and at least oneﬁ‘ll), we obtain a pseudo-Anosov homeo-
morphism. The argument developed in the proof of Lerfinja 38us that the flux is always zero.
More precisely, consider the singular flat metric compatibith «; and3;, and lety be a closed
curve represented by a flat geodesic. As in the second paftagfahe proof of Lemm#& 3.3, the
area between andr,, (9) is zero for alld, sincea; is separating. Similarly, the area between
andrﬁ‘ll(é) is zero for ally. Hence, ifh is any composition of,, andrﬁ‘l1 (both with zero flux),
then it also has zero flux. This justifies the fact that, in theopof Theoren{ Z]4, we have to look
at more elaborate examples to find nonzero flux.

Another case wheh can be realized as the first return map of a Reeb flow is witien id is
invertible anddS # (). We learned the following lemma from Yasha Eliashberg.

Lemma 3.4. Leth be a diffeomorphism of a surfac¢ewith nonempty boundary which preserves
an area formw. If 1 is not an eigenvalue df*, thenw admits a primitive3 such thath*5— 5] =0
in H'(S;R).

Proof. Pick any primitive3, of w. By hypothesis, the malp* — id is surjective. Thus, one can find
6] € H'(S;R) such thafh* 3y — o] = (h* — id)[f]. Now we have that = 3, — 6 is a primitive
of wand thath*3 — 8] = 0in H'(S;R). O

Now, by applying Lemm& 2.3 can be realized as the first return map of a Reeb vector field.
We end this section with the following questions:

Question 3.5. Is it possible to find a pseudo-Anosov homeomorphism of asiff which acts
trivially on H,(S;Z) and takes some noncontractible curv® a curveh(~) that can be isotoped
away fromy?*

If yes, the flux of such a pseudo-Anosov homeomorphism woutdmatically be nonzero.

Question 3.6. Let g andh be two pseudo-Anosov homeomorphisms acting trivially/ft; Z)
such that the compositioo A is isotopic to a pseudo-Anosov homeomorphfsnsuppose the
flux of g is zero and the flux df is nonzero. Is the flux gf nonzero?

If yes, this procedure would allow us to produce many psefidosov homeomorphisms with
nonzero flux.

4. A QUESTION

There is an invariant of an isotopy class of surface diffegphisms|h] which is defined in a
manner much like the flux. We thank lan Agol for bringing thoghe authors’ attention. L&t be
a hyperbolic surface with geodesic boundarylfe K, i.e.,[h(v) — ] = 0, then represerit(y)
and~ by geodesics, and compute the area bounded by the two geed8si the Gauss-Bonnet

Ipan Margalit has informed us of an example of a pseudo-Anhsoveomorphism on a gen@surface with this
property. His example also would therefore also have narthex.



10 VINCENT COLIN, KO HONDA, AND FRANCOIS LAUDENBACH

theorem, this area equal2my(A), whereA is a surface between the two geodesics. Here the
Euler characteristig/(A) is more precisely aEuler measurgi.e., it is computed with signs: if
— A denotesA with reversed orientation, then one hgs-A) = —x(A). This gives rise to a map

Gy - K — R/T,

wherel’ = 27x(S)Z when S is closed and” = 0 when S has boundary. When restricted to the
Torelli group7 (.5), we have a homomorphism:

G:T(S)— H'(S;R/T) ~ Hom(H,(S;Z),R/T),

Since the pseudo-Anosov representative of a mapping ddsssically unique, we ask:
Question 4.1. Is F}, = G, for h pseudo-Anosov and Ii(S), up to an overall constant factor?

Finally, we briefly discuss the relationship to im®notonicity conditiorior an area-preserving
diffeomorphismh, described in Seide[JB5e]. Suppose th@b) < 0. On X(S, h) consider the
tangent bundlél’ to the fibers and let; (W) be its first Chern class. Thaonotonicity condition
requires thafw;,] = Ac; (W) for some real numbek. Using the notation from Lemn{a 2.2, one
can verify that(c; (W), C") = x(C) for homology classes of typ€’. HereC' is the surface with
dC = h(y) — ~. This means that monotonicity holds if and onlyfif and Gy, are proportional.
(A similar, but slightly more complicated, monotonicityradition also appears in the definition of
periodic Floer homologwf h. See [HE].)

AcknowledgementsNe thank Yasha Eliashberg and Sylvain Gervais for very helpdnversa-
tions. We also thank Andrew Cotton-Clay and Dan Margalitfi@ir comments on the first version
of the paper.

REFERENCES

[Ca] E. CalabiOn the group of automorphisms of a symplectic manjBldblems in analysis (Lectures at the Sym-
pos. in honor of Salomon Bochner, Princeton Univ., Princebd.J., 1969), 1-26. Princeton Univ. Press, Princeton,
N.J., 1970.

[Co] V. Colin, Livres ouverts en gonetrie de contact (d'aprgs Emmanuel Giroux)Astérisque3ll, Exposé 969,
Séminaire Bourbaki, Société Mathématique de Fran@8g&p, 91-117.

[CH1] V. Colin and K. HondaStabilizing the monodromy map of open books decompositizesm. Dedicatd32
(2008), 95-103.

[CH2] V. Colin and K. HondaReeb vector fields and open book decompositipreprint 2008.

[FLP] A. Fathi, F. Laudenbach and V. Poénafliavaux de Thurston sur les surfacesstérisque66-67, Société
Mathématique de France (1991/1971).

[HS] M. Hutchings and M. SullivanThe periodic Floer homology of a Dehn twigtlgebr. Geom. Topol5 (2005),
301-354.

[OU] J. Oxtoby and S. UlamMeasure-preserving homeomorphisms and metrical traisitiAnn. of Math. (2)42
(1941), 874-920.

[Se] P. Seidelsymplectic Floer homology and the mapping class gr&aeific J. Math206 (2002), 219-229.



ON THE FLUX OF PSEUDO-ANOSOV HOMEOMORPHISMS

UNIVERSITE DE NANTES, UMR 6629DU CNRS, 44322 MNTES, FRANCE
E-mail addressVincent.Colin@math.univ-nantes.fr

UNIVERSITY OF SOUTHERN CALIFORNIA, LOSANGELES, CA 90089
E-mail addresskhonda@usc.edu
URL: http://rcf.usc.edu/"’khonda

UNIVERSITE DE NANTES, UMR 6629DU CNRS, 44322 MNTES, FRANCE
E-mail addressfrancois.laudenbach@univ-nantes.fr

11



