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metamodels are used in a way that their accuracy is crucial
for certain level-sets. This situation is common in two popu
lar frameworks:
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In constrained optimization, the constraint function of-
ten relies on expensive calculations. For instance, a typ-
ical structural optimization formulation is to minimize a
weight such that the maximum stress, computed by fi-
nite element analysis, does not exceed a certain value.
When using a metamodel to approximate the constraint,
it is of utmost importance that the approximation error
is minimal on the boundary that separates the feasible
designs from infeasible ones. Substantial errors for val-
ues far from the boundary, on the other hand, are not
detrimental.

In reliability analysis, a metamodel is often used to prop-
agate the uncertainty of random input variables to the
performance function of a system [3, 4]. In particular,
the probability of failure of the system can be computed
using sampling techniques (i.e. Monte-Carlo Simula-
tions, MCS), by counting the number of responses that
are above a certain threshold. The contour line of the re-
sponse equal to the threshold must be known accurately
to discriminate between samples.

This paper addresses the issue of designing experiments for
a metamodel that needs to be accurate for a certain level
of the response value. Such a situation is common in con-
strained optimization and reliability analysis. Here, wep
pose an adaptive strategy to build designs of experimeats th

is based on an explicit trade-off between reduction of globa
uncertainty and exploration of regions of interest. A mod-
ified version of the classical integrated mean square error

criterion is used that weights the prediction variance with  1pe objective of the present work is to provide a method-
the expected proximity to the target level of response. TB%gy to construct a design of experiments such that the
method is illustrated by two simple examples. It is showRetamodel accurately approximates the vicinity of a bound-
that a substantial reduction of error can be achieved in thgry in design space defined by a target value of the func-
target regions, with reasonable loss of global accuracye Thion of interest. Mourelatos et al. [5] used a combination of
method is finally applied to a reliability analysis problemy|ohal and local metamodels to first detect the criticaloggi
itis found that the adaptive designs significantly outpemo 4, then obtain a locally accurate approximation. Ranjan et
classical space-filling designs. al. [6] proposed a modified version of the famous EGO al-
gorithm (Efficient Global Optimization, [7]) to sequential
explore the domain region along a contour line. Tu etal. used
1 Introduction a modified D-optimal strategy for boundary-focused polyno-
In the past decades, the use of metamodeling technigueial regression [8]. Vazquez and Bect [9] proposed an it-
has been recognized to efficiently address the issues of peeative strategy for accurate computation of a probabilty
diction and optimization of expensive-to-compute numerfailure based on Kriging. In this paper, we present an atern
cal simulators or black-box functions [1, 2]. A metamodsdive criterion to choose sequentially the experimentsetas
(or surrogate model) is an approximation to system respore an explicit trade-off between the exploration of the tar-
constructed from its value at a limited number of selectegkt region (on the vicinity of the contour line) and reductio
input values, the design of experiments (DoE). In many enf the global uncertainty (prediction variance) in the meta
gineering problems, the total number of function evalugtio model.
is drastically limited by computational cost; hence, it fs oThe paper is organized as follows: in Section 2, the Krig-
crucial interest to develop methods for efficiently selegti ing model and the framework of design of experiments are
the experiments. described. In Section 3, the original criterion of selegtin
In this paper, we focus on a particular application whermxperiments is presented, followed by its associated seque



tial strategy to derive designs of experiments in Section B, c(x) = [K(x,X1),...,k(X,x,)]" is nx 1 vector of covari-
Results are presented for two analytical examples in Sectiance,C = [k (Xi,Xj)]lSi.an is N x n covariance matrix, and

5. Finally, the criterion is applied to a probability of faie g _ [f(X1),... ,f(xn)]T is n x p experimental matrix. In Egn.

estimation problem. 4, [3 is the vector of generalized least square estimat@s of

2 Kriging Metamodel and Design of Experiments B= (FTC_lF)ilFTC_lY (5)
Let us first introduce some notation. We denoteyltlye
response of a numerical simulator or function that is to be In addition, the Universal Kriging model provides an es-
studied: timate of the accuracy of the mean predictor, the Kriging pre
diction variance:
y:DC RI— R
X — Y(X) 1) s (%) = k(x,x) = ¢(x)TC*e(x)
+(F)T —c(x)TCIF) (FTCIF) T (f)T — c(x)TC1F)(6)
wherex = {xl,...,xd}T is a vector of input variables,
andD is the design space. In order to build a metamodel, thghere g2 is the process variance. Note that if the predic-

responsg is observed an distinct locations: tion variance is written in terms of correlations (instedd o
covariance here), Eqn. 6 can be factorizedoBy For de-
X = [X1, ..., Xn] tails of derivations, see for instance [10, 11]. It is imaoitt
Y = [y(x1), ...,y(xn)]T =y(X) (2) tonotice here that the Kriging variance in Eqn. 6, assuming

that the covariance parameters are known, does not depend
In Eqn. 2, choosing is called thedesign of experi- on the observationg, but only on the Kriging model and on

ments(DoE), andY is the vector of observations. Since thd€ design of experiments. .

response is expensive to evaluate, we approximate it by We deno_te bW (x) the Gaussian process conditional on the
simple modeM, called themetamodebr surrogate model  OPServationy:

based on assumptions on the naturg ahd on its observa-

tionsY at the points of the DoE. In this paper, we present M = (M(X))xcp = (Y(X)[Y(X) =Y),cp = (Y(X)|0b9,cp

particular metamodel, Universal Kriging (UK), and we dis- N _ _ ™
cuss some important issues about the choice of the design8€ Kriging model provides the marginal distributiondf
experiments. at a prediction poin:

2.1 Universal Kriging Model M(x) ~ A (MK (x), 5 (X)) (8)

The main hypothesis behind the Kriging model is to as- o . )
sume that the true functionis one realization of a Gaussian! N€ Kriging meanmy interpolates the functiog(x) at the
stochastic process y(x) = Y (X, w), wherew belongs to the d€sign of experiment points:
underlying probability spac@. In the following we use the
notationY (x) for the process and(x, w) for one realization. Mg (Xi) =Yy(xi), 1<i<n 9
For Universal Kriging [10].Y is typically of the form:

The Kriging variance is null at the observation poixts
and greater than zero elsewhere:

o

Y(x) =% Bjfj(x)+Z(x) 3)
=1

£(x)=0, 1<i<n and €(x)>0, x#x (10)

wheref; are linearly independent known functions, ahis ) o ] ] )

a Gaussian process [11] with zero mean and stationary co- Besides, the Kriging variance increases with the low val-
variance kernek with known correlation structure and pa-Ues of the covariance betwe¥(x) andY (xi) (1 <i <n).
rameters. Some parameters of the covariance kernel are often unknown
Under such hypothesis, the best linear unbiased predicfdld must be estimated based on the observations, using max-

(BLUP) for Y (x) (for anyx in D), knowing the observations Imum likelihood, cross-validation or variogram technigue
Y, is given by the following equation [10, 11]: for instance (see [10, 11]). However, in the Kriging model
they are considered as known. To account for additional

Ta T N variability due to the parameter estimation, one may use
mg (x) =f(x) B+c(x)' C (Y - FB) (4)  Bayesian Kriging models (see [12, 13]), which will not be
detailed here. With such models, Eqgn. 8 does not stand in
where f(x) = [fl(X),...,fp(X)]T is px 1 vector of basis ggneral. Howgver, t_hg met_hodology prop_osed her_e_ als_,o ap-
- - AT plies to Bayesian Kriging, with the appropriate modificago
functions, = {Bl, . '7BP} is p x 1 vector of estimates of of the calculations shown in Section 3.



2.2 Design of experiments to build the DoE sequentially, by choosing a new point as a
Choosing the set of experiments (sampling pois) function of the other points and their corresponding respon
plays a critical role in the accuracy of the metamodel and tlvalues. Such approach has received considerable attention
subsequent use of the metamodel for prediction. DoEs drem the engineering and mathematical statistic communi-

often based on geometric considerations, such as Latin Hies, for its advantages of flexibility and adaptability ove
percube sampling (LHS) [14], or Full-factorial designs]15 other methods [19, 20].

In this section, we introduce two important notions: modelFypically, the new point achieves a maximum on some crite-
oriented and adaptive designs. rion. For instance, a sequential DOE can be built by making
at each step a new observation where the prediction variance
. . is maximal. Sacks et al. [18] use this strategy as a heuristic
2.2.1 Model-oriented designs to build IMSE-optimal designs for Kriging. The advantage

Model-oriented designs aim at maximizing the qualit . ‘ . .
of statistical inference of a given metamodel. In linear réé.-f sequential strategy here is twofold. Firstly, it is cortgpu

gression, [16,17], A- and D- optimal designs minimize th onally efficient because it transforms an optimizatioolpr
uncertainty in the coefficients, when uncertainty is due m of dimensiom x d (for the IMSE minimization) into

noisy observations. Formally, the A- and D-optimality cri- optimizations of dl_mensmlui. Secondly, it allows us to .
teria are, respectively, the trace and determinant of Pish ereevaluate the covariance parameters after each observati
informati’on matrix ' In the same fashion, Williams et al. [21], Currin et al. [22],
These criteria are particularly relevant in regressiom:esinand Santn_er [2] usea Bayesian approach to derive sequential
minimizing the uncertainty in the coefficients also miniesz IMSE designs. Osio a!"d Amon [2.3.] pr_oposed a multistage
the uncertainty in the prediction (Kiefer, [16]). For Knigy approach to enr_\a_nce first s_pace-ﬁllmg in order to accqrat(_el
uncertainties in covariance parameters and predictionare estimate the Kriging covariance parameters and then refine
@e DoE by reducing the model uncertainty. Some reviews

simply related. Instead, a natural alternative is to take a daoiiv mpling in engineering desian can be found in
vantage of the prediction variance associated with the-me aetaapl [Ze 4?"’1 pling In engineering design can be fou

model, assuming that the covariance structure and parg

eters are accurately estimated. The prediction variance o) gentiral,Da Ear_t'mtﬂa: tahdvantag_e tOf setqutehnngl fstreﬁet_g|e
lows us to build measures that reflect the overall accuracy%\fer Ob ?rr] f(_) i 'T) a i ey ca}n mtegrﬁ € the In olrrna ion
Kriging. Two different criteria are available: the intetge given by the firsk observation values to choose tfier 1)

mean square error (IMSE) and maximum mean square er%armmg point, for mstange by reevall_Jatlng the.Kngmg co
(MMSE) [18]: variance parameters. It is also possible to define response-

dependent criteria, with naturally leading to surrogaaseal
optimization. One of the most famous adaptive strategyes th
IMSE = /DMSE(x)d M(X) (11) EGO algorithm Jones et al. [7], used to derive sequential de-
signs for the optimization of deterministic simulation mod
MMSE = max.p [MSE(X)] (12) els, by choosing at each step the point that maximizes the
. . expected improvement, a functional that represents a com-
His a positive measure db and promise between exploration of unknown regions and local
search. Jones [25] also proposes maximum probability of
MSE(x) = E | (mk (X) — M(x))z} =s2(x) (13) imprpvement as an a_llter.nati.ve criteriqn._ '
In this paper, the objective is not optimization, but to accu
L ... rately fit a function when it is close to a given thresholdslt i
Note that the above criteria are often called I-criteriog, o, "o pyious that the DoE needs to be built according to the

a?]d G-criterion, respecti\?elﬁ/, in the regression fr?'ﬂworobservation values, hence sequentially. Shan and Wang [26]
The IMSE is a measure of the average accuracy of the mefgs , e 4 rough set based approach to identify sub-regions
model, while the MMSE measures the risk of large error i

prediction f the design space that are expected to have performance

Obtimal desi del-d denin th hat th values equal to a given level. Ranjan et al. [6] proposed a
pt_|ma_ esigns arenodel-aependen the sense that t esequential DoE method for contour estimation, which con-
optimality criterion is determined by the choice of the met

del. | ion. A- and D-criteria d p he ch %ists of a modified version of the EGO algorithm. The func-
model. In regression, A-and D-criteria depend on the Choig o1 minimized at each step is a trade-off between uncer-
of the basis functions, V\.'h'le in Kriging, the pr'edlctlon ¥al' tainty and proximity to the actual contour. Tu et al. [8] used
anges,% depends oln the Il_linear trend, the covan_anci SUCWUERyeighted D-optimal strategy for polynomial regressibe, t

an parameter values. OWEVer, one may notice that, aSSLHE(:eptable sampling region at each step being limited by ap-
ing that the trend and covariance structures are known, noﬁ}%ximate bounds around the target contour. Oakley [27]
of the criteria depends on the response values at the desﬂ%’és Kriging and sequential strategies for uncertaintpgro

points. gation and estimation of percentiles of the output of com-
puter codes. Vazquez and Bect [9] proposed an iterative
2.2.2 Adaptive designs strategy for probability of failure estimation by minimigj
The previous DoE strategies choose all the points of tiiee classification error when using Kriging. All these paper
design before computing any observation. It is also possil#im at constructing DoEs for accurate approximation of sub-



is defined as follows:

y(x)
’ -1 imser = [ S(x dx—/s% I et y(X]dx (15)
I A T—gl— —l——l . _ v
Y P e X TN
Il ‘ ‘ wherelir_¢ 1 [Y(X)] is the indicator function, equal to 1
> 0 ¥ \ \ wheny(x) € [T —g,T +¢] and 0 elsewhere.
¥ | | Finding a design that minimizésiser would make the meta-
-1t ¥ | | model accurate in the subsét ¢, which is exactly what we
want. Weighting the IMSE criterion over a region of interest
L ! ! is classical and proposed for instance by [15], pp.433-434.
iy . o | . However, the notable difference here is that this regiomis u
0 0.2 0.4 0.6 0.8 1 knowna pl’iOl’i.
X Now, we can adapt the criterion in the context of Kriging
modeling, wherey is a realization of a random process
Fig. 1. One-dimensional illustration of the target region. Here, T = (see Section 2.1).
1 and € = 0.2. The target region consists of two distinct intervals. Thus,imser is defined with respect to the event

regions of the design space. Our work proposes an alterna- IMSér = /sﬁ Lr—ereg [Y (X 0)]dx=1(w)  (16)

tive criterion which focuses on the integral of the predinoti

variance (rather than punctual criterion). o )
To come back to a deterministic criterion, we consider

the expectation off (w), conditional on the observations:

3 Weighted IMSE Criterion

In this section, we present a variation of the IMSE crite-
rion, adapted to the problem of fitting a function accurately
for a certain level-set. The controlling idea of this work is —E /sﬁ Lr_e7+¢ [Y (X, w)]dx|0bs| (17)
that the surrogate does not need to be globally accurate, but
only in some critical regions, which are the vicinity of the

target boundary. Since the quantity inside the integral is positive, we can
commute the expectation and the integral:

IMSEr = E {I(u))‘ob%

3.1 Target region defined by an indicator function

The IMSE criterion is convenient because it sums up IMSEr = /Si(X)E {1[T—8,T+s] [Y (X, )] IOb% dx
the uncertainty associated with the Kriging model over the D
entire domainD. However, we are interested in predict- .
ing Y accurately in the vicinity of a level-set (T) = B /Sﬁ X)E [Ur—e.1+5) M (X)]] ox
{xeD:y(x)=T} (T a constant). Then, such a criterion is
not suitable since it weights all pointsihaccording to their = /sﬁ(x)w (x)dx (18)
Kriging variance, which does not depend on the observations
Y, and hence does not favor zones with respect to properties
concerning theiy values but only on the basis of their posi-According to Eqn. 18, the reduced criterion is the average
tion with respect to the DoE. of the prediction variance weighted by the functidx).
We propose to change the integration domain fidrto a  BesidesW(x) is simply the probability that the response is
neighborhood of/~1(T) in order to learry accurately near inside the intervalT —g, T +¢]:
the contour line. We defineragion of interesXt ¢ (param-
eterized bye > 0) as the subset iD whose image is within _
the bound§ — e andT +¢: W) = E[1r-e1q M ()]

=P(M(x) € [T —¢,T+¢]) (19)
X7e= y‘l([T —&T+e])={xeD|y(x) e [T—¢T+¢g|} Using Eqgn. 8), we obtain a simple analytical form for
(14)  W(x):
Figure 1 illustrates a one-dimensional function with the
region of interest being & = 1 ande = 0.2. Note that the T+e
target region consists of two distinct intervals. W (x) = / 9N(nk<x).s§(x)) (u)du (20)

With the region of interest, the targeted IMSE criterion



WheregNw(X).oﬁ(X))(u) is the probability density function the weight function tends to the de”SQM(nk(x>.52K(x>) (T).
(PDF) ofM(x). By integrating the PDF we obtain: which is purely local.

In practice, it has been found that the choicegfexcepting
T+e—mg(x) T—e—mk(X) very large e_md very small valu.es- has Iit'FIe impact on the cri
T(X)) - ( X ) (21) terion and its use in sequential strategies. It only becomes

important when the number of observations is very large
(thus, the target region is well-known). In the numerical ex
amples of Section 5, we chosg equal to approximately five
percent of the output range.

W(x):dJ(

where® is the CDF of the standard normal distribution.
Note that by dividingV(x) by the constant& it is possible
to define the weight function with— O:

W 3.3 lllustration
lim = ON(mk (0.2 (x)) (T) (22) We consider a one-dimensional case, where the function
&0 2¢ 7 yto approximate is a realization of a Gaussian process (so the

o o o Kriging is an accurate model fof) with isotropic Gaussian
which is the PDF of the Kriging distribution evaluated aggyariance structure:

threshold.

2
_ exp|_ (lu=V
3.2 Target region defined by a Gaussian density k(u,v) =0 exp[ ( 0 (26)
Defining the region of interest ast . is intuitive and

makes it easy to derive the weight function. However, one.

might prefer a criterion that continuously increases the iy, > defined orD = [0, 1]; the design of experiments con-

. sts of five observations equally spaced in this intervhe T
portance of the location when the response approaches fhe : .

: - Jevel-set of interestT is chosen as 1.3, and bothand o,
threshold. For instance, we can choose a triangular fumctio

. ) . . . are taken as 0.2. Figure 2 represents the true function, the
(with a maximum atT) or a sigmoid function. Here, we , = . . : .
o . . riging metamodel and corresponding weights. The weight
choose to use the probability density function of a horm 2 . y : .
T . . . unction in Egn. 21 is shown as "interval”, while that in Eqn.
distribution which leads to a simple analytical form of th

. . S . ©5is called "Gaussian”.
we!ght funct!on._ln the spirit of I_Eqn. 19, the GéUSSIan_msimong the five observations, one is substantially closer to
weight function is therefore defined as follows:

T than the others. As a consequence, the weight functions
are large around this observation point. For the indicator-

W (x) =E[ge (M (x)—T)] (23) based weight function, the weights are null at the observa-
tion points, since on this example no observation is inside
wheregg (u) is the PDF olN (07 Ug)_ the target value intervgl. For the Gaussian-basec_j weight, w
WhenM(x) stands for the Kriging model, we can obtain £an observe a smoothing effect compared to the interval. For
simple form for the weight function: both functions, high weights are given to regions for which

the actual function is inside the target interval. Both viatig
functions are also non-zero where the uncertainty is high,

+o0
even if the Kriging mean is far fromh (aroundx = 0.65 and
W)= [ 6 (U= T)oy(meg00) WU 29 (gg)

.4 Application To Probability Of Failure Estimation
4.1 Probability of failure using metamodel

Failure of a system can usually be determined through
a criterion, called a limit-statey. The limit-state is defined
such that the system is considered safg 4 0, and failed

This integral is the convolution of the two Gaussian der-
sities, which is well-known to be the density of a sum of in=
dependent Gaussian variables. Hence, we obtain:

1 <7% “;‘«(:)‘(Tx))z) otherwise. For instance, the limit-state of a structureloan
W (x) = - e : (25)  defined as the difference between responsge.g., maxi-
2 (02 + ¢ (x)) mum stress or strain) and capacity(e.g., maximum allow-

able stress or strain,=r —c.

This new weight function depends on a single paramghe limit-state depends on a set of factor¢for instance in
ter o, that allows us to select the size the domain of interegructural analysis, material properties and loading§jciv
around the target level of the function. A large valuesef are often uncertain, and the limit-state shows randomidistr
would enhance space-filling, since the weight function wouloution. Then the safety of the system is evaluated in terms of
tend to a constant and the weighted IMSE to a uniform IMSEliability or probability of failure. The probability ofilure
criterion. On the contrary, a small value would enhance ti@ defined as:
accuracy of the surrogate on a narrow region around the con-
tour line of interest. In particular when epsilon tends tmoze P; = Prob(g(U) > 0) 27)
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Fig. 2. lllustration of the weights functions. Upper graph: true function, observations, Kriging mean and confidence intervals; the target
region is represented by the horizontal lines at T — €, T and T + €. Lower graph: weight functions. Both weights are large where the true
function is inside the target region, but also signaling regions of high uncertainties (around X = 0.65and 0.85).

whereU is a (multivariate) random variable. to the indicator function, being 1 if the Kriging mean exceed
There are many methods for calculating the failure prob#ie threshold zero and 0 otherwise. On the other hand, when
bility of a system [3, 28, 29]. Some of them use the reldhe variance is high or the predicted response close to the
tion between input random variables and the limit-statg. (e. threshold, using the Kriging distribution offers a smoathi
first-order reliability method) and some consider the limiteffect by giving a number between zero and one instead of a
state as a black-box (e.g., Monte-Carlo Simulations, MC3oolean humber.
MCS generates samples of the limit-state and calculates the
number of failed runs [3]. The ratio between the numbers of
failures and the total sample size approximates the prébabi ) ) o
ity of failure of the system: 3.4.2 Adaptation of the weighted IMSE criterion
When approximating the limit-state, it is clear that ac-
A 1N curacy is critical in the regions where it is close to zero,
Pr = N le[o,+w[[g(ui)] (28) since error in that region is likely to affect the probalyilit
i= estimate. The region of interest can be further refined by tak
ing into account the distribution of the input variables- In
where theuj’s are i.i.d. (independent and identically dis-deed, let us consider the case of two distinct failure region
tributed) replicates of the random variablg1 < i < N). with the probability that the input falls onto the first regio
The accuracy of MCS strongly depends on the number being much larger than the probability that it falls onto the
runs used, especially when the probability of failure is.lowpther). Instead of focusing equally on the two critical re-
When the cost of simulation is high, engineers can affo@ions, it will be more efficient to spend more computational
to have only a small number of runs, which is not gooéffort on the one that will affect most the probability esti-
enough to estimate the reliability with acceptable acouragnate. In the same sense, when refining the surrogate in a
[30]. Hence, using a metamodel to approximate the limigingle critical region, it is efficient to refine only whereeth
stateg is a natural solution to the lack of data; MCS is thefput probability is high.
performed on the metamodel that is inexpensive to evaluafe®® address this probability distribution of input variadle
Instead of using the indicator function on the Kriging meanyeé modify the weighted IMSE criterion by integrating the
we use the full Kriging information by computing, at eachveighted MSE not with a uniform measure, but with the law
sampling point, the probability that the response excdwels #10f the input variables. In the usual case thatimits a PDF

threshold: f(x) with respect to the Lebesgue measure, we then have:
B -+ S 1o (0) (29)
TP IMSEr = / 2 (X)W (x) du(x) = / 2 (X)W (x) f (x)dx
D D
. (30)
wherquf(') denotes the cumulative distribution functionin practice, the criterion becomes the integral of the pobdu
(CDF) of the Kriging model ax; (N (mk(ui) ,i (ui))). of three quantities: the prediction variance, the weightfu

If the Kriging variance is small, the CDF becomes equivaletibn and probability density function of the input variafle



Table 1. Procedure of the IMSEr -based sequential DoE strategy.  the optimization can be expressed as:

Create an initial DOEX, and generate observations
Yie=Y(Xk) min, IMSE (Xk11) = IMSE ({X, Xnew}) ~ (31)
Fori going from one to the total number of additional

observations: where IMSE {Xk, Xnew}) = [ % (X| {Xk, Xnew} ) dX.
D

Fit the Kriging model to the datéXi-1, Yiti-1} % (X| {Xk, Xnew}) is the variance ax of the Kriging model
based on the design of experimehtsaugmented with the
training pointxpew. Since the Kriging variance does not de-
criterion IMSEr ({Xk+i—1,Xnew}) pend on the observation, there is no need to lyéxg.y) to
compute the IMSE.
In contrast, the weighted IMSE depends on the observations
Update the DoE and observations: through the weight functiow/(x). The weight function can-
Xieri = {Xkei—1 Xnew) not take into account the new observation, since the regpons
is not available. Hence, when expressing the weighted IMSE
Yiti = {Ykti-1, Ynew} as a function ok,ew, We update only the variance part under
the integral:

Find a new training point,eywthat minimizes the

Compute the new observatighew = Y(Xnew)

End of loop

| | _ | IMSE+ (xk,Yk,xneW):/sﬁ(x|{xk,xnew})W(x|xk,Yk)dx
4 Sequential Strategies For Selecting Experiments 2
4.1 Building DoEs using the targeted IMSE criterion (32)

Without any observation, the weight functiovi(x) is, where s (X|{Xk,Xnew}) is the same as in Eqn. 31 and
assuming stationarity, a constant (the probability is trees W (x| Xk, Y) is the weight function based on the existing
everywhere). Every time a new observation is performed, t®E. Using this expression, we have the simple formulation
weight function will more precisely discriminate the reggo for the inner optimization problem:
of interest from the others. Hence, the procedure to build
an opt_imal DoE is necessarily iterative. If we add one ob- min_ IMSET (Xk, Yk, Xnew) (33)
servation at a time we can use the procedure shown in Table Xnewe D
1.

A good evaluation of the covariance parameters is crid.2  Solving the optimization problem
ical to obtain a good Kriging model. Besides, those param- Finding the new observatioxmew by solving the opti-
eters directly affect the weight function: for instance; urmization problem of Eqn. 33 is, in practice, challenging.
derestimation of the rang® (n Eqn. 26) makes the weight Indeed, thd MSE; criterion in Eqn. 32 must be evaluated
function flat (constant), which enhances space-filling;ian t by numerical integration, which is computationally inten-
contrary, overestimation of the range leads to a very discri sive. Besides, for any candidatgen, the Kriging model
inating (over-confident) weight function. must be reevaluated with this new observation to obtain
The Kriging parameters can be reevaluated after every negv(x|{X,Xnew})). Therefore we propose here some alter-
observation, or only from the initial DoE before the itevati natives that may be used to reduce the cost.
procedure. However, re-evaluating the parameters at eachpopular heuristic to minimize sequentially the IMSE is
iteration is computationally intensive, which can harm th& find the point where the prediction variance is maximum
efficiency of the method. Hence, one would consider eg{18, 21]], which can be used here with the weighted pre-
timating the parameters only when necessary, as proposkction variance. This strategy has the advantage of saving
in Gano et al. [31]. In the numerical examples used in thizoth the numerical integration and the inversion of a new co-
work, we found that after a first few iterations, the parametgariance matrix. However, the prediction variance is kel
re-evaluation had a negligible impact on the efficiency ef tho have many (local or global) maximizers, which are not
method. equivalent in terms of the IMSE. In particular, many optima
Defining a stopping criterion for this problem is an open anare located on the boundaries, which is very inefficient for
complex question. We consider here that in most cases the IMSE minimization. To compensate for this issue, one
number of observations is very limited so the iterative pranay in a first time get a large number of local optima us-
cess stops at early stage. Ideally, the adaptive procesfdshang adapted optimization strategies (multi-start, etany in
be stopped when the identified target region does not charggecond time evaluate those optima in terms of the weighted
significantly over several adaptations, which can be deteciMSE criterion, and perform a local optimization on the best
by looking at changes in the probability to be inside targetint. It is to be noted that the gradients of the weighted
regions. MSE can be calculated analytically (in the fashion of Gins-
Finding the new training point requires an inner optimiaati bourger [32] (Chapter 4) for the Expected Improvement cri-
procedure. When the classical IMSE criterion is consideretrion).
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Fig. 3. Optimal design after 11 iterations. The contour lines correspond to the true function at levels T (bold line) and [T —0g, T+ 05],
which delimit the actual target regions. Most of the training points are chosen close to the target region. The Kriging variance is very small in
these regions and large in non-critical regions.

A valuable computational shortcut can be achieved population-based methods, multi-start strategies, et¢he
the update of the inverse of the covariance matrix wheast problems presented in this chapter, we optimize the
adding an observation. Let us c&k the covariance ma- criterion on a fine grid for low dimensions, and using the
trix corresponding to a DoE witk observations. Then, the population-based CMA-ES algorithm [Covariance Matrix
covariance matrix of the DoE augmented with the 1th Adaptation Evolution Strategies, [35]] for higher dimen-

observation can be written: sions. Experimentation showed that due to the numerical
integration precision, the targeted IMSE strategy becomes
2 AT inefficient for dimensions higher than ten.
Cioa=| 2 Cnew] (34)
Cnew Ck
With Clew = [K(Xnew X1) , .., K (Xnews Xk)] @ 1 k vector. 5 Numerical Examples

Using Schur’s complement formula [33], we get: In this section, we evaluate the accuracy and efficiency

of the methods presented in the sections 3 and 4 through nu-

1 1 0 ﬁ_ 1_of v\pm rical examples. We consider three examples: the first is
Chi1 = [—C_lcnewlk] ¢ _C"emopk Crew o1 {0 ”Tk lfh% fitting of an analytical function in two dimensions with
K k estimated covariance parameters. The second is the fitting

35 o LT . )
This formula allows to computeCu.i L onnz of realizations of random processes in six dimensions with
P ket1 known covariance parameters, which allows us to decom-

§r2<k (x| &thim f)ogg?egggnggg'éogversmn’ and CornpUtepos;e the problem and evaluate the relevance of our criterion
ks Anew. .

Another typical problem of sequential strategies for Kngi since m_thls case there is no modgllng error. Flnally, the
. . e . . °_method is applied to probability of failure estimation.

is the ill-conditioning of the covariance matrix, which

happens in particular when two (or more) observations

are very close to each other. Since the IMSE criterion _ )

enhances exploration, this risk is limited here. Therefor-1 Two-dimensional example

when the number of iterations is large, the observations can The first example is the approximation of a two-
concentrate on the target region and the covariance matiinensional parametric function from the optimization lit
becomes difficult to invert. In that case, it is possible td aderature Camelback function[36]). The original function

a small diagonal matrix (nugget effect) to the covariands modified (bounds are different and a negative constant is
function in order to facilitate the inversion (Neal [34]). added) and the target is chosen in order to have two failure
In general, the criterion has several local minimizers. nfheregions, one dominating the other. The two-dimensional de-
it is necessary to use global optimization methods, such sign space is given d4,1]°>. The performance function is



defined as A 19 B °

10 \o
o
f(u,v):<4—2.1ui+lﬁ4> J2+2u7+1—6(—4+1—6\72)\72—(°-5 0
3 3 9 9
(36) 0 o 0 °
whereu = 1.2u— 0.1 andv = 0.9v.
For both numerical integration and optimization, the desig-o0.5 -0.5
space is discretized in a 3232 grid. We present the results °
for the following configuration: -1 o -1 °
-1 0 1 -1 0 1
Target valueT is chosen as 1.3,
Gaussian-based weight function is used, with paramet: 1¢ C o 19 D °
o =0.2, o o o °
Initial DOE consists of the four corners and the center o 0-5 ° 0.5
the domain, . ° & N o o
11 points are added iteratively to the DoE as describe o
in the previous section. 05 05
o o
An isotropic Gaussian covariance function (Eqn. 26) is cha _, 4 o _16

sen for the Kriging model. The covariance parameters (pr¢ -1 0 1 -1 0 1
cess variance? and ranged) are estimated from the initial

5-point DoE, and re-estimated after each new observatidiy. 4. Evolution of Kriging target contour line (thin line) compared
using the MatLab toolbox GPML [11]. The final results areo actual (bold line) during the sequential process: A) Initial, B) after
presented in Figure 3. four iterations, C) after eight iterations, D) final.

Figure 3 A) is the plot of the true function, and Figure 3 B) is

that of the Kriging mean. In the contour plotin Figure3C), . . hich is th ional botl K) ik
it is shown that there are two critical regions. After 11ater optimization (which is the computational bottleneck) take

tions, the sequential strategy used four points to expluze tof the order of two minutes on a PC with a 1.8GHz processor

first critical region, three points to explore the secondag 2Nd 1G0 RAM. For comparison, the two-dimensional prob-

and four points for space-filling. As shown in Figure 3 D)I’em described earlier requires about 1 second to perform the

the Kriging variance becomes small near the critical reg,ionOpt'm'Zat'on'

while it is relatively large in the non-critical region. We present the results for the following configurations:
Figure 4 shows the evolution of the target contour line ferth  Target value is chosen as 2

kriging expectation, which is a good indicator of the qualit  Gaussian-based weight function is used, with= 0.05.

of the surrogate. We see that because the first four itesation [|nitial DoE consists of 20 points chosen from Latin-
(Figure 4 B)) are used for space-filling, the Kriging contour  hypercube sampling (LHS)

line is very different from the actual one. After eight itera 70 points are added iteratively to the DoE.

tions (Figure 4 C)), the two target regions are found and-addi . .

tional sampling points are chosen close to the actual contou The Kriging parameters are not estimated here, but taken

line. Final state (Figure 4 D)) shows that the kriging comtOLf3qua| to the covariance p_ar_ameters Qf the true functlon.
line is close to the actual one. Hence, no modeling error is involved since the function to

approximate corresponds exactly to the assumptions of the

Kriging model, and the error of Kriging is only due to the
5.2 Six-Dimensional Example lack of sampling. The advantage of using such test case is

In the second example, we consider a realization ofta decompose the problem: here, we evaluate only the rele-

six-dimensional isotropic Gaussian process with Gaussigance and efficiency of our criterion, regardless the diffijcu
covariance function. The design spacg-i1]. In order of estimating the covariance parameters from a small num-
to limit the complexity (humber of non-connected target reser of observations.
gions) of the target region, we add a linear trend to the Gaussr comparison purpose, we generate a classical spaoefilli
sian process. We tak# = 1,6 = 0.1 andB = [1...1]. DoE that consists of 90 LHS points with maximin criterion.
The weighted IMSE criterion is computed by Quasi Monte~irst, we represent the error at 10,000 (uniformly distiéiol)
Carlo integration. The integration points are chosen fromdata points (Figure 5). The classical space-filling DoE $ead
Sobol sequence [37] to ensure a good space-filling, and &wea uniform error behavior, while the optimal DoE lead to
changed at each step to limit the risk of keeping a hole large errors when the response is far from the target value,
the integration region over the iterations. At each step, thvhile small errors when it is close to the target.
optimization is performed using the population-based-opti  In orderto analyze the error in the target region, we draw
mizer CMA-ES [35]. The number of integration points ighe boxplots of the errors for the test points where response
chosen equal to 5,000, and the number of function evaluare inside the domaifT — 20¢, T + 20¢] (Figure 6). Com-
tions for CMA-ES is limited to 1,000. With this set-up, onepared to the space-filling strategy, the optimal designeedu
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Fig. 5. Comparison of error distribution for two 90-point DoEs: op-
timal DoE (top) and classical LHS (bottom). The x-axis is the differ-
ence between the true function and the threshold, the y-axis is the
error. Three vertical bars are drawn at —20¢, 0 and +20¢ for the

target region. The error is on average smaller for the LHS design, but
the optimal DoE reduces substantially the error in the target region.
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Fig. 6. Boxplots of errors for the 90-point LHS and optimal de-
signs for the test points where responses are inside the domain
[T —20¢, T 4 20¢]. Error at these points is about 2.5 times smaller
for the optimal designs for both intervals.

significantly the error. In particular, the interquartiiager-
val is 2.5 times smaller for the optimal DoE.

5.3 Reliability Example
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Fig. 7. Optimal design with A) uniform integration measure, B) in-
put distribution integration measure; C) Full factorial designs with 16
points. Plain green line shows the limit of the failure region; Input
distribution is shown in D).

is defined wherf becomes greater than 1.3. Thus, the limit
state is defined as

G=f(U,V)-13 (37)

For this example, we generate two adaptive designs: the first
is generated sequentially as described previously, with un
form integration measure (Egn. 18); the second is generated
using the input distribution as integration measure (Eq). 3
Both use the four corners and the center of the domain as
starting DoE and 11 iterations are performed. For compari-
son purpose, a 16-point full factorial design is also used. |
is found that an Ordinary Kriging model (UK without lin-
ear trend) with isotropic Gaussian covariance function ap-
proximates well the function. The covariance parameters ar
computed using the toolbox GPML for all the DoEs. For the
sequential DoEs the parameters are re-evaluated at each new
observation.
Figure 7 draws the two optimal designs obtained and the full
factorial designs. Both optimal designs concentrate tine-co
putational effort on the failure regions and the center ef th
domain. With uniform measure integration in Figure 7 A),
the DoE is more space-filling than the one based on the dis-
tribution (shown in Figure 7 D)). By taking the input distiib
tion into account in Figure 7 B), we see that all the observa-
tions are located relatively close to the center of the damai
Part of each target regions is not explored, since it is tanfr
the center.

Finally, we perform 10 MCS on the three metamodels

The limit state function is taken as the Camelback fun¢e compute the probability of failure estimates.’ MCS are
tion used in the previous section. LdtandV be indepen- also performed directly on the test function to obtain the tr
dent Gaussian variables with zero mean and standard deyiesbability of failure. Results are reported in Table 2. The
tion taken at 0.28; i.elJ,V ~ N (0,0.28%). Then, the failure full-factorial design leads to 77% error, while both optima



Table 2. Probability of failure estimates for the three DoEs and the
actual function based on 107 MCS. The standard deviation of all es-
timates is of the order of 2 x 107,

believer strategy, since the criterion is entirely based on
the Kriging model. Although sequential strategies al-
low some correction of the model during the process

DoE Pt (%) Relative (through re-estimation of the parameters for instance),
error the success of the method will strongly depend on the
Full Eactorial 0.17 77 % capability of the Kriging model to fit the actual response.
Optimal without input distribu- 0.70 7 % Future research may compare the results obtained with this
tion method to alternative methods, in particular in the frame-
works of reliability analysis and constrained optimizatio
Optimal with input distribution  0.77 3%

Probability estimate based on0.75
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