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Abstract. Maxwell’s equations allow the magnetic fieldB
to be calculated if the electric current densityJ is assumed
to be completely known as a function of space and time.
The charged particles that constitute the current, however, are
subject to Newton’s laws as well, andJ can be changed by
forces acting on charged particles. Particularly in plasmas,
where the concentration of charged particles is high, the ef-
fect of the electromagnetic field calculated from a givenJ on
J itself cannot be ignored. Whereas in ordinary laboratory
physics one is accustomed to takeJ as primary andB as de-
rived from J , it is often asserted that in plasmasB should
be viewed as primary andJ as derived fromB simply as
(c/4π)∇×B. Here I investigate the relation between∇×B

andJ in the same terms and by the same method as previ-
ously applied to the MHD relation between the electric field
and the plasma bulk flow (Vasyliūnas, 2001): assume that
one but not the other is present initially, and calculate what
happens. The result is that, for configurations with spatial
scales much larger than the electron inertial lengthλe, a given
∇×B produces the correspondingJ , while a givenJ does
not produce any∇×B but disappears instead. The reason
for this can be understood by noting that∇×B 6=(4π/c)J

implies a time-varying electric field (displacement current)
which acts to change both terms (in order to bring them to-
ward equality); the changes in the two terms, however, pro-
ceed on different time scales, light travel time forB and elec-
tron plasma period forJ , and clearly the term changing much
more slowly is the one that survives. (By definition, the two
time scales are equal atλe.) On larger scales, the evolution
of B (and hence also of∇×B) is governed by∇×E, with E

determined by plasma dynamics via the generalized Ohm’s
law; as illustrative simple examples, I discuss the formation
of magnetic drift currents in the magnetosphere and of Ped-
ersen and Hall currents in the ionosphere.
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1 Introduction

Starting with elementary courses in electromagnetism, one
becomes accustomed to think of the magnetic fieldB as de-
termined by the given distribution of electric current den-
sity J . Many researchers, particularly in magnetospheric
physics, continue to apply this mode of thinking (thatB is
derived fromJ ) when investigating problems of large-scale
plasma physics, for which the converse view – thatJ is de-
rived from B simply as(c/4π)∇×B – has been proposed
by Cowling (1957) andDungey(1958) and in recent years
strongly argued byParker(1996, 2000). From Maxwell’s
equations (Gaussian units are used throughout this paper)

∂B/∂t = −c∇ × E , (1)

∂E/∂t = −4πJ + c∇ × B , (2)

∇ · B = 0 ∇ · E = 4πρc (3)

one easily obtains an equation explicitly relatingB toJ only:(
1/c2

)
∂2B/∂t2

− ∇
2B = (4π/c) ∇ × J , (4)

allowing B at any point to be derived from a knowledge of
J over the complete backward light cone of the point (plus
knowledge of boundary conditions at−∞). When dealing
with a plasma, however, there are two plasma equations in-
volving J that must be considered in addition to Maxwell’s
equations: the generalized Ohm’s law (see, e.g.Vasyliūnas,
2005, and references therein)

∂J/∂t =

∑
a

{ (
q2
ana/ma

)
(E + V a × B/c)

− (qa/ma) ∇ · κa + qanag
}

+ (δJ/δt)coll (5)

representing in its exact form (Eq.5) the charge-weighted
summation of all particle accelerations, and the plasma mo-
mentum equation

∂ρV /∂t + ∇ · κ = J × B/c + ρg + f . (6)

In Eq. (5), qa , ma , na , V a , andκa are the charge, mass, con-
centration, bulk velocity, and kinetic tensor, respectively, of
particle speciesa, (δJ/δt)coll represents the sum of all colli-
sion effects, andg is the gravitational acceleration (included
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for exactness but mostly unimportant in practice). Equa-
tion (6) contains the parameters of the plasma as a whole:
ρ is the mass density,V is the bulk velocity, and

κ =

∑
a

κa = ρV V + P

is the kinetic tensor;f stands for any other force, not explic-
itly displayed.

When the full set of Eqs. (1–6) is to be taken into account,
it is by no means obvious that a complete specification of
J , prior to and independently ofB, is possible. If we are
dealing with a situation where the displacement current may
be neglected and Eq. (2) reduces to the ordinary Ampère’s
law,

J = (c/4π)∇ × B , (7)

then the two sides of the equation must be equal, but the ques-
tion remains: which side is the one that can be specified first
(and hence taken as producing the other)?

This paper attempts to determine whether and under what
conditions a definite physical answer to the above question
can be given. It is the third paper in a series dealing with
some fundamental questions, motivated in part by the contro-
versy (Parker, 1996, 1997, 2000; Heikkila, 1997; Lui, 2000)
on whetherB andV or, instead,J andE are to be treated
as the primary variables. The first paper (Vasyliūnas, 2001)
considered an analogous question: given thatV andE are
connected by the MHD approximation, which one can be re-
garded as producing the other? The clear answer was that,
provided the Alfv́en speedVA

2
�c2 (i.e. the inertia of the

plasma is dominated by the rest mass of the plasma parti-
cles and not by the relativistic energy-equivalent mass of the
magnetic field),V producesE but not vice versa. The sec-
ond paper (Vasyliūnas, 2005) showed that, on space and time
scales larger than those of electron plasma oscillations, the
time evolution ofJ cannot be calculated directly but only as
the time evolution of(c/4π)∇×B. In this paper I show that
this subordination ofJ to (c/4π)∇×B holds not just for the
time derivatives but also for the quantities themselves.

2 Relation between fields and currents evolved from ini-
tial values

Questions of the type raised here and inVasyliūnas(2001)
are sometimes phrased in terms of causes: which term is the
cause of which? Put this way, however, the discussion may
wander off too easily into issues of philosophy, a subject in
which physicists as such have no particular competence (how
many physicists have a clear idea, for instance, of the dis-
tinction between efficient and formal cause?) and which is
unlikely to lead to an unambiguous statement of physical re-
sults. For this reason I have avoided as much as possible the
notion of cause and have tried to reduce everything to spe-
cific questions about observable physical effects: which term
(when assumed to exist initially) implies (through the equa-
tions) the development of which?

2.1 The initial-value thought experiment method

What makes this approach possible is the evolutionary char-
acter of the basic equations of classical (non-quantum)
physics (Vasyliūnas, 2001, 2005), which allows an arbitrary
configuration, subject only to the constraint of satisfying the
divergence equations (3) (plus the analogous gravitational
equation), to be postulated at an initial timet=0, the equa-
tions then specifying completely the evolution of the system
at all other times. Thus, to investigate the question, which of
the two quantitiesJ and(c/4π)∇×B determines the other,
we may assume att=0 any initial spatial profile ofJ andB,
subject to the sole constraint that∇·B=0 but not satisfying
Eq. (7), and then follow their evolution fort>0 by solving
Eqs. (1–6).

2.2 Vacuum case

It is instructive to consider first the case of a system in a
vacuum, where only Maxwell’s equations need to be solved.
Assume that att=0 the initial magnetic field has∇×B 6=0,
even thoughJ=0 everywhere. Obviously, the non-curl-free
magnetic field will propagate away at the speed of light,
accompanied by appropriate electric fields as required by
Maxwell’s equations.

As a simple example, consider a 1-D magnetic field rever-
sal:

B = sign(z) B0 x̂ E = 0 (8)

at t=0 in a vacuum, with nocurrent to support the reversal.
At all later timest>0, the magnetic and electric fields are
given by

B = 0 E = B0ŷ |z|<ct

B = sign(z) B0x̂ E = 0 |z|>ct . (9)

The initial field reversal plane splits into two planes, prop-
agating away at the speed of light in the±ẑ directions, at
which the initialB is replaced byE in the perpendicular di-
rection; it is easily checked that this satisfies Maxwell’s equa-
tions. (The apparent persistence ofE at |z|<ct for all times
is an artifact of neglecting the finite extent of the system.)

Note that if a plasma were present,E given by Eq. (9)
would drive a current in the sense required to support the
initial reversal ofB. Simply inserting thisE into the gener-
alized Ohm’s law (5) would give

J ≈

(
ne e2/me

)
Et . (10)

With the current density increasing as∼t and current layer
thicknessz=ct , the current per unit length soon reaches the
value that would have maintained the initial field reversal in
a steady state:

(4π/c) J z ≈ B0 ŷ when z = ct = c/ωp ≡ λe , (11)

where ω2
p=4π

∑
a q2

ana/ma≈4πnee
2/me is the (electron)

plasma frequency andλe the electron inertial length. Of
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course, combining a vacuum solution of Maxwell’s equa-
tions with the generalized Ohm’s law is not consistent, and
this calculation does not prove anything. It does, however,
suggest that, when Eq. (7) is not satisfied, changes occur on
temporal and spatial scales of order of 1/ωp andλe, and the
important terms in the generalized Ohm’s law (5) are∂J/∂t

and(nee
2/me)E; this is consistent with the results of a more

rigorous analysis (Vasyliūnas, 2005).

2.3 Plasma case

Now take initial valuesB0(r), E0(r), andJ 0(r), arbitrary
except for satisfying whatever spatial boundary conditions
apply and for the constraint∇·B=0, and solve Maxwell’s
equations, together with the generalized Ohm’s law, which
can be written (followingVasyliūnas, 2005) as

∂J/∂t =

(
ωp

2/4π
) (

E − E∗
)

, (12)

E∗ standing for all the terms except the first on the right-
hand side of Eq. (5); the discussion above suggests that it be
approximated by the reduced form

∂J/∂t ≈

(
ωp

2/4π
)

E , (13)

presumed valid for the temporal and spatial scales involved,
of order of 1/ωp andλe (the implications of this assumption
and the consequences of including theE∗ term are discussed
in Sect.2.5).

Initial value problems are conveniently solved by introduc-
ing the Laplace transform in time:

Q̃(r, s) =

∫
∞

0
dt e−st Q(r, t) , (14)

the transform of the time derivative bringing in the initial
valueQ0≡Q(r, 0)∫

∞

0
dt e−st ∂Q/∂t = sQ̃ − Q0 . (15)

The transformed Eqs. (1), (2), and (13) are

s B̃ − B0 = −c∇ × Ẽ , (16)

s Ẽ − E0 = −4π J̃ + c∇ × B̃ , (17)

s J̃ − J 0 =

(
ωp

2/4π
)

Ẽ . (18)

An equation forB̃ alone is obtained by taking the curl of
Eq. (17) and using Eqs. (16) and (18) to eliminateẼ andJ̃ :

−λe
2
∇

2B̃ +

(
1 + s2/ωp

2
)

B̃ =

(
1/s + s/ωp

2
)

B0

+λe
2
∇ × [(4π/c)J 0/s − E0/c] . (19)

Similarly, an equation for̃J alone is obtained by taking the
curl of the curl of Eq. (18) and using Eqs. (16), (17), and (18)
to eliminateẼ andB̃:

λe
2
∇ × ∇ × J̃ +

(
1 + s2/ωp

2
)

J̃ =

(
s/ωp

2
)

J 0

+λe
2
∇×∇×J 0/s + (c/4π) [∇×B0/s+E0/c] . (20)

Finally, an equation for̃E alone is obtained by using Eq. (18)
and the curl of Eq. (16) to eliminateJ̃ andB̃ in Eq. (17):

λe
2
∇ × ∇ × Ẽ +

(
1 + s2/ωp

2
)

Ẽ =(
1/ωp

2
)

[sE0 − 4πJ 0 + c∇ × B0] . (21)

As a check, note that if the initial valuesB0, J 0 satisfy
Eq. (7) andE0=0, the solutions of Eqs. (19), (20), and (21)
are easily shown to be

B̃ = B0/s J̃ = J 0/s Ẽ = 0 (22)

which are the Laplace transforms of

B = B0 J = J 0 E = 0 , (23)

i.e. as expected, the initial values do not change.
Equations (19), (20), and (21), solved subject to the ap-

plicable spatial boundary conditions, give the Laplace trans-
formsB̃(r, s), J̃ (r, s), Ẽ(r, s); these can be inverted to ob-
tain B(r, t), J (r, t), E(r, t) by the standard technique of
contour integration in the complexs plane. Of primary in-
terest, however, are the mean values for timest�1/ωp –
formally, the limit t→∞. In the contour integration, they
are given by the residues of the pole ats=0; thus, for any
quantityQ

Q∞(r) = lim
s→0

s Q̃(r, s) . (24)

Other singularities, at|s|∼O(ωp), will contribute either de-
caying or oscillatory terms.

Taking the limit defined by expression (24) in Eqs. (19),
(20), and (21) gives

B∞ − λe
2
∇

2B∞ = B0 + λe
2
∇ × (4π/c) J 0 , (25)

J∞ + λe
2
∇ × ∇ × J∞ =

(c/4π) ∇ × B0 + λe
2
∇ × ∇ × J 0 , (26)

and

E∞ + λe
2
∇ × ∇ × E∞ = 0 , (27)

as the equations to be solved to obtain the final valuesB∞,
J∞, E∞ into which the assumed initial valuesB0, J 0, E0
evolve. Equations (25) and (26) also imply that{

1 + λe
2
∇ × ∇×

}
[J∞ − (c/4π)∇ × B∞] = 0 . (28)

Equations (27) and (28) are independent of initial values;
hence, to order(λe/L)2, E∞ vanishes andB∞ andJ∞ sat-
isfy Ampère’s law, for any initial values. For the rest, it is
evident that if the initial values vary spatially only on scales
L�λe, Eqs. (25) and (26) reduce to

B∞ = B0 + O (λe/L)2 (29)

J∞ = (c/4π) ∇ × B0 + O (λe/L)2 . (30)

B maintains its initial value, whileJ becomes equal to
(c/4π)∇×B regardless of its own initial value.
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Explicit solutions of Eqs. (25), (26), and (27) can be writ-
ten down for the 1-D geometry

B = B(z, t)x̂ J = J (z, t)ŷ E = E(z, t)ŷ (31)

with initial values

B(z, 0) = B0(z) J (z, 0) = J0(z) E(z, 0) = 0 (32)

(dB0/dz 6=(4π/c)J0) and spatial boundary condition of all
quantities vanishing atz→±∞. The solutions fort→∞ are:
E=0 and

B =

〈
B0

〉
− (4π/c) λe

2
〈
dJ0/dz

〉
, (33)

J = (c/4π)
〈
dB0/dz

〉
− λe

2
〈
d2J0/dz2

〉
= (c/4π)

〈
dB0/dz

〉
+

(
J0 −

〈
J0

〉)
, (34)

where〈
ξ(z)

〉
≡

1

2

∫
∞

−∞

dz′

λe

ξ(z′) exp

{
−

(
|z − z′

|

λe

)}
(35)

is a spatial average around a point, heavily weighted to the
neighborhood within a distanceλe from it; the second line of
Eq. (34) follows from the first by two integrations by parts.

2.3.1 Alternative direct derivation

Equations (25), (26), and (27) can also be derived without
explicit use of the Laplace transform. ForB∞, take the time
derivative of Eq. (4), replace the resulting∂J/∂t on the right-
hand side from Eq. (13) and the resulting∇×E from Eq. (1)
to obtain

∂/∂t
[(

1/c2
)

∂2B/∂t2
−∇

2B
]
=−

(
ωp

2/c2
)

∂B/∂t . (36)

Integrating Eq. (36) with respect tot from 0 to∞ gives(
1/c2

) [(
∂2B/∂t2

)
∞

−

(
∂2B/∂t2

)
0

]
−∇

2 (B∞−B0) =−

(
ωp

2/c2
)

(B∞−B0) , (37)

(∂2B/∂t2)0 can be evaluated in terms of initial values from
Eq. (4), and(∂2B/∂t2)∞ is assumed zero. Inserting these
values into Eq. (37) and rearranging terms gives Eq. (25).

ForJ∞, the electric-field counterpart of Eq. (4) is needed:(
1/c2

)
∂2E/∂t2

+ ∇ × ∇ × E = −

(
4π/c2

)
∂J/∂t . (38)

Apply the differential operator on the left-hand side of
Eq. (38) to Eq. (13) and use Eq. (38) to replace the right-
hand side, to obtain[(

1/c2
)

∂2/∂t2
+ ∇ × ∇×

]
∂J/∂t =

−

(
ωp

2/c2
)

∂J/∂t . (39)

Integrating Eq. (39) with respect tot from 0 to∞ gives(
1/c2

) [(
∂2J/∂t2

)
∞

−

(
∂2J/∂t2

)
0

]
+∇×∇× (J∞−J 0)=−

(
ωp

2/c2
)

(J∞−J 0) . (40)

Differentiating Eq. (13) with respect to time and applying
Eq. (2) gives

∂2J/∂t2
=

(
ωp

2/4π
)

(c∇ × B − 4πJ ) , (41)

from which (∂2J/∂t2)0 can be evaluated in terms of initial
values;(∂2J/∂t2)∞ is assumed zero, as before. With this,
Eq. (40) can be rearranged to give Eq. (26).

For E∞, taking Eq. (38) at t→∞, inserting Eq. (13) for
∂J/∂t , and neglecting(∂2E/∂t2)∞ gives Eq. (27) directly.

Although this alternative derivation may appear simpler,
one crucial step, neglecting the second time derivatives
at t→∞, can be properly justified only by the Laplace-
transform treatment.

2.4 Physical description

Underlying the complicated-looking mathematics of
Sect. 2.3 is a simple physical picture. Fundamentally, it
is the motion of all the charged particles in a volume that
constitutes the electric current in that volume. If the curl
of the magnetic field does not equal the current density
determined by the charged-particle motion (factors of 4π/c

taken as understood throughout this discussion), Maxwell’s
equations say that an electric field will develop, having a curl
that implies a change in the magnetic field in turn, tending
to make the curl of the magnetic field equal to the current
density; the whole process takes place at the speed of light.
These changing electric and magnetic fields, however, also
change the motion of charged particles and hence affect the
current density, tending to make itequal to the curl of the
magnetic field; the time scale of this process is the period of
electron plasma oscillations.

Which way an initially imposed difference betweenJ
and (c/4π)∇×B resolves itself depends thus on the ratio
of two times scales: light travel time across a typical spa-
tial scaleL vs. the inverse of the electron plasma frequency
ωp. WhenL/c�1/ωp (orL�c/ωp≡λe), J hardly changes
during the time interval it takes forB to reach adjustment
with Ampère’s law, Eq. (7). It is then convenient to treatJ
as given and to calculateB (neglecting the usually ignorable
retardation effects) from Eq. (7); this is the environment of
the elementary EM laboratory with its circuits and devices.
In space and astrophysical plasmas, on the other hand, typi-
callyL�λe; thenJ can change to satisfy Ampère’s law in a
time interval during whichB hardly changes. Equation (7)
can now be used only to calculateJ from (c/4π)∇×B; the
magnetic field itself must be determined from other consid-
erations (some examples are discussed in Sect.3).

2.5 Plasma response and magnetic field evolution

So far the evolution ofB andJ from given initial values has
been calculated assuming that direct acceleration of charged
particles by the electric field is the dominant mechanism for
changing the current on the short (∼1/ωp) time scales in-
volved – the assumption underlying the reduction of the gen-
eralized Ohm’s law to the approximate form Eq. (13). The
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consequences of all the other field and plasma effects that
change the current, contained in theE∗ term of Eq. (12),
can be studied by including that term (treated formally as a
given function of space and time) when taking the Laplace
transforms. The transformed Eqs. (16) and (17) remain un-
changed while Eq. (18) is replaced by

s J̃ − J 0 =

(
ωp

2/4π
) (

Ẽ − Ẽ
∗
)

, (42)

from which it follows that the previously derived Eqs. (19),
(20), and (21) remain valid provided one substitutes

J 0 → J 0 −

(
ωp

2/4π
)

Ẽ
∗

(43)

wheneverJ 0 appears in the equations. Applying the limit
defined by expression (24), needed to obtain the long-time
solutions, to the substitution (43) requires some care because
of the singularities of̃E

∗
at s→0. Using integration by parts

and the definition of the Laplace transform as needed, one
can show that

lim
s→0

s
[
J 0 −

(
ωp

2/4π
)

Ẽ
∗
]

=

(
ωp

2/4π
)

E∗
∞ , (44)

lim
s→0

s
{[

J 0 −

(
ωp

2/4π
)

Ẽ
∗
]
/s

}
= J 0 −

(
ωp

2/4π
) ∫

∞

0
dt E∗ (r, t) , (45)

lim
s→0

s
{[

J 0 −

(
ωp

2/4π
)

Ẽ
∗
]
s
}

= −

(
ωp

2/4π
) (

∂E∗/∂t
)
∞

. (46)

With the use of expression (44) in place ofJ 0 in Eq. (21),
the equation forE∞, replacing Eq. (27), becomes

E∞ + λe
2
∇ × ∇ × E∞ = E∗

∞ . (47)

The equation forB∞ retains the form of Eq. (25) if J 0 in it
is replaced by the expression (45). Noting that only the curl
of J 0 appears, one may carry out what looks at first like a
purely mathematical simplification: givenE∗(r, t), define a
field B∗(r, t) as the solution of the equation

∂B∗/∂t = −c∇ × E∗ (48)

subject to the boundary conditionB∗(r, 0)=B0(r). Then,
with the use of expression (45), the curl of the substitution
(43) (multiplied byλe

2 for convenience) can be rewritten as

λe
2
∇ × J 0 → λe

2
∇ × J 0 + (c/4π)

(
B∗

∞ − B0
)

(49)

and inserted into Eq. (25) gives

B∞ − λe
2
∇

2B∞ = B∗
∞ + λe

2
∇ × (4π/c) J 0 . (50)

Finally, the equation forJ∞ differs from Eq. (26) both in
replacingJ 0 by expression (45), handled as above, and in
having an added term, arising out of the first term on the
right-hand side of Eq. (20), equal to expression (46) divided
by ωp

2. The resulting equation is

J∞ + λe
2
∇ × ∇ × J∞ = (c/4π)∇ × B∗

∞

− (1/4π)
(
∂E∗/∂t

)
∞

+ λe
2
∇ × ∇ × J 0 . (51)

The physical meaning of the procedure is now apparent.
Provided the spatial variations ofE∗ and of the initial values
B0, J 0, andE0 are only on scalesL�λe, the solutions of
Eqs. (47), (50), and (51) are, to order(λe/L)2,

E∞ = E∗
∞ , (52)

B∞ = B∗
∞ , (53)

J∞ = (c/4π) ∇ × B∗
∞ − (1/4π)

(
∂E∗/∂t

)
∞

, (54)

i.e. the asymptotic mean values, reached for timesτ�1/ωp,
are determined solely byE∗

∞ andB∗
∞ and do not depend at

all on the initial values. But it is a property of plasmas on
large spatial and temporal scales

L � λe and τ � 1/ωp (55)

that the generalized Ohm’s law can be reduced to

0 ≈

(
ωp

2/4π
) (

E − E∗
)

(56)

(Vasyliūnas, 2005), determining the electric field which then
governs, via Maxwell’s equations, the evolution of the mag-
netic field and hence the value of the current. Thus,E∗

equals the electric field andB∗ is the magnetic field, both cal-
culated from approximate equations valid in the large-scale
plasma limit (55) discussed byVasyliūnas(2005). What
Eqs. (52), (53), and (54) show is that the electromagnetic
fields and currents calculated from the exact evolutionary
equations with given initial values for all the quantities be-
come, on time scales longer than the electron plasma os-
cillation period (and provided the initial values satisfy the
large-scale condition), indistinguishable from those calcu-
lated from the approximate equations.

3 Examples of magnetic field evolution

For plasmas on scales large in the sense of inequalities (55),
only ∇×B can be independently specified and notJ : if (un-
constrained) initial values for both are assumed,J evolves
within a time of order of 1/ωp to the value required by
Ampère’s law while∇×B remains essentially unchanged.
Since this notion – thatB determinesJ rather than the other
way around – runs counter to so much conventional thinking,
it is useful to illustrate it by some specific examples. In the
following, I consider a few cases where a priori specification
of the current might seem “intuitively obvious” and, by trac-
ing the evolution from initial conditions, show that in fact the
current develops from deformation of the magnetic field by
plasma dynamics.

3.1 Magnetic drift currents

Charged-particle drifts in inhomogeneous magnetic fields are
very well known; they are, for instance, generally considered
the primary contributors to the ring current in the magneto-
sphere during magnetic storms. If a population of moderately
energetic ions were suddenly placed on a shell of dipole field
lines, filling it, shouldn’t a current carried by gradient and
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curvature drifts appear (on a time scale something like an ion
gyroperiod), withJ given by ion concentration times drift
speed and∇×B adjusting itself accordingly?

To obtain the current density, however, one must consider
all the motions of allthe charged particles. A fundamental re-
sult derived byParker(1957) is thatJ obtained by summing
all the single-particle drifts satisfies the plasma momentum
equation, rewritten from Eq. (6) as

∂ρV /∂t + ∇ · (ρV V + P) = J × B/c . (57)

Gradient, curvature, and magnetization drifts add up to
the pressure tensor term; the time-derivative and inertial
terms come from the so-called polarization drifts (see, e.g.
Northrop, 1963); andE×B drifts, of course, carry no net
current. (The gravitational termρg has been neglected as
unimportant in most plasma contexts; it can be derived by
summing the currents carried by theg×B drifts.)

Consider a simple model of the symmetric ring current:
ions with isotropic pressure, electrons with negligible pres-
sure, over a region of finite radial extent. The asymptotic
steady state of this configuration is well known: eastward
(for the Earth’s dipole field orientation) current at the inner
edge (where∂P/∂r>0), larger westward current at the outer
edge (∂P/∂r<0), current carried by ions (in the frame of
reference whereE=0), hence corresponding eastward and
westward plasma bulk flows. Of interest is to trace the pro-
cess by which this steady state is reached if the following
initial state is assumed att=0: J=0,∇×B=0 (the magnetic
field is purely dipolar),E=0 (in the chosen frame of refer-
ence), and the plasma ion pressure is enhanced (within a ra-
dially limited shell of field lines), with a velocity distribution
function that is purely isotropic in theE=0 frame (consistent
with J=0 and implying alsoV =0). (Slow loss processes,
e.g. precipitation or charge exchange, are ignored.)

The evolution of the system is governed by Faraday’s law
(1), Ampère’s law (7) (neglect of the displacement current,
implied by the use of Eq. (7) instead of Eq. (2), is easily
shown to be equivalent to neglect ofB2/4πc2 in comparison
toρ in the momentum equation, valid as long asVA

2/c2
�1),

the momentum equation (57) with isotropic pressure

ρ (∂V /∂t + V · ∇V ) + ∇P = J × B/c (58)

(supplemented by continuity and energy equations as
needed), and the generalized Ohm’s law, which can be ap-
proximated by

0 = E + V × B/c − J × B/neec (59)

with neglect of any initial transients on times scales
O(1/ωp), electron pressure, andO(me/mi) terms. Equa-
tions (1) and (59) can be combined immediately to give

∂B/∂t = ∇ × [V × B − (J × B/nee)] (60)

which does not refer toE explicitly. Solving this set of equa-
tions is in general very difficult, but the various time scales
can be estimated by order-of-magnitude arguments (e.g.Va-
syliūnas, 1996).

At t=0, the only term in all these equations that is out of
balance is the radial pressure gradient. Equation (58) then
implies that plasma begins to flow radially, the flow velocity
initially increasing linearly with time:

Vr ∼ (1/ρ) (∂P/∂r) t . (61)

Given the radialV , Eq. (59) implies an azimuthalE, with a
non-zero curl that implies a time-varyingB. The change in
B can be estimated directly from Eq. (60):

δB ∼

∫
dt VrB/L ∼ (1/ρ) (∂P/∂r) (B/L) t2 (62)

with ∇× represented simply as 1/L. It is only the curl ofδB
from Eq. (62) that finally gives rise to the (azimuthal) current
density, which initially increases ast2:

Jφ ∼ (c/4π) δB/L ∼ [(c/B) ∂P/∂r]
(
VA

2t2/L2
)

. (63)

As J×B/c increases, it approaches and ultimately reaches
balance with∇P , putting an end to the radial flow of the
plasma and thus stopping the further increase ofδB andJφ .
The equilibrium value ofJφ is equal to the quantity in [ ]
on the right-hand side of Eq. (63); the order of magnitude of
the time scale to reach balance is thereforeL/VA, the Alfvén
wave travel time across a typical spatial gradient. (The actual
approach to stress balance is likely to be oscillatory.)

Injecting a population of (potentially) drifting ions thus
does not by itself create a current: the initial effect is a radial
displacement of the plasma by the imposed pressure imbal-
ance, and it is only as the magnetic field becomes deformed
by the plasma bulk flow that its curl gives rise to the cur-
rent. The current density reaches its full drift value only after
an elapsed time comparable to the Alfvén wave travel time,
as the magnetic stresses approach balance with the pressure
gradients.

But this is not the end of the story yet, because drifting
ions imply a sustained azimuthal bulk flow of the plasma,
whereas all the plasma bulk flows discussed here so far have
been radial and transient. Given the azimuthalJ as above
and no azimuthalV , Eq. (59) implies a radialE, the curl of
which could in principle be zero. In that case, in the cho-
sen frame of reference (in whichE=0 initially) the current
is carried entirely by the electrons – the gradient, curvature,
and magnetization drifts of the ions are offset byE×B drifts
from (inhomogeneous) electric fields that have appeared as
part of the dynamical evolution. To change this situation
requires∇×(J×B/nee) 6=0, which from Eq. (59) allows a
non-zeroBφ to evolve: aBφ that in general varies along the
field line (e.g. it may have opposite signs on the two sides
of the magnetic equatorial plane) and thus gives (through
the magnetic curvature force) an azimuthal component to the
magnetic stress in the momentum equation, with consequent
azimuthal acceleration of plasma bulk flow. (The equivalent
conventional description in terms of currents is thatBφ vary-
ing along the field line implies a radial component ofJ and
hence an azimuthal component ofJ×B/c.)
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One obvious source of the non-zero curl is the increased
electron concentrationne at and near the ionosphere, unre-
lated to the magnetospheric plasma pressure so that

(J × B) × ∇ne ∼ c∇P × ∇ne 6= 0 .

Representing∇× as 1/Lz (to emphasize that the relevant
length scale now is predominantly along the magnetic field
line), we can estimateBφ from Eq. (60)

Bφ ∼

∫
dt JφB/neeLz (64)

andVφ from Eq. (58)

Vφ ∼

∫
dt BBφ/4πρLz . (65)

With the use of Eqs. (63) and (64), the estimated azimuthal
bulk flow becomes

neeVφ ∼ [(c/B) ∂P/∂r]
(
VA

4t4/L2Lz
2
)

, (66)

written in this form for direct comparison withJφ in Eq. (63),
the differenceVφ−(Jφ/nee) being what determines the ra-
dial component ofE from Eq. (59). Equation (66) shows
thatneeVφ increases from zero initially ast4 and is at the be-
ginning much smaller thanJφ which increases ast2. Thus,
relative to the chosen frame of reference, the ions indeed un-
dergo almost no net drift at first, the current being carried
mostly by the electrons. Only after an elapsed time compara-
ble toLz/VA has the azimuthal plasma flow been accelerated
to Vφ≈(Jφ/nee), the electric field has decreased to zero, and
the ions now do carry the current as envisaged in the simple
drift picture.

Another way of looking at this process is to note that
isotropic pressure is constant along a field line, hence the
curl of the magnetic field deformed by plasma pressure gra-
dients varies in a smooth, well-defined manner along the field
line. If the current is carried predominantly by electrons, the
rapid increase in electron concentration near and in the iono-
sphere implies a corresponding decrease in the electron bulk
velocity required to carry the current. But Eq. (59) implies,
as is well known, that the magnetic field is frozen to the bulk
flow of electrons. If the electrons carrying the azimuthal cur-
rent are flowing much more slowly in the ionosphere than
in the magnetosphere, the field lines become bent, with the
curvature being in the sense to accelerate the plasma in the
direction of the current (opposite to the electron flow).

The question may be raised: How is the magnetic drift
current carried entirely by the ions established if there is no
ionosphere? The simple answer is: It isn’t! As long as the
condition ∇P×∇ne=0 can be maintained, the asymptotic
steady-state solution of Eqs. (58) and (59) is given by

∇P = J × B/c V = 0 E = ∇P/nee ; (67)

the current implied by the deformation of the magnetic field
continues to be carried entirely by the electrons, and the ion
bulk flow remains zero – a configuration sustainable because
the associated inhomogeneous electric field has zero curl. It

is by interaction with the ionosphere, as described above,
that eventually the azimuthal flow of the ions is established
and the inhomogenous electric field eliminated. This also
resolves an apparent paradox: If the initial state has, as as-
sumed, zero bulk flow and hence zero angular momentum
about the magnetic dipole axis, where does the angular mo-
mentum of the drifting ions in the final state come from? Ob-
viously, it has been transferred from the ionosphere (and ulti-
mately, of course, from the atmosphere and the planet) during
the transient phase of non-zeroBφ .

3.2 Pedersen and Hall currents

A recurrent question in studies of magnetosphere-ionosphere
interaction is how the horizontal electric currents in the iono-
sphere evolve in response to temporal changes within the
magnetosphere and the solar wind. Traditionally, the change
in the electric field (or else of the plasma bulk flow) just
above the ionosphere is taken as given by magnetospheric
processes, and the corresponding electric current is calcu-
lated by treating the ionosphere as a resistive medium, with
the resistivity due primarily to collisions between plasma and
neutral particles and hence withJ proportional to the elec-
tric field in the frame of reference of the neutral atmosphere.
While there is hardly any doubt concerning the numerical re-
sults, there are some subtle points concerning the physical
interpretation.

Consider, for simplicity, the region of the ionosphere
above an altitude of∼120 km, where only ion-neutral col-
lisions are significant and electron collisions can be ne-
glected. The plasma momentum equation (horizontal com-
ponents only) then simplifies to

ρ∂V /∂t = J × B/c + νinρ (V n − V ) , (68)

whereνin is the ion-neutral collision frequency,V n is the
bulk velocity of the neutral atmosphere, and the kinetic ten-
sor terms (usually assumed unimportant in the present con-
text) have been dropped. The generalized Ohm’s law (seeVa-
syliūnas and Song, 2005, and references therein for a more
detailed discussion) is still well approximated by Eq. (59);
only at altitudes below∼100 km do electron collision terms
become important.

The first point to note is that the electric field by itself does
almost nothing: in the ionosphere,νin�ωp and therefore the
result derived byVasyliūnas(2001), thatV producesE but
E does not produceV , applies – although his calculation
did not include the effect of collisions, the adjustments he
describes occur on a time scale of electron plasma frequency,
so the presence or absence of ion-neutral collisions makes
no difference. To study the development of currents in the
ionosphere one must thus posit an initial condition of plasma
flow.

Assume then that att=0 there is bulk flow of plasma (both
in the ionosphere and above it in the magnetosphere) relative
to the frame of reference of the neutrals, but no electric cur-
rent: V 6=V n, J=0. If one assumes alsoE=0 at t=0, the
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electric field goes from zero to the value−V ×B/c (consis-
tent with Eq. (59) whenJ=0) on the very short time scale
of 1/ωp (Vasyliūnas, 2001), so one may equally well assume
this as the initial value ofE. In either case, the further evo-
lution proceeds as described below.

With J=0 initially, the plasma-neutral collisional friction
term in Eq. (68) is not balanced, and the plasma flow is de-
celerated (relative to the neutrals) on a time scale 1/νin:

δV ∼ −νin (V − Vn) t . (69)

The strong altitude dependence of 1/νin leads to a cor-
responding altitude dependence of the deceleration (effec-
tively, the plasma slows down in the ionosphere but not in
the magnetosphere), implying from Eq. (60) a changing mag-
netic field:

δB ∼

∫
dt δV B/Lz ∼ −νin (V − Vn) (B/Lz) t2 , (70)

the curl of which gives rise to the current density:

J ∼ (c/4π) δB/Lz

∼ [(V − Vn) cρνin/B]
(
VA

2t2/Lz
2
)

. (71)

Initially J increases ast2 and ultimately, after a time com-
parable toLz/VA, reaches the value in [ ] on the right-hand
side of Eq. (71), at which theJ×B/c force and the plasma-
neutral collisional friction are in balance, with no further de-
celeration of bulk flow. In the steady-state limit, Eq. (59) and
Eq. (68) with ∂V /∂t=0 may be combined to eliminateV and
expressJ as a linear function ofE+V n×B/c, with Peder-
sen and Hall conductivities – the conventional ionospheric
Ohm’s law (seeSong et al.(2001) andVasyliūnas and Song
(2005) for critical discussions of its derivation and meaning).

The actual approach to steady state is somewhat more
complicated than the preceding sketch suggests. In addition
to the current in the ionosphere given in Eq. (71), δB from
deceleration of the plasma also launches a transient Alfvén
wave into the magnetosphere, which acts to decelerate the
plasma flow in the magnetosphere as well. Only if there are
dynamical processes in the magnetosphere that act to main-
tain the initial flow, launching appropriate Alfvén waves to-
ward the ionosphere in turn, can the velocity difference be-
tween the plasma and the neutral atmosphere be sustained in
a steady state.

4 Summary and conclusions

Although Amp̀ere’s law, with the displacement current term
neglected, equatesJ and(c/4π)∇×B, treating both quanti-
ties on an equal footing, they can be distinguished, as shown
in this paper, by positing an initial state with only one of the
two present and then using the basic equations (including the
complete Maxwell’s equations) to follow the subsequent de-
velopment of both. By this method, one of the two can be
unambiguosly identified as producing the other, with results

that depend on the parameter regime. In the ordinary labora-
tory environment of confined currents surrounded by a vac-
uum (or the electromagnetic equivalent thereof),J clearly
producesB. In a plasma that is sufficiently dense so that the
electron inertial lengthλe�L (the length scale of the spatial
gradients), on the other hand,∇×B producesJ , in the pre-
cise sense thatJ changes, if necessary, from its given initial
value to become equal to(c/4π)∇×B (with B not changing
significantly from its initial value). The agent of the change
in both cases is the electric field of the displacement cur-
rent term: its effect onB propagates at the speed of light,
but in the presence of a free-electron concentrationne it also
changesJ on the time scale 1/ωp, and the ratio (time to
changeJ )/(time to changeB) is c/ωpL≡λe/L.

The criterion on spatial scalesL�λe, together with
the criterion on time scalesτ�1/ωp, has previously (Va-
syliūnas, 2005) been shown to define the large-scale plasma
regime in which the time evolution ofJ cannot be calcu-
lated directly, but only, through Ampère’s law, from the
time evolution of B, the latter being governed by Fara-
day’s law with the electric field determined (in this large-
scale plasma regime) by plasma dynamics through the gen-
eralized Ohm’s law. The present paper extends this con-
clusion from ∂J/∂t to J itself: in a fundamental physi-
cal sense,J in the large-scale plasma regime is determined
by (c/4π)∇×B−(1/4π)(∂E/∂t). This has, of course,
long been a familiar concept within magnetohydrodynamics
(Cowling, 1957; Dungey, 1958), recently emphasized partic-
ularly byParker(1996, 2000); what the present paper does is
to exhibit in detail how it follows from the basic equations.

The phrase “in a fundamental physical sense” requires
some explanation. There are many instances in magneto-
spheric physics ofJ being calculated notfrom (c/4π)∇×B,
but in essentially all cases these are currents required in or-
der forJ×B/c to balance a mechanical stress (e.g. plasma
pressure gradient in the magnetosphere, or drag force from
the difference between plasma and neutral bulk flows in the
ionosphere), under the a priori assumption that stress balance
holds. If, to determine how and on what time scale these cur-
rents came about, one posits an initial state of the mechanical
stress only, without current, and follows the evolution of the
system, the result is that at first the stress imbalance produces
a change in plasma flow, which deforms the magnetic field,
the curl of the deformed field being what finally makes the
current; the time scale for the process is typically related to
the Alfvén wave travel time.

The physical sequence of what determines what in large-
scale plasma systems may be summarized as follows:

1. The electric field is determined directly by the general-
ized Ohm’s law (neglecting the∂J/∂t term): a combi-
nation of flows and kinetic tensors of the various particle
species.

2. The time derivative of the magnetic field is determined
by the curl of the electric field, hence equivalently by the
curl of the generalized Ohm’s law, which can be written
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as

∂B/∂t=∇×

{
V ×B− (J×B/nee) − (∇·κe) /nee

+ [c〈δneδE〉+〈δ (neV −J/e)×δB〉] /ne

}
, (72)

a more general approximation than Eq. (60), con-
taining as additional terms (for a plasma containing
only electrons and one species of singly charged ions
with mi�me) the electron kinetic tensor and the aver-
aged small-scale fluctuation terms (see Eq. (19) ofVa-
syliūnas, 2005, and associated discussion).

3. The current density is determined by Ampère’s law,
Eq. (7) (the displacement current may usually be ne-
glected).

4. In many cases, the dominant term on the right-hand side
of Eq. (72) is the V ×B term, the time derivative of
which is determined by the plasma momentum equa-
tion; the magnetic field can then be visualized as de-
formed by being bodily carried by the plasma bulk flow
(MHD approximation). In the next approximation, the
J×B term is added; the magnetic field is then deformed
by the electron bulk flow (Hall MHD approximation).
The needed value ofJ is available from step 3) (and
often may be advantageously replaced by(c/4π)∇×B

in the equations). The sequence embodied in steps 1)
through 4) remains valid, however, even when addi-
tional terms in the generalized Ohm’s law, such as elec-
tron kinetic tensor or fluctuation correlations, need to
be included. Even when the MHD approximation does
not apply, anychange inV still leads to a change inB
– merely one more complicated than a simple deforma-
tion by the flow. (That the extra terms in Eq. (72) should
change precisely so as to offset the change inV ×B is
most improbable!)

The above is the correct description (deduced from anal-
ysis of the exact dynamical equations) of the sequence in
which the various quantities are physically determined, in
the approximation appropriate to large-scale plasmas. The
equations of each step also provide mathematical equalities
between the quantities. These equalities can, of course, be
read in either direction and should not be taken as giving
the direction of physical determination, one way or the other.
Particularly when dealing with quasi-equilibrium or slowly
varying formulations, of which the conventional magneto-
sphere/ionosphere coupling theory (e.g.Vasyliūnas, 1970,
1972; Wolf, 1983) is a notable example, one must take care
not to overlook this distinction between physical determining
relation and mere quantitative equivalence.
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Vasyliūnas, V. M.: Time evolution of electric fields and currents
and the generalized Ohm’s law, Ann. Geophys., 23, 1347–1354,
2005,
SRef-ID: 1432-0576/ag/2005-23-1347.
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