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This paper addresses the issue of designing experiments for
a metamodel that needs to be accurate for a certain level
of the response value. Such a situation is common in con-
strained optimization and reliability analysis. Here, we pro-
pose an adaptive strategy to build designs of experiments that
is based on an explicit trade-off between reduction of global
uncertainty and exploration of regions of interest. A mod-
ified version of the classical integrated mean square error
criterion is used that weights the prediction variance with
the expected proximity to the target level of response. The
method is illustrated by two simple examples. It is shown
that a substantial reduction of error can be achieved in the
target regions, with reasonable loss of global accuracy. The
method is finally applied to a reliability analysis problem;
it is found that the adaptive designs significantly outperform
classical space-filling designs.

1 Introduction
In the past decades, the use of metamodeling techniques

has been recognized to efficiently address the issues of pre-
diction and optimization of expensive-to-compute numeri-
cal simulators or black-box functions [1, 2]. A metamodel
(or surrogate model) is an approximation to system response
constructed from its value at a limited number of selected
input values, the design of experiments (DoE). In many en-
gineering problems, the total number of function evaluations
is drastically limited by computational cost; hence, it is of
crucial interest to develop methods for efficiently selecting
the experiments.
In this paper, we focus on a particular application where

metamodels are used in a way that their accuracy is crucial
for certain level-sets. This situation is common in two popu-
lar frameworks:

In constrained optimization, the constraint function of-
ten relies on expensive calculations. For instance, a typ-
ical structural optimization formulation is to minimize a
weight such that the maximum stress, computed by fi-
nite element analysis, does not exceed a certain value.
When using a metamodel to approximate the constraint,
it is of utmost importance that the approximation error
is minimal on the boundary that separates the feasible
designs from infeasible ones. Substantial errors for val-
ues far from the boundary, on the other hand, are not
detrimental.
In reliability analysis, a metamodel is often used to prop-
agate the uncertainty of random input variables to the
performance function of a system [3, 4]. In particular,
the probability of failure of the system can be computed
using sampling techniques (i.e. Monte-Carlo Simula-
tions, MCS), by counting the number of responses that
are above a certain threshold. The contour line of the re-
sponse equal to the threshold must be known accurately
to discriminate between samples.

The objective of the present work is to provide a method-
ology to construct a design of experiments such that the
metamodel accurately approximates the vicinity of a bound-
ary in design space defined by a target value of the func-
tion of interest. Mourelatos et al. [5] used a combination of
global and local metamodels to first detect the critical regions
and then obtain a locally accurate approximation. Ranjan et
al. [6] proposed a modified version of the famous EGO al-
gorithm (Efficient Global Optimization, [7]) to sequentially
explore the domain region along a contour line. Tu et al. used
a modified D-optimal strategy for boundary-focused polyno-
mial regression [8]. Vazquez and Bect [9] proposed an it-
erative strategy for accurate computation of a probabilityof
failure based on Kriging. In this paper, we present an alterna-
tive criterion to choose sequentially the experiments, based
on an explicit trade-off between the exploration of the tar-
get region (on the vicinity of the contour line) and reduction
of the global uncertainty (prediction variance) in the meta-
model.
The paper is organized as follows: in Section 2, the Krig-
ing model and the framework of design of experiments are
described. In Section 3, the original criterion of selecting
experiments is presented, followed by its associated sequen-



tial strategy to derive designs of experiments in Section 4.
Results are presented for two analytical examples in Section
5. Finally, the criterion is applied to a probability of failure
estimation problem.

2 Kriging Metamodel and Design of Experiments
Let us first introduce some notation. We denote byy the

response of a numerical simulator or function that is to be
studied:

y : D ⊂ Rd −→ R

x 7−→ y(x) (1)

wherex = {x1, ...,xd}
T is a vector of input variables,

andD is the design space. In order to build a metamodel, the
responsey is observed atn distinct locationsX:

X = [x1, ...,xn]

Y = [y(x1), ...,y(xn)]
T = y(X) (2)

In Eqn. 2, choosingX is called thedesign of experi-
ments(DoE), andY is the vector of observations. Since the
responsey is expensive to evaluate, we approximate it by a
simple modelM, called themetamodelor surrogate model,
based on assumptions on the nature ofy and on its observa-
tionsY at the points of the DoE. In this paper, we present a
particular metamodel, Universal Kriging (UK), and we dis-
cuss some important issues about the choice of the design of
experiments.

2.1 Universal Kriging Model
The main hypothesis behind the Kriging model is to as-

sume that the true functiony is one realization of a Gaussian
stochastic processY, y(x) =Y(x,ω), whereω belongs to the
underlying probability spaceΩ. In the following we use the
notationY(x) for the process andY(x,ω) for one realization.
For Universal Kriging [10],Y is typically of the form:

Y(x) =
p

∑
j=1

β j f j (x)+Z(x) (3)

where f j are linearly independent known functions, andZ is
a Gaussian process [11] with zero mean and stationary co-
variance kernelk with known correlation structure and pa-
rameters.
Under such hypothesis, the best linear unbiased predictor
(BLUP) for Y(x) (for anyx in D), knowing the observations
Y, is given by the following equation [10,11]:

mK(x) = f(x)T β̂+ c(x)TC−1
(

Y −Fβ̂
)

(4)

where f(x) = [ f1(x), . . . , fp(x)]
T is p× 1 vector of basis

functions,β̂ =
[

β̂1, . . . , β̂p

]T
is p×1 vector of estimates of

β, c(x) = [k(x,x1), . . . ,k(x,xn)]
T is n× 1 vector of covari-

ance,C = [k(xi ,x j)]1≤i, j≤n is n×n covariance matrix, and

F = [f(x1), . . . , f(xn)]
T is n× p experimental matrix. In Eqn.

4, β̂ is the vector of generalized least square estimates ofβ:

β̂ =
(

FTC−1F
)−1

FTC−1Y (5)

In addition, the Universal Kriging model provides an es-
timate of the accuracy of the mean predictor, the Kriging pre-
diction variance:

s2
K(x) = k(x,x)− c(x)TC−1c(x)

+
(

f(x)T − c(x)TC−1F
)(

FTC−1F
)−1(

f(x)T − c(x)TC−1F
)T
(6)

whereσ2 is the process variance. Note that if the predic-
tion variance is written in terms of correlations (instead of
covariance here), Eqn. 6 can be factorized byσ2. For de-
tails of derivations, see for instance [10, 11]. It is important
to notice here that the Kriging variance in Eqn. 6, assuming
that the covariance parameters are known, does not depend
on the observationsY, but only on the Kriging model and on
the design of experiments.
We denote byM(x) the Gaussian process conditional on the
observationsY:

M := (M(x))x∈D = (Y(x)|Y(X) = Y)x∈D = (Y(x)|obs)x∈D
(7)

The Kriging model provides the marginal distribution ofM
at a prediction pointx:

M(x)∼ N
(

mK(x),s2
K(x)

)

(8)

The Kriging meanmK interpolates the functiony(x) at the
design of experiment points:

mK(xi) = y(xi), 1≤ i ≤ n (9)

The Kriging variance is null at the observation pointsxi ,
and greater than zero elsewhere:

s2
K(xi) = 0, 1≤ i ≤ n and s2K(x)≥ 0, x 6= xi (10)

Besides, the Kriging variance increases with the low val-
ues of the covariance betweenY(x) andY(xi) (1≤ i ≤ n).
Some parameters of the covariance kernel are often unknown
and must be estimated based on the observations, using max-
imum likelihood, cross-validation or variogram techniques
for instance (see [10, 11]). However, in the Kriging model
they are considered as known. To account for additional
variability due to the parameter estimation, one may use
Bayesian Kriging models (see [12, 13]), which will not be
detailed here. With such models, Eqn. 8 does not stand in
general. However, the methodology proposed here also ap-
plies to Bayesian Kriging, with the appropriate modifications
of the calculations shown in Section 3.



2.2 Design of experiments
Choosing the set of experiments (sampling points)X

plays a critical role in the accuracy of the metamodel and the
subsequent use of the metamodel for prediction. DoEs are
often based on geometric considerations, such as Latin Hy-
percube sampling (LHS) [14], or Full-factorial designs [15].
In this section, we introduce two important notions: model-
oriented and adaptive designs.

2.2.1 Model-oriented designs
Model-oriented designs aim at maximizing the quality

of statistical inference of a given metamodel. In linear re-
gression, [16, 17], A- and D- optimal designs minimize the
uncertainty in the coefficients, when uncertainty is due to
noisy observations. Formally, the A- and D-optimality cri-
teria are, respectively, the trace and determinant of Fisher’s
information matrix.
These criteria are particularly relevant in regression since
minimizing the uncertainty in the coefficients also minimizes
the uncertainty in the prediction (Kiefer, [16]). For Kriging,
uncertainties in covariance parameters and prediction arenot
simply related. Instead, a natural alternative is to take ad-
vantage of the prediction variance associated with the meta-
model, assuming that the covariance structure and param-
eters are accurately estimated. The prediction variance al-
lows us to build measures that reflect the overall accuracy of
Kriging. Two different criteria are available: the integrated
mean square error (IMSE) and maximum mean square error
(MMSE) [18]:

IMSE =

∫
D

MSE(x)dµ(x) (11)

MMSE= maxx∈D [MSE(x)] (12)

µ is a positive measure onD and

MSE(x) = E
[

(mK(x)−M(x))2
]

= s2
K(x) (13)

Note that the above criteria are often called I-criterion
and G-criterion, respectively, in the regression framework.
The IMSE is a measure of the average accuracy of the meta-
model, while the MMSE measures the risk of large error in
prediction.
Optimal designs aremodel-dependent, in the sense that the
optimality criterion is determined by the choice of the meta-
model. In regression, A- and D-criteria depend on the choice
of the basis functions, while in Kriging, the prediction vari-
ances2

K depends on the linear trend, the covariance structure,
and parameter values. However, one may notice that, assum-
ing that the trend and covariance structures are known, none
of the criteria depends on the response values at the design
points.

2.2.2 Adaptive designs
The previous DoE strategies choose all the points of the

design before computing any observation. It is also possible

to build the DoE sequentially, by choosing a new point as a
function of the other points and their corresponding response
values. Such approach has received considerable attention
from the engineering and mathematical statistic communi-
ties, for its advantages of flexibility and adaptability over
other methods [19,20].
Typically, the new point achieves a maximum on some crite-
rion. For instance, a sequential DoE can be built by making
at each step a new observation where the prediction variance
is maximal. Sacks et al. [18] use this strategy as a heuristic
to build IMSE-optimal designs for Kriging. The advantage
of sequential strategy here is twofold. Firstly, it is computa-
tionally efficient because it transforms an optimization prob-
lem of dimensionn× d (for the IMSE minimization) into
k optimizations of dimensiond. Secondly, it allows us to
reevaluate the covariance parameters after each observation.
In the same fashion, Williams et al. [21], Currin et al. [22],
and Santner [2] use a Bayesian approach to derive sequential
IMSE designs. Osio and Amon [23] proposed a multistage
approach to enhance first space-filling in order to accurately
estimate the Kriging covariance parameters and then refine
the DoE by reducing the model uncertainty. Some reviews
of adaptive sampling in engineering design can be found in
Jin et al. [24].
In general, a particular advantage of sequential strategies
over other DoEs is that they can integrate the information
given by the firstk observation values to choose the(k+1)th

training point, for instance by reevaluating the Kriging co-
variance parameters. It is also possible to define response-
dependent criteria, with naturally leading to surrogate-based
optimization. One of the most famous adaptive strategy is the
EGO algorithm Jones et al. [7], used to derive sequential de-
signs for the optimization of deterministic simulation mod-
els, by choosing at each step the point that maximizes the
expected improvement, a functional that represents a com-
promise between exploration of unknown regions and local
search. Jones [25] also proposes maximum probability of
improvement as an alternative criterion.
In this paper, the objective is not optimization, but to accu-
rately fit a function when it is close to a given threshold. It is
then obvious that the DoE needs to be built according to the
observation values, hence sequentially. Shan and Wang [26]
proposed a rough set based approach to identify sub-regions
of the design space that are expected to have performance
values equal to a given level. Ranjan et al. [6] proposed a
sequential DoE method for contour estimation, which con-
sists of a modified version of the EGO algorithm. The func-
tional minimized at each step is a trade-off between uncer-
tainty and proximity to the actual contour. Tu et al. [8] used
a weighted D-optimal strategy for polynomial regression, the
acceptable sampling region at each step being limited by ap-
proximate bounds around the target contour. Oakley [27]
uses Kriging and sequential strategies for uncertainty propa-
gation and estimation of percentiles of the output of com-
puter codes. Vazquez and Bect [9] proposed an iterative
strategy for probability of failure estimation by minimizing
the classification error when using Kriging. All these papers
aim at constructing DoEs for accurate approximation of sub-
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Fig. 1. One-dimensional illustration of the target region. Here, T =
1 and ε = 0.2. The target region consists of two distinct intervals.

regions of the design space. Our work proposes an alterna-
tive criterion which focuses on the integral of the prediction
variance (rather than punctual criterion).

3 Weighted IMSE Criterion
In this section, we present a variation of the IMSE crite-

rion, adapted to the problem of fitting a function accurately
for a certain level-set. The controlling idea of this work is
that the surrogate does not need to be globally accurate, but
only in some critical regions, which are the vicinity of the
target boundary.

3.1 Target region defined by an indicator function
The IMSE criterion is convenient because it sums up

the uncertainty associated with the Kriging model over the
entire domainD. However, we are interested in predict-
ing Y accurately in the vicinity of a level-sety−1(T) =
{x ∈ D : y(x) = T} (T a constant). Then, such a criterion is
not suitable since it weights all points inD according to their
Kriging variance, which does not depend on the observations
Y, and hence does not favor zones with respect to properties
concerning theiry values but only on the basis of their posi-
tion with respect to the DoE.
We propose to change the integration domain fromD to a
neighborhood ofy−1(T) in order to learny accurately near
the contour line. We define aregion of interestXT,ε (param-
eterized byε > 0) as the subset inD whose image is within
the boundsT − ε andT + ε:

XT,ε = y−1([T − ε,T + ε]) = {x ∈ D|y(x) ∈ [T − ε,T + ε]}
(14)

Figure 1 illustrates a one-dimensional function with the
region of interest being atT = 1 andε = 0.2. Note that the
target region consists of two distinct intervals.

With the region of interest, the targeted IMSE criterion

is defined as follows:

imseT =
∫

XT,ε

s2
K(x)dx =

∫

D

s2
K(x)1[T−ε,T+ε] [y(x)]dx (15)

where1[T−ε,T+ε] [y(x)] is the indicator function, equal to 1
wheny(x) ∈ [T − ε,T + ε] and 0 elsewhere.
Finding a design that minimizesimseT would make the meta-
model accurate in the subsetXT,ε, which is exactly what we
want. Weighting the IMSE criterion over a region of interest
is classical and proposed for instance by [15], pp.433-434.
However, the notable difference here is that this region is un-
knowna priori.
Now, we can adapt the criterion in the context of Kriging
modeling, wherey is a realization of a random processY
(see Section 2.1).
Thus,imseT is defined with respect to the eventω:

imseT =
∫

D

s2
K(x)1[T−ε,T+ε] [Y (x,ω)]dx = I(ω) (16)

To come back to a deterministic criterion, we consider
the expectation ofI (ω), conditional on the observations:

IMSET = E
[

I(ω)
∣

∣

∣
obs

]

= E





∫

D

s2
K(x)1[T−ε,T+ε] [Y (x,ω)]dx

∣

∣

∣
obs



 (17)

Since the quantity inside the integral is positive, we can
commute the expectation and the integral:

IMSET =

∫

D

s2
K(x)E

[

1[T−ε,T+ε] [Y(x,ω)]
∣

∣

∣
obs

]

dx

=

∫

D

s2
K(x)E

[

1[T−ε,T+ε] [M (x)]
]

dx

=

∫

D

s2
K(x)W (x)dx (18)

According to Eqn. 18, the reduced criterion is the average
of the prediction variance weighted by the functionW(x).
Besides,W(x) is simply the probability that the response is
inside the interval[T − ε,T + ε]:

W(x) = E
[

1[T−ε,T+ε] [M (x)]
]

= P
(

M(x) ∈ [T − ε,T + ε]
)

(19)

Using Eqn. 8), we obtain a simple analytical form for
W(x):

W (x) =

T+ε∫

T−ε

gN(mK (x),s2
K(x))

(u)du (20)



wheregN(mK (x),σ2
K(x))

(u) is the probability density function

(PDF) ofM(x). By integrating the PDF we obtain:

W (x) = Φ
(

T + ε−mK (x)
sK (x)

)

−Φ
(

T − ε−mK (x)
sK (x)

)

(21)

whereΦ is the CDF of the standard normal distribution.
Note that by dividingW(x) by the constant 2ε, it is possible
to define the weight function withε → 0:

lim
ε→0

W (x)
2ε

= gN(mK (x),s2
K(x))

(T) (22)

which is the PDF of the Kriging distribution evaluated at
threshold.

3.2 Target region defined by a Gaussian density
Defining the region of interest asXT,ε is intuitive and

makes it easy to derive the weight function. However, one
might prefer a criterion that continuously increases the im-
portance of the location when the response approaches the
threshold. For instance, we can choose a triangular function
(with a maximum atT) or a sigmoid function. Here, we
choose to use the probability density function of a normal
distribution which leads to a simple analytical form of the
weight function. In the spirit of Eqn. 19, the Gaussian-based
weight function is therefore defined as follows:

W(x) = E [gε (M (x)−T)] (23)

wheregε (u) is the PDF ofN
(

0,σ2
ε
)

.
WhenM(x) stands for the Kriging model, we can obtain a
simple form for the weight function:

W(x) =

+∞∫

−∞

gε (u−T)gN(mK(x),s2
K(x))

(u)du (24)

This integral is the convolution of the two Gaussian den-
sities, which is well-known to be the density of a sum of in-
dependent Gaussian variables. Hence, we obtain:

W(x) =
1

√

2π
(

σ2
ε + s2

K (x)
)

e

(

− 1
2
(mk(x)−T)2

σ2
ε+s2K (x)

)

(25)

This new weight function depends on a single parame-
ter σε that allows us to select the size the domain of interest
around the target level of the function. A large value ofσε
would enhance space-filling, since the weight function would
tend to a constant and the weighted IMSE to a uniform IMSE
criterion. On the contrary, a small value would enhance the
accuracy of the surrogate on a narrow region around the con-
tour line of interest. In particular when epsilon tends to zero,

the weight function tends to the densitygN(mK(x),s2
K(x))

(T),

which is purely local.
In practice, it has been found that the choice ofσε -excepting
very large and very small values- has little impact on the cri-
terion and its use in sequential strategies. It only becomes
important when the number of observations is very large
(thus, the target region is well-known). In the numerical ex-
amples of Section 5, we choseσε equal to approximately five
percent of the output range.

3.3 Illustration
We consider a one-dimensional case, where the function

y to approximate is a realization of a Gaussian process (so the
Kriging is an accurate model fory) with isotropic Gaussian
covariance structure:

k(u,v) = σ2exp

[

−

(

‖u− v‖
θ

)2
]

(26)

y is defined onD = [0,1]; the design of experiments con-
sists of five observations equally spaced in this interval. The
level-set of interestT is chosen as 1.3, and bothε andσε
are taken as 0.2. Figure 2 represents the true function, the
Kriging metamodel and corresponding weights. The weight
function in Eqn. 21 is shown as ”interval”, while that in Eqn.
25 is called ”Gaussian”.
Among the five observations, one is substantially closer to
T than the others. As a consequence, the weight functions
are large around this observation point. For the indicator-
based weight function, the weights are null at the observa-
tion points, since on this example no observation is inside
the target value interval. For the Gaussian-based weight, we
can observe a smoothing effect compared to the interval. For
both functions, high weights are given to regions for which
the actual function is inside the target interval. Both weight
functions are also non-zero where the uncertainty is high,
even if the Kriging mean is far fromT (aroundx= 0.65 and
0.85).

3.4 Application To Probability Of Failure Estimation
3.4.1 Probability of failure using metamodel

Failure of a system can usually be determined through
a criterion, called a limit-state,g. The limit-state is defined
such that the system is considered safe ifg ≤ 0, and failed
otherwise. For instance, the limit-state of a structure canbe
defined as the difference between response,r, (e.g., maxi-
mum stress or strain) and capacity,c, (e.g., maximum allow-
able stress or strain),g= r − c.
The limit-state depends on a set of factorsU (for instance in
structural analysis, material properties and loadings), which
are often uncertain, and the limit-state shows random distri-
bution. Then the safety of the system is evaluated in terms of
reliability or probability of failure. The probability of failure
is defined as:

Pf = Prob(g(U)≥ 0) (27)
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whereU is a (multivariate) random variable.
There are many methods for calculating the failure proba-
bility of a system [3, 28, 29]. Some of them use the rela-
tion between input random variables and the limit-state (e.g.,
first-order reliability method) and some consider the limit-
state as a black-box (e.g., Monte-Carlo Simulations, MCS).
MCS generates samples of the limit-state and calculates the
number of failed runs [3]. The ratio between the numbers of
failures and the total sample size approximates the probabil-
ity of failure of the system:

P̂f =
1
N

N

∑
i=1

1[0,+∞[ [g(ui)] (28)

where theui ’s are i.i.d. (independent and identically dis-
tributed) replicates of the random variableU (1≤ i ≤ N).
The accuracy of MCS strongly depends on the number of
runs used, especially when the probability of failure is low.
When the cost of simulation is high, engineers can afford
to have only a small number of runs, which is not good
enough to estimate the reliability with acceptable accuracy
[30]. Hence, using a metamodel to approximate the limit-
stateg is a natural solution to the lack of data; MCS is then
performed on the metamodel that is inexpensive to evaluate.
Instead of using the indicator function on the Kriging mean,
we use the full Kriging information by computing, at each
sampling point, the probability that the response exceeds the
threshold:

P̂f =
1
N

N

∑
i=1

1−Φ(i)
k (0) (29)

whereΦ(i)
k denotes the cumulative distribution function

(CDF) of the Kriging model atxi (N
(

mk (ui) ,s2
k (ui)

)

).
If the Kriging variance is small, the CDF becomes equivalent

to the indicator function, being 1 if the Kriging mean exceeds
the threshold zero and 0 otherwise. On the other hand, when
the variance is high or the predicted response close to the
threshold, using the Kriging distribution offers a smoothing
effect by giving a number between zero and one instead of a
Boolean number.

3.4.2 Adaptation of the weighted IMSE criterion

When approximating the limit-state, it is clear that ac-
curacy is critical in the regions where it is close to zero,
since error in that region is likely to affect the probability
estimate. The region of interest can be further refined by tak-
ing into account the distribution of the input variables. In-
deed, let us consider the case of two distinct failure regions,
with the probability that the input falls onto the first region
being much larger than the probability that it falls onto the
other). Instead of focusing equally on the two critical re-
gions, it will be more efficient to spend more computational
effort on the one that will affect most the probability esti-
mate. In the same sense, when refining the surrogate in a
single critical region, it is efficient to refine only where the
input probability is high.
To address this probability distribution of input variables,
we modify the weighted IMSE criterion by integrating the
weighted MSE not with a uniform measure, but with the law
µof the input variables. In the usual case thatµ admits a PDF
f (x) with respect to the Lebesgue measure, we then have:

IMSET =

∫

D

s2
K (x)W(x)dµ(x) =

∫

D

s2
K (x)W(x) f (x)dx

(30)
In practice, the criterion becomes the integral of the product
of three quantities: the prediction variance, the weight func-
tion and probability density function of the input variables.



Table 1. Procedure of the IMSET -based sequential DoE strategy.

Create an initial DoE,Xk, and generate observations

Yk = y(Xk)

For i going from one to the total number of additional

observationsn:

Fit the Kriging model to the data{Xk+i−1,Yk+i−1}

Find a new training pointxnew that minimizes the

criterion IMSET ({Xk+i−1,xnew})

Compute the new observationynew= y(xnew)

Update the DoE and observations:

Xk+i = {Xk+i−1,xnew}

Yk+i = {Yk+i−1,ynew}

End of loop

4 Sequential Strategies For Selecting Experiments
4.1 Building DoEs using the targeted IMSE criterion

Without any observation, the weight functionW(x) is,
assuming stationarity, a constant (the probability is the same
everywhere). Every time a new observation is performed, the
weight function will more precisely discriminate the regions
of interest from the others. Hence, the procedure to build
an optimal DoE is necessarily iterative. If we add one ob-
servation at a time we can use the procedure shown in Table
1.

A good evaluation of the covariance parameters is crit-
ical to obtain a good Kriging model. Besides, those param-
eters directly affect the weight function: for instance, un-
derestimation of the range (θ in Eqn. 26) makes the weight
function flat (constant), which enhances space-filling; on the
contrary, overestimation of the range leads to a very discrim-
inating (over-confident) weight function.
The Kriging parameters can be reevaluated after every new
observation, or only from the initial DoE before the iterative
procedure. However, re-evaluating the parameters at each
iteration is computationally intensive, which can harm the
efficiency of the method. Hence, one would consider es-
timating the parameters only when necessary, as proposed
in Gano et al. [31]. In the numerical examples used in this
work, we found that after a first few iterations, the parameter
re-evaluation had a negligible impact on the efficiency of the
method.
Defining a stopping criterion for this problem is an open and
complex question. We consider here that in most cases the
number of observations is very limited so the iterative pro-
cess stops at early stage. Ideally, the adaptive process should
be stopped when the identified target region does not change
significantly over several adaptations, which can be detected
by looking at changes in the probability to be inside target
regions.
Finding the new training point requires an inner optimization
procedure. When the classical IMSE criterion is considered,

the optimization can be expressed as:

min
xnew∈D

IMSE(Xk+1) = IMSE({Xk,xnew}) (31)

where IMSE({Xk,xnew}) =
∫
D

s2
K (x|{Xk,xnew})dx.

s2
K (x|{Xk,xnew}) is the variance atx of the Kriging model

based on the design of experimentsX augmented with the
training pointxnew. Since the Kriging variance does not de-
pend on the observation, there is no need to havey(xnew) to
compute the IMSE.
In contrast, the weighted IMSE depends on the observations
through the weight functionW(x). The weight function can-
not take into account the new observation, since the response
is not available. Hence, when expressing the weighted IMSE
as a function ofxnew, we update only the variance part under
the integral:

IMSET (Xk,Yk,xnew)=

∫

D

s2
K (x|{Xk,xnew})W(x|Xk,Yk)dx

(32)
where s2

K (x|{Xk,xnew}) is the same as in Eqn. 31 and
W(x|Xk,Yk) is the weight function based on the existing
DoE. Using this expression, we have the simple formulation
for the inner optimization problem:

min
xnew∈D

IMSET (Xk,Yk,xnew) (33)

4.2 Solving the optimization problem
Finding the new observationxnew by solving the opti-

mization problem of Eqn. 33 is, in practice, challenging.
Indeed, theIMSET criterion in Eqn. 32 must be evaluated
by numerical integration, which is computationally inten-
sive. Besides, for any candidatexnew, the Kriging model
must be reevaluated with this new observation to obtain
s2
K (x|{Xk,xnew})). Therefore we propose here some alter-

natives that may be used to reduce the cost.
A popular heuristic to minimize sequentially the IMSE is
to find the point where the prediction variance is maximum
[ [18, 21]], which can be used here with the weighted pre-
diction variance. This strategy has the advantage of saving
both the numerical integration and the inversion of a new co-
variance matrix. However, the prediction variance is likely
to have many (local or global) maximizers, which are not
equivalent in terms of the IMSE. In particular, many optima
are located on the boundaries, which is very inefficient for
the IMSE minimization. To compensate for this issue, one
may in a first time get a large number of local optima us-
ing adapted optimization strategies (multi-start, etc.),and in
a second time evaluate those optima in terms of the weighted
IMSE criterion, and perform a local optimization on the best
point. It is to be noted that the gradients of the weighted
MSE can be calculated analytically (in the fashion of Gins-
bourger [32] (Chapter 4) for the Expected Improvement cri-
terion).
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Fig. 3. Optimal design after 11 iterations. The contour lines correspond to the true function at levels T (bold line) and [T −σε,T +σε],
which delimit the actual target regions. Most of the training points are chosen close to the target region. The Kriging variance is very small in

these regions and large in non-critical regions.

A valuable computational shortcut can be achieved in
the update of the inverse of the covariance matrix when
adding an observation. Let us callCk the covariance ma-
trix corresponding to a DoE withk observations. Then, the
covariance matrix of the DoE augmented with thek+ 1th
observation can be written:

Ck+1 =

[

σ2 cT
new

cnew Ck

]

(34)

with cT
new= [k(xnew,x1) , . . . ,k(xnew,xk)] a 1× k vector.

Using Schur’s complement formula [33], we get:

Ck+1
−1 =

[

1 0
−C−1

k cnew Ik

]

[

1
σ2−cT

newC−1
k cnew

0

0 C−1
k

]

[

1 −cT
newC−1

k
0 Ik

]

(35)
This formula allows to computeCk+1

−1 from
Ck

−1 without doing any matrix inversion, and compute
s2
K (x|{Xk,xnew}) at reasonable cost.

Another typical problem of sequential strategies for Kriging
is the ill-conditioning of the covariance matrix, which
happens in particular when two (or more) observations
are very close to each other. Since the IMSE criterion
enhances exploration, this risk is limited here. Therefore,
when the number of iterations is large, the observations can
concentrate on the target region and the covariance matrix
becomes difficult to invert. In that case, it is possible to add
a small diagonal matrix (nugget effect) to the covariance
function in order to facilitate the inversion (Neal [34]).
In general, the criterion has several local minimizers. Then,
it is necessary to use global optimization methods, such as

population-based methods, multi-start strategies, etc. In the
test problems presented in this chapter, we optimize the
criterion on a fine grid for low dimensions, and using the
population-based CMA-ES algorithm [Covariance Matrix
Adaptation Evolution Strategies, [35]] for higher dimen-
sions. Experimentation showed that due to the numerical
integration precision, the targeted IMSE strategy becomes
inefficient for dimensions higher than ten.

5 Numerical Examples

In this section, we evaluate the accuracy and efficiency
of the methods presented in the sections 3 and 4 through nu-
merical examples. We consider three examples: the first is
the fitting of an analytical function in two dimensions with
estimated covariance parameters. The second is the fitting
of realizations of random processes in six dimensions with
known covariance parameters, which allows us to decom-
pose the problem and evaluate the relevance of our criterion
since in this case there is no modeling error. Finally, the
method is applied to probability of failure estimation.

5.1 Two-dimensional example

The first example is the approximation of a two-
dimensional parametric function from the optimization lit-
erature (Camelback function, [36]). The original function
is modified (bounds are different and a negative constant is
added) and the target is chosen in order to have two failure
regions, one dominating the other. The two-dimensional de-
sign space is given as[1,1]2. The performance function is



defined as

f (u,v)=

(

4−2.1ū2+
1
3

ū4
)

ū2+
2
3

ūv̄+
16
9

(

−4+
16
9

v̄2
)

v̄2−0.7

(36)
whereū= 1.2u−0.1 andv̄= 0.9v.
For both numerical integration and optimization, the design
space is discretized in a 32×32 grid. We present the results
for the following configuration:

Target valueT is chosen as 1.3,
Gaussian-based weight function is used, with parameter
σε = 0.2,
Initial DoE consists of the four corners and the center of
the domain,
11 points are added iteratively to the DoE as described
in the previous section.

An isotropic Gaussian covariance function (Eqn. 26) is cho-
sen for the Kriging model. The covariance parameters (pro-
cess varianceσ2 and rangeθ) are estimated from the initial
5-point DoE, and re-estimated after each new observation,
using the MatLab toolbox GPML [11]. The final results are
presented in Figure 3.
Figure 3 A) is the plot of the true function, and Figure 3 B) is
that of the Kriging mean. In the contour plot in Figure 3 C),
it is shown that there are two critical regions. After 11 itera-
tions, the sequential strategy used four points to explore the
first critical region, three points to explore the second region,
and four points for space-filling. As shown in Figure 3 D),
the Kriging variance becomes small near the critical regions,
while it is relatively large in the non-critical region.
Figure 4 shows the evolution of the target contour line for the
kriging expectation, which is a good indicator of the quality
of the surrogate. We see that because the first four iterations
(Figure 4 B)) are used for space-filling, the Kriging contour
line is very different from the actual one. After eight itera-
tions (Figure 4 C)), the two target regions are found and addi-
tional sampling points are chosen close to the actual contour
line. Final state (Figure 4 D)) shows that the kriging contour
line is close to the actual one.

5.2 Six-Dimensional Example
In the second example, we consider a realization of a

six-dimensional isotropic Gaussian process with Gaussian
covariance function. The design space is[−11]6. In order
to limit the complexity (number of non-connected target re-
gions) of the target region, we add a linear trend to the Gaus-
sian process. We takeσ2 = 1, θ = 0.1 andβ = [1. . .1].
The weighted IMSE criterion is computed by Quasi Monte-
Carlo integration. The integration points are chosen from a
Sobol sequence [37] to ensure a good space-filling, and are
changed at each step to limit the risk of keeping a hole in
the integration region over the iterations. At each step, the
optimization is performed using the population-based opti-
mizer CMA-ES [35]. The number of integration points is
chosen equal to 5,000, and the number of function evalua-
tions for CMA-ES is limited to 1,000. With this set-up, one
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Fig. 4. Evolution of Kriging target contour line (thin line) compared

to actual (bold line) during the sequential process: A) Initial, B) after

four iterations, C) after eight iterations, D) final.

optimization (which is the computational bottleneck) takes
of the order of two minutes on a PC with a 1.8GHz processor
and 1Go RAM. For comparison, the two-dimensional prob-
lem described earlier requires about 1 second to perform the
optimization.
We present the results for the following configurations:

Target value is chosen as 2
Gaussian-based weight function is used, withσε = 0.05.
Initial DoE consists of 20 points chosen from Latin-
hypercube sampling (LHS)
70 points are added iteratively to the DoE.

The Kriging parameters are not estimated here, but taken
equal to the covariance parameters of the true function.
Hence, no modeling error is involved since the function to
approximate corresponds exactly to the assumptions of the
Kriging model, and the error of Kriging is only due to the
lack of sampling. The advantage of using such test case is
to decompose the problem: here, we evaluate only the rele-
vance and efficiency of our criterion, regardless the difficulty
of estimating the covariance parameters from a small num-
ber of observations.
For comparison purpose, we generate a classical space-filling
DoE that consists of 90 LHS points with maximin criterion.
First, we represent the error at 10,000 (uniformly distributed)
data points (Figure 5). The classical space-filling DoE leads
to a uniform error behavior, while the optimal DoE lead to
large errors when the response is far from the target value,
while small errors when it is close to the target.

In order to analyze the error in the target region, we draw
the boxplots of the errors for the test points where responses
are inside the domain[T − 2σε,T + 2σε] (Figure 6). Com-
pared to the space-filling strategy, the optimal design reduces
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significantly the error. In particular, the interquartilesinter-
val is 2.5 times smaller for the optimal DoE.

5.3 Reliability Example
The limit state function is taken as the Camelback func-

tion used in the previous section. LetU andV be indepen-
dent Gaussian variables with zero mean and standard devia-
tion taken at 0.28; i.e.,U,V ∼ N

(

0,0.282
)

. Then, the failure
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is defined whenf becomes greater than 1.3. Thus, the limit
state is defined as

G= f (U,V)−1.3 (37)

For this example, we generate two adaptive designs: the first
is generated sequentially as described previously, with uni-
form integration measure (Eqn. 18); the second is generated
using the input distribution as integration measure (Eqn. 30).
Both use the four corners and the center of the domain as
starting DoE and 11 iterations are performed. For compari-
son purpose, a 16-point full factorial design is also used. It
is found that an Ordinary Kriging model (UK without lin-
ear trend) with isotropic Gaussian covariance function ap-
proximates well the function. The covariance parameters are
computed using the toolbox GPML for all the DoEs. For the
sequential DoEs the parameters are re-evaluated at each new
observation.
Figure 7 draws the two optimal designs obtained and the full
factorial designs. Both optimal designs concentrate the com-
putational effort on the failure regions and the center of the
domain. With uniform measure integration in Figure 7 A),
the DoE is more space-filling than the one based on the dis-
tribution (shown in Figure 7 D)). By taking the input distribu-
tion into account in Figure 7 B), we see that all the observa-
tions are located relatively close to the center of the domain.
Part of each target regions is not explored, since it is far from
the center.

Finally, we perform 107 MCS on the three metamodels
to compute the probability of failure estimates. 107 MCS are
also performed directly on the test function to obtain the true
probability of failure. Results are reported in Table 2. The
full-factorial design leads to 77% error, while both optimal



Table 2. Probability of failure estimates for the three DoEs and the

actual function based on 107 MCS. The standard deviation of all es-

timates is of the order of 2×10−5.

DoE Pf (%) Relative
error

Full Factorial 0.17 77 %

Optimal without input distribu-
tion

0.70 7 %

Optimal with input distribution 0.77 3 %

Probability estimate based on
107 MCS

0.75

designs lead to a small error. Substantial improvement is
obtained by taking the input distribution into account.

6 Conclusions
In this paper, we have addressed the issue of choosing

a design of experiments when the Kriging metamodel was
used to approximate a function accurately around a particular
level-set. This situation frequently occurs in constrained op-
timization and reliability analysis. We proposed a modified
version of the classical IMSE criterion, obtained by weight-
ing the prediction variance using a Kriging-based measure of
the expected proximity to target values. The choice of a new
observation based on such criterion is a trade-off between ex-
ploration of the target region (on the vicinity of the contour
line) and reduction of the global uncertainty (prediction vari-
ance) in the metamodel.
We applied our strategy to examples in two and six dimen-
sions. In two dimensions, we showed that the adaptive sam-
pling efficiently explored the target regions while ensuring
space-filling. In six dimensions, we showed that compared
to a classical space-filling design, the error reduction in the
target region was by a factor of 2.5.
Finally, the method was tested for reliability estimation on
an analytical example. An additional criterion was adapted
to integrate the distribution of input random variables. Itwas
found that both criterion-based strategies significantly out-
performed space-filling designs, and taking into account the
input distribution provides additional improvement in theac-
curacy of the probability of failure.
However, it has been found some limitations to the method,
which were not solved here and requires future work to apply
the method to a wide range of problems:

Since it relies on numerical integration, the method can
become computationally expensive if a large number of
integration points are needed to compute the criterion.
We found that for dimensions higher than ten, the cri-
terion minimization becomes critical without the use of
complex and problem-dependant numerical procedures,
such as dimension reduction or adapted numerical inte-
gration.
Secondly, it is important to recall that it is a model-

believer strategy, since the criterion is entirely based on
the Kriging model. Although sequential strategies al-
low some correction of the model during the process
(through re-estimation of the parameters for instance),
the success of the method will strongly depend on the
capability of the Kriging model to fit the actual response.

Future research may compare the results obtained with this
method to alternative methods, in particular in the frame-
works of reliability analysis and constrained optimization.
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