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Abstract

We consider the problem of pointwise estimation of multi-dimensional signals s,
from noisy observations (yτ ) on the regular grid Z

d. Our focus is on the adaptive
estimation in the case when the signal can be well recovered using a (hypothetical)
linear filter, which can depend on the unknown signal itself.

The basic setting of the problem we address here can be summarized as follows:
suppose that the signal s is “well-filtered”, i.e. there exists an adapted time-invariant
linear filter q∗T with the coefficients which vanish outside the “cube” {0, ..., T}d which
recovers s0 from observations with small mean-squared error. We suppose that we
do not know the filter q∗, although, we do know that such a filter exists. We give
partial answers to the following questions:

– is it possible to construct an adaptive estimator of the value s0, which relies
upon observations and recovers s0 with basically the same estimation error as the
unknown filter q∗T ?

– how rich is the family of well-filtered (in the above sense) signals?

We show that the answer to the first question is affirmative and provide a numer-
ically efficient construction of a nonlinear adaptive filter. Further, we establish a
simple calculus of “well-filtered” signals, and show that their family is quite large:
it contains, for instance, sampled smooth signals, sampled modulated smooth signals
and sampled harmonic functions.
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1 Introduction

In this paper, we focus on the problem of denoising of multi-dimensional sig-
nals. Let F = (Ω,Σ, P ) be a probability space. We consider the problem of
recovering unknown random field (sτ = sτ (ξ)) τ∈Zd

ξ∈Ω

over Zd from noisy obser-

vations

yτ = sτ + eτ . (1)

It is convenient for us to assume that both the signal (sτ ) and the noises
are complex-valued. Besides this, we assume that the field (eτ ) of observation
noises is independent of (sτ ) and is of the form eτ = σǫτ , where (ǫτ ) are
independent of each other standard Gaussian complex-valued variables; the
adjective “standard” means that ℜ(ǫτ ), ℑ(ǫτ ) are independent of each other
N(0, 1) random variables. Our focus here is at estimating the value st of signal
at a given location t ∈ Zd.

The above problem is “classical” in statistical estimation and signal process-
ing, and as such, has received much attention. In particular, linear estimators
(referred as linear filters in the signal processing community) are widely used
in the statistical literature. To be more precise, suppose that our aim is to
recover the value s0 of the signal at zero given observations (yτ ) on the box
OT = {τ ∈ Zd : |τj | ≤ T, 1 ≤ j ≤ d}. We call the estimation ŝ of s0 linear if
it is of the form

ŝℓ =
∑

τ∈OT

qτyτ

for some q ∈ C(OT ), where C(OT ) is the set of complex-valued fields q =
{qτ , τ ∈ OT} over OT .

The simplicity of linear estimators is responsible for their popularity in statis-
tical signal processing. Another outstanding feature of such estimators is their
minimax property. Suppose that the a priori information resumes to the fact
that (sτ ) belongs to some convex compact set which is symmetric with respect
to zero, let us call it S. One of the most renown results of estimation theory
(see, for instance, [15,8,10]) states that the linear minimax estimator is, in a
certain sense, an optimal estimator of s0 in our problem. Indeed, consider the
following linear minimax estimation strategy: let q

(T )
∗ be the optimal solution 1

to the problem

1 For evident reasons such a solution exists in the situation we are interested in.
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min
q∈C(OT )

max
s∈S

Es



s0 −
∑

τ∈OT

qτyτ




2

(here Es stands for the expectation with respect to the distribution of (yτ )
which corresponds to the underlying signal s). The linear minimax estimator
ŝ∗ℓ of s0 is defined by

ŝ∗ℓ =
∑

τ∈Oτ

q(T )
∗,τ yτ .

Then

max
s∈S

Es(s0 − ŝ∗ℓ)
2 ≤ C inf

ŝ
max
s∈S

Es(s0 − ŝ)2,

where the infimum in the right-hand side is taken over all possible estima-
tors of s0 from observations (yτ ) and C is a moderate absolute constant (e.g.,
C ≤ 1.25). In other words, the linear estimator ŝℓ is a (almost) minimax esti-
mator of s0. We would like to stress the exceptional power of the above result
– we only need S to be convex and compact for the linear estimator to be
minimax optimal. The evident downside of using linear minimax estimators is
that the a priori information about the set S of signals should be as precise
as possible to achieve descent estimation accuracy. There was a significant re-
search on adaptive estimation in the above setting (cf [6,7]). Those techniques
allow to choose the “best” in a certains sense set which contains the signal
from special finite families of convex sets. Another “classical” approach to
adaptation for linear estimators has been developed in [20,21,22,23,28]. In the
latter approach the “form” of the filter q(T ) is considered as given in advance
(no information about sets of signals is used in this case), and the parameter T
(the “window width”) is selected adaptively to achieve the best bias/variance
tradeoff. Recently, more general adaptation techniques has been studied in
[24,14], which allow to choose the best estimator from special finite families
of available linear estimators.

The problem we are interested in here, when posed informally, is as follows: if
we consider the form of the filter as a “free parameter”, is it possible to provide
an estimation procedure which is adaptive with respect to this parameter?
In other words, suppose that a “good” filter q

(T )
∗ , with a small estimation

error exists. Then, is it possible to construct a data-driven estimation method
which has (almost) the same accuracy as the “oracle” – a hypothetic optimal

estimation method which uses the “good” filter q
(T )
∗ . It is natural, as it is

common in adaptive nonparametric estimation, to measure the quality of an
adaptive estimation routine with the factor by which the risk of the adaptive
procedure is greater than that of the “oracle” estimator. What we look for is
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the estimation method for which this factor is not too large. Let us consider,
for instance, the following question:

(?) Suppose that know that the (deterministic or random) signal (sτ )τ∈Zd ≡
(sτ (ξ)) τ∈Zd

ξ∈Ω

underlying observations (1) can be recovered from these observa-

tions “at a parametric rate” by “linear time-invariant filtering”: for a given
T , there exists (unknown in advance) filter q

(T )
∗ which recovers s0 via O(T d)

observations around zero such that

E




|s0 −
∑

τ∈OT

q(T )
∗,τ yτ |2




 ≤ O(σ2T−d). (2)

Can we mimic this filter?

We show that the answer to the question (?) is positive. Namely, whenever
a discrete time signal (that is, a signal defined on a regular discrete grid) is
well-filtered, i.e., can be recovered from its noisy observations at a parametric
rate by a linear time-invariant filter, we can recover this signal at a “nearly
parametric” rate without a priori knowledge of the associated filter.

Several points should be stressed in the above claim. First, we are able to mimic
only ideal filters q

(T )
∗ of small l2-norm. Indeed, the relation (2) implies that

the stochastic term of the error E

(
∑

τ∈OT

q
(T )
∗,τ eτ

)2

is bounded with O(σ2T−d),

which is conceivable only if |q(T )
∗ |2 = O(T−d/2). This constraint is crucial, as the

price for adaptation becomes prohibitive when the l2-norm of the ideal filter is
much larger than O(T−d/2). Though this assumption seems quite restrictive,
the family of well-filtered signals is quite wide. As we shall see later, this family
contains also “highly oscillating” sampled modulated smooth signals, sampled
harmonic functions, etc.

In this paper we also treat the problem of adaptive prediction, when we are
interested in recovering of a discrete time signal at a point t ∈ Z

d via noisy
observations taken at the points {τ ∈ Zd : tj − T ≤ τj ≤ tj − κ} “preceding”
the point t, with a given in advance “forecast horizon” κ ≥ 0.

The rest of our paper is organized as follows. In Section 2 we give a formal
definition of a well-filtered (well-predicted) signal on a d-dimensional regular
grid (the latter, w.l.o.g., is normalized to be Zd), and then show in Section 3
demonstrate that such a signal can be recovered at a nearly parametric rate
without a priori knowledge of the corresponding “good filter” (Theorems 4
and 5). The underlying estimation routines (i.e., “Algorithm A” of Section 3.1
and “Algorithm B” of Section 3.2) constitute a substantial extension of the
procedures proposed in [25] and [26]. In Section 4.1, we demonstrate that the
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family of well-filtered signals is pretty wide – it contains a wide spectrum of
“basic functions” (for example, exponential polynomials) and is closed with
respect to a number of basic operations, including modulation, taking linear
combinations and tensor products.

To make the exposition more readable, all proofs are collected in the appendix.

The denoising procedures, described in this paper constitute the basic bricks
of the construction of adaptive estimators of locally well-filtered signals, which
we describe in the companion paper[18]. The results of [18] extend to the wide
classes of modulated signals the results of [27,12,16,13] on spatial adaptive
estimates of signals with inhomogeneous smoothness.

2 Problem statement

In order to proceed we need some notations.
Fields over Z

d. Let C(Zd) be the linear space of complex-valued fields r =
{rτ : τ ∈ Zd} over Zd.
• Given nonnegative integer T and p ∈ [1,∞], we define semi-norms | · |T,p

on C(Zd) by |r|T,p =

(
∑

|τ |≤T
|rτ |p

)1/p

, |τ | = max{|τ1|, ..., |τd|}, with the stan-

dard interpretation of the right hand side when p = ∞, and we set |r|p =
limT→∞ |r|T,p ∈ R ∪ {+∞}. A field r ∈ C(Zd) with finitely many nonzero
entries rτ is called a filter, and the smallest T such that rτ = 0 whenever
|τ | > T , is called the order ord(r) of a filter r; we write CT (Zd) = {r ∈
C(Zd) | ord(r) ≤ T}. We identify a filter r with the multivariate Laurent sum
r(z1, ..., zd) =

∑
τ
rτz

τ1
1 ...z

τd
d .

• We call a filter r polynomial, if the corresponding Laurent sum is a polyno-
mial (i.e., if the entries rτ vanish when any of τj < 0, j = 1, ..., d). The set of
all polynomials is denoted P (Zd). For integers k, T , 0 ≤ k ≤ T , we denote by
P k
T (Zd) the subspace of P (Zd) formed by polynomials r for which the entries
rτ vanish outside the set k ≤ τj ≤ T , j = 1, ..., d.
• We denote by ∆j , j = 1, ..., d, the “basic shift operators” on C(Zd):

(∆jr)τ1,...,τd = rτ1,...,τj−1,τj−1,τj+1,...,τd.

Further, we use the notation ∆−1
j for the inverse of ∆j :

(∆−1
j r)τ1,...,τd = rτ1,...,τj−1,τj+1,τj+1,...,τd.

• Finally, we define the output of a filter r, the input to the filter being a
field x ∈ C(Zd), as the field r(∆)x ≡ r(∆1,∆2, ...,∆d)x, so that (r(∆)x)t =∑
τ
rτxt−τ .
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Fourier transform. Let T be a nonnegative integer, let ΓT be the set of roots of
1 of the degree 2T +1, and let C(ΓdT ) be the space of complex-valued functions
on ΓdT ≡ (ΓT )d.
• We define the Fourier transform FT : C(Zd) → C(ΓdT ) as (FT r)(µ) =

1
(2T+1)d/2

∑
|τ |≤T

rτµ
τ1
1 ...µ

τd
d ≡ 1

(2T+1)d/2 r(µ), r ∈ CT (Zd), where µ ∈ ΓdT . Note that

rτ = 1
(2T+1)d/2

∑

µ∈Γd
T

(FT r)(µ)µ−τ1
1 ...µ−τd

d , ∀(τ : |τ | ≤ T ). The Fourier transform

allows to equip C(Zd) with semi-norms coming from the standard p-norms on
C(ΓdT ):

|r|∗T,p = |FT r|p ≡



∑

µ∈Γd
T

|(FT r)(µ)|p



1/p

,

with the standard interpretation of the right hand side for p = ∞.

Now it is time to give a precise meaning to the basic question (?) of Intro-
duction. In order to do this, we should specify our a priori knowledge of the
constant factor hidden in O(·) and on the ranges on values of T and τ where
(2) holds true.

2.1 Nice signals

Since the observation noises are independent of (sτ ), we have

E
{
|sτ − (q(∆)y)τ |2

}
= 2σ2|q|22 + Eξ

{
|sτ (ξ) − (q(∆)s(ξ))τ |2

}
; (3)

therefore in order to ensure (2), both terms in the right hand side of the latter
inequality should be of order of T−d. This observation motivates the following

Definition 1 Let θ ≥ 0, ρ ≥ 1 be reals, let L be a nonnegative integer or
+∞, and let t ∈ Zd. Finally, let (sτ )τ∈Zd ≡ (sτ (ξ)) τ∈Zd

ξ∈Ω

be a random field on

Zd.
(1) [T -well-filtered signals] Let T be a nonnegative integer. We say that (sτ )
is T -well-filtered, with the parameters θ, ρ, L, at the point t (notation: (sτ ) ∈
StL(θ, ρ, T )), if there exists a filter q = q(T ) ∈ CT (Zd), |q|2 ≤ ρ

(2T+1)d/2 , which

reproduces (sτ ) in the box {τ : |τ − t| ≤ L} with the mean square error not
exceeding θ(2T + 1)−d/2:

max
τ :|τ−t|≤L

[
E
{
|sτ − (q(∆)s)τ |2

}]1/2 ≤ θ(2T + 1)−d/2. (4)

(2) [well-filtered signals] We say that (sτ ) is well-filtered, with the parameters
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θ, ρ, L, at the point t (we use the notation: (sτ ) ∈ Ft
L(θ, ρ)), if, for every

integer T , 0 ≤ T ≤ L, (sτ ) is T -well-filtered, with the parameters θ, ρ, L, at t.

In the above definition we were focusing on the case of de-noising – recovering
a well-filtered signal (s) at a point t ∈ Zd via a given number observations
“around” this point. 2 Another interesting problem is that of prediction, where
the goal is to recover st via observations yτ “preceding by a given horizon
κ ∈ Z+” the point t, i.e., observations with τj ≤ tj − κ, j = 1, ..., d.

Definition 2 Let θ ≥ 0, ρ ≥ 1 be reals, let T0 ≥ κ be nonnegative integers,
L be a nonnegative integer or +∞, and let t ∈ Z

d. Finally, let (sτ )τ∈Zd ≡
(sτ (ξ)) τ∈Zd

ξ∈Ω

be a random field on Zd.

(1) [T -well-predicted signals] Let T be a nonnegative integer. We say that (sτ )
is T -well predicted with the parameters θ, ρ, κ, L, at the point t (notation:
(sτ ) ∈ Qt

κ,L(θ, ρ, T )), if there exists a filter q = q(T ) ∈ P κ
T (Zd), |q|2 ≤ ρ

(2T+1)d/2 ,

which reproduces (sτ ) in the box {τ : |τ − t| ≤ L} with the mean square error
not exceeding θ(2T + 1)−d/2:

max
τ :|τ−t|≤L

[
E
{
|sτ − (q(∆)s)τ |2

}]1/2 ≤ θ(2T + 1)−d/2. (5)

(2) [well-predicted signals] We say that (sτ ) is well-predicted, with the param-
eters θ, ρ, κ, T0, L, at the point t (notation: (sτ ) ∈ Pt

κ,T0,L(θ, ρ)), if, for every
integer T , T0 ≤ T ≤ L, (sτ ) is T -well-predicted, with the parameters θ, ρ, κ, L,
at t.

Remark 3 Note that the quantitative description of a well-predicted field,
when compared with the description of a well-filtered field, involves an extra
parameter T0 – the smallest “window width” starting with which a possibility
to predict st is postulated. In the case of well-filtered fields, this width is just
0, in full accordance with the fact that in the de-noising problem every signal
is 0-well-filtered, at every point t, with parameters θ = 0, ρ = 1, L = ∞ due
to the existence of the trivial “single-point” filter q(z) ≡ 1.

In the sequel, we qualify as nice a signal which fulfils the requirements of
Definition 2 or 1 above. The filters q(T ) associated, in the sense of the above
definitions, with a nice signal (sτ ) as to filters certifying the “niceness” (“well-
filterability” of “well-predictability”) of the signal.
We are about to demonstrate that in the framework, suggested by the above
definitions, the answer to the question (?) is affirmative.I.e., a signal which is
nice (T -well-filtered or T -well-predicted, with parameters θ, ρ, L = 3T ) at a
point t can be recovered at this point “at a nearly parametric rate” with no

2 To be more precise, in the filtering literature this case is referred to as interpola-

tion.
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a priori knowledge of the corresponding “good filter”; all we should know in
advance are the parameters ρ and T .

3 Main result

We start the recovering routine for the adaptive filtering problem.

3.1 Adaptive filtering

The estimator we intend to use is as follows:
Algorithm A: Given a setup (ρ ≥ 1, T ) and a point t ∈ Zd, we build an
estimation ŝt[T, y] of st via observations (yτ), |τ − t| ≤ 4T , as follows:
(1) When T = 0, we merely set ŝt[0, y] = yt
(2) When T > 0, we set ŝt[T, y] = (φ̂t(∆)y)t, where φ̂t ∈ C2T (Z2) is an optimal
solution to the following optimization problem:

min
φ∈C2T (Zd)

{
|∆−t1

1 ...∆−td
d (1 − φ(∆))y|∗2T,∞︸ ︷︷ ︸
J(φ,yt

4T
)

: |φ|∗2T,1 ≤ 2d/2ρ2(2T + 1)−d/2
}
, (6)

where ytL = {yτ : |t− τ | ≤ L} .

Note that the objective in (6) is affected only by observations yt4T , so that our
algorithm recovers st via (8T + 1)d observations “around” the point t.

Theorem 4 Assume that the signal (sτ ) underlying observations (1) is T -
well-filtered, with parameters θ, ρ, L ≥ 3T : (sτ ) ∈ StL(θ, ρ, T ) with L ≥ 3T .
Then the mean square error of the estimate ŝt[T, ·] of st yielded by Algorithm
A with setup (ρ, T ) can be bounded from above as follows:

(
E
{
|ŝt[T, y] − st|2

})1/2 ≤ c(d)ρ3
θ + σρ

√
ln(2T + 1) + 1

(2T + 1)d/2
,

c(d) = 3(2d + 23d−1).

(7)

In particular, if (sτ ) is well-filtered, with the parameters θ, ρ, L, at a point t,
then for every integer T , 0 ≤ T ≤ ⌊L/3⌋, the accuracy of the estimate ŝt[T, y]
of st yielded by Algorithm A can be bounded by (7). Finally, in the case of
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deterministic (s), we have

|st − ŝt[T, y]| ≤ c(d)ρ3 [θ + σρΘt
T ] (2T + 1)−d/2,

Θt
T = σ−1 max

τ :|τ |≤2T
|∆τ1−t1

1 ...∆τd−td
d e|∗2T,∞.

(8)

Comments: note that Theorem 4 gives an affirmative answer to the question
(?). Indeed, let a signal (sτ ) admit, for some T , a filter-type estimate s̄τ =
(q∗(∆)y)τ with “window width” T (i.e., with q∗ ∈ CT (Zd)) and with the
mean square error which, in an O(T )-neighborhood of a point t, is of the

“parametric” order O
(
σ(2T + 1)−d/2

)
:

max
τ :|τ−t|≤3T

E
{
|sτ − s̄τ |2

}
≤ κ2 ≡ σ2µ2

(2T + 1)d/2
(9)

with some known µ ≥ 1. We do not know what is this estimate, although do
know that it exists (i.e., know the associated T, µ), and we want to recover
st from observations yt4T nearly as well as if we were using our hypothetic
estimate s̄t. Theorem 4 says that Algorithm A basically achieves this goal.
Indeed, from (3), (9) it follows that |q∗|2 ≤ µ

(2T+1)d/2 and (sτ ) ∈ St3T (σµ, µ, T ).

Applying Theorem 4 with ρ = µ, θ = σµ, L = 3T , we conclude that with the
estimate yielded by Algorithm A, the mean square error of recovering st does

not exceed O(1)µ3
[
1 +

√
ln(2T + 1)

]
κ. We see that as far as the dependence

on “observation time” T d is concerned, the estimate yielded by Algorithm A is
just by a logarithmic in T factor worse than the estimate s̄t we wish to mimic.
In the literature on nonparametric estimation the bounds as in Theorem 4 are
often referred to as oracle inequalities. Since the pioneering work [1] a number
of oracle inequalities have been established for a wide variety of estimation
problems (cf. the papers [19], [2], [3], [4], [9], [11], [5] among many others). In
that context one refer to the filter q, which certifies the niceness of the signal,
as the oracle, and the bound (7) describes the ability of a particular adaptive
method (Algorithm A above) to reproduce the oracle.

Note that the “upper bound” of Theorem 4 may be compared to the lower
bound of Theorem 2 of [17] for the 1-dimensional situation. The latter re-
sult states that one can exhibit a family of signals which 1) each member
of the family can be recovered with the rate O( σρ√

T
) using the corresponding

certifying filter; 2) the rate of estimation of signals from the family using the

observation (1) is at best O
(
σρ2

√
lnT
T

)
. In other words, it states that the factor

ρ
√

ln(2T + 1) is an unavoidable “price” for adaptation. When comparing the

result of Theorem 4 to that lower bound, we observe an extra factor ρ2 ≥ 1
in the corresponding upper bound (7). By now we do not know if this extra
factor can be completely eliminated. Nevertheless, in light of these results, we
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can claim that recovering of signals with certifying filter of large l2-norm is a
rather desperate task – the price for adaptation is then proportional to ρ≫ 1
in this case.

3.2 Adaptive prediction

We now turn to the problem of adaptive prediction. The predictor we intend
to use is as follows:
Algorithm B: Given a setup (ρ ≥ 1, κ, T ) and a point t ∈ Zd, we build a
prediction ŝt[κ, T, y] of st via observations (yτ ), κ ≤ tj − τj ≤ 4T , j = 1, ..., d,

as ŝt[κ, T, y] = (ψ̂t(∆)y)t, where ψ̂t ∈ P κ
2T (Z2) is an optimal solution to the

following optimization problem:

min
ψ∈Cκ

2T (Zd)

{
|∆−t1

1 ...∆−td
d (1 − ψ(∆))y|∗2T,∞︸ ︷︷ ︸
J(ψ,yt

κ,4T
)

: |ψ|∗2T,1 ≤
2d/2ρ2

(2T + 1)d/2

}
; (10)

where ytκ,L = {yτ : κ ≤ tj − τj ≤ L, j = 1, ..., d} .
Note that the objective in (10) is affected only by observations ytκ,4T , so that
our algorithm recovers st via (4T − κ + 1)d observations “around” the point
t.

Theorem 5 Assume that the signal (sτ ) underlying observations (1) is T -
well-predicted, with parameters θ, ρ, κ, L ≥ 3T : (sτ ) ∈ Qt

κ,L(θ, ρ, T ) with
L ≥ 3T . Then the mean square error of the estimate ŝt[κ, T, ·] of st, provided
by Algorithm B with setup (ρ, κ, T ), can be bounded from above as follows:

(
E
{
|ŝt[κ, T, y] − st|2

})1/2 ≤ c(d)ρ3
θ + σρ

√
ln(2T + 1) + 1

(2T + 1)d/2
,

c(d) = 3(2d + 23d−1).

(11)

In particular, if (sτ ) is well-predicted, with the parameters θ, ρ, κ, T0, L, at
a point t, then for every integer T , T0 ≤ T ≤ ⌊L/3⌋, the accuracy of the
estimate ŝt[κ, T, y] of st yielded by Algorithm B can be bounded by (11).
Finally, in the case of deterministic (s), we have

|st − ŝt[T, y]| ≤ c(d)ρ3 [θ + σρΘt
T ] (2T + 1)−d/2,

Θt
T = σ−1 max

τ :|τ |≤2T
|∆τ1−t1

1 ...∆τd−td
d e|∗2T,∞.

(12)

The proof of Theorem 5 is identical to that of Theorem 4.
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4 Families of nice signals

When applying Algorithms A, B and Theorems 4, 5, the crucial question is how
to recognize niceness. We are about to give a partial answer to this question.

4.1 Calculus of nice signals

Our current goal is to understand how wide are the families of nice signals, and
our plan is as follows: (a) we list a number of operations which preserve the
property in question, and (b) we present a list of examples of signals possess-
ing the property. Applying to “raw materials” from (b) operations from (a),
one can produce a wide variety of nice signals. Here is a sample of operations
preserving niceness of signals.

I. “Scale” of nice signals. We start with the following evident observation:
ρ′ ≥ ρ, θ′ ≥ θ, L′ ≤ L ⇒ Ft

L(θ, ρ) ⊂ Ft
L′(θ′, ρ′) and ρ′ ≥ ρ, θ′ ≥ θ, κ′ ≤ κ, T ′

0 ≥
T0, L

′ ≤ L⇒ Pt
κ,T0,L(θ, ρ) ⊂ Pt

κ′,T ′
0,L

′(θ′, ρ′).
II. Taking linear combinations. Our next observation is that a linear combi-
nation of “good” signals is again good, with properly updated parameters:

Proposition 6 (i) Let (sjτ ) ∈ Ft
L(θj , ρj), and let λj ∈ C be random variables

independent of (sj) and such that E{|λj|2} <∞, j = 1, ..., m. Then

(sτ ≡
m∑
j=1

λjs
j
τ ) ∈ Ft

L+(θ+, ρ+),

θ+ = (2m− 1)d/22m−1ρ1...ρm
m∑
j=1

θj [E{|λj |2}]1/2

ρj
,

ρ+ = (2m− 1)d/22mρ1...ρm, L
+ = ⌊L/2⌋.

(13)

In the case of m = 1, one can set ρ+ = ρ1, θ
+ = |λ1|θ1, L+ = L. The filters

certifying the well-filterability of (sτ ) can be chosen to be independent of the
coefficients λj.
(ii) Let (sjτ ) ∈ Pt

κj,T
j
0 ,L

(θj , ρj), j = 1, ..., m, and let λj ∈ C be random variable
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independent of (sj) and such that E{|λj|2} <∞, j = 1, ..., m. Then

(sτ ≡
m∑
j=1

λjs
j
τ ) ∈ Pt

κ+,L+(θ+, ρ+),

θ+ = (2m− 1)d/22m−1ρ1...ρm
m∑
j=1

θj [E{|λj |2}]1/2

ρj
,

ρ+ = (2m− 1)d/22mρ1...ρm, κ
+ = min

1≤j≤m
κj, T

+
0 = m max

1≤j≤m
T j0 ,

L+ = ⌊L/2⌋.

(14)

In the case of m = 1, one can set ρ+ = ρ1, θ
+ = |λ1|θ1, κ+ = κ, T+

0 = T0,
L+ = L. The filters certifying the well-predictability of (sτ ) can be chosen to
be independent of the coefficients λj.

III. Modulation and conjugation. Next we notice that the families of nice
signals are closed w.r.t. “modulation” and conjugation:

Proposition 7 (i) Let (sτ ) ∈ Ft
L(θ, ρ), and let ω ∈ Rd, φ ∈ R be determin-

istic. Then the signal (ŝτ = exp{i[ωT τ + φ]}sτ )τ∈Zd belongs to Ft
L(θ, ρ) along

with (sτ ), and the signal (s̄τ = sτ )τ (a is the complex conjugate of a ∈ C)
belongs to Ft

L(θ, ρ).
(ii) Let (sτ ) ∈ Pt

κ,T0,L
(θ, ρ), and let ω ∈ Rd, φ ∈ R be deterministic. Then

the signal (ŝτ = exp{i[ωT τ + φ]}sτ )τ∈Zd also belongs to Pt
κ,T0,L

(θ, ρ), and the
signal (s̄τ = sτ )τ belongs to Pt

κ,T0,L(θ, ρ).

IV. Lifting. We are about to show that a nice signal in a dimension d ≤ d+ can
be viewed as a nice signal, with properly updated parameters, in a dimension
d+ > d:

Proposition 8 (i) Let 1 ≤ d ≤ d+, and let (sτ )τ∈Zd be a signal which is well-
filtered, with parameters θ, ρ, L, at a point t ∈ Zd. Then the signal (s+

τ1,...,τd+
=

sτ1,...,τd) is well-filtered, with the parameters θ+ = (2L + 1)(d+−d)/2θ, ρ+ = ρ,
L+ = L at every point t+ ∈ Zd+ such that (t+1 , ..., t

+
d ) = t.

(ii) Let 1 ≤ d ≤ d+, and let (sτ )τ∈Zd be a signal which is well-predictable, with
parameters θ, ρ, κ, T0, L, at a point t ∈ Zd. Then the signal (s+

τ1,...,τd+
= sτ1,...,τd)

is well-predictable, with the parameters θ+ = (2L + 1)(d+−d)/2θ, ρ+ = (2κ +
1)(d+−d)/2ρ, κ+ = κ, T+

0 = T0, L
+ = L, at every point t+ ∈ Z

d+ such that
(t+1 , ..., t

+
d ) = t.

V. “Tensor product”. Let d = d′ + d′′ with positive integers d′, d′′, so that
Zd = Zd′ × Zd′′ . Given random fields (s′τ ′(ξ)) τ ′∈Zd′

ξ

, (s′′τ ′′(ξ)) τ ′′∈Zd′′

ξ

, we define

their tensor product as the field (sτ (ξ) = s′τ ′(ξ)s
′′
τ ′′(ξ)) τ=(τ ′,τ ′′)∈Zd

ξ

.

Proposition 9 (i) Let (s′τ ′(ξ)) τ ′∈Zd′

ξ

∈ Ft′

L(0, ρ′), (s′′τ ′′(ξ)) τ ′′∈Zd′′

ξ

∈ Ft′′

L (0, ρ′′).

12



Then (sτ ) ∈ F
(t′,t′′)
L (0, ρ′ρ′′).

(ii) Let (s′τ ′(ξ)) τ ′∈Zd′

ξ

∈ Pt′

κ,T0,L
(0, ρ′), (s′′τ ′′(ξ)) τ ′′∈Zd′′

ξ

∈ Pt′′

κ,T0,L
(0, ρ′′). Then

(sτ ) ∈ P
(t′,t′′)
κ,T0,L(0, ρ

′ρ′′).

4.2 Examples of nice signals

I. Exponential and algebraic polynomials. Let us define an exponential poly-
nomial (sτ ) on Zd as a finite sum of exponential monomials cτα exp{ωT τ} ≡
cτα1

1 ...ταd
d exp{ωT τ} with nonnegative multi-indices α and ω ∈ Cd:

sτ =
M∑

ℓ=1

cℓτ
α(ℓ) exp{ωT (ℓ)τ}, (15)

where ω(ℓ) and α(ℓ) are deterministic, and cℓ may be random. Given an ex-
ponential polynomial (sτ ) on Zd, we define its partial sizes Nj , j = 1, ..., d,
as follows: let mj be the maximum of the degrees αj(ℓ), ℓ = 1, ...,M , of the
variable τj in the monomials of the sum (15), and Mj be the number of dis-
tinct from each other complex numbers among the “partial frequencies” ωj(ℓ):
Mj = CardOj , Oj = {ωj(ℓ) : 1 ≤ ℓ ≤ M}. The j-th partial size Nj(s) of
exponential polynomial (15) is, by definition, the integer (mj + 1)Mj. For ex-
ample, with all frequencies equal to 0, an exponential polynomial becomes an
algebraic polynomial, and its j-th size is by 1 larger than the degree of the
polynomial w.r.t. j-th variable τj .

Proposition 10 Let (sτ ) be an exponential polynomial on Zd of partial sizes
N1, ..., Nd. Then for all t ∈ Zd one has

(sτ ) ∈ Ft
∞(0, ρd(N1, ..., Nd)), ρd(N1, ..., Nd) =

d∏

j=1

[(2Nj − 1)1/223Nj/2], (16)

and the filters q(T ) certifying this inclusion can be chosen to be dependent
solely on T and on the collection of d sets Oj = {ωj(ℓ) : 1 ≤ ℓ ≤ M} of
partial frequencies.

Remark 11 A major shortcoming of (16) is a dramatic growth of ρd(N,N, ..., N)
with N and d. In several important cases, better bounds for ρ can be found.
For example, an algebraic polynomial of degree m in every variable

pτ =
∑

α≥0,|α|≤m
cατ

α (17)
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belongs to Ft
∞(0, (16m)d) for every t, and the filters q(T ) certifying this inclu-

sion can be chosen to depend solely on T, d,m.

II. Solutions to homogeneous difference equations and harmonic functions.
Consider a difference operator D:

(Df)τ =
k∑

ℓ=1

wℓfτ−α(ℓ); (18)

here α(1), ..., α(k) ∈ Z
d and w1, ..., wk ∈ C. For a positive integer N and

t ∈ Zd, let

Bt
N = {τ ∈ Z

d | |τ − t| ≤ N}, Bt
N(D) = {τ ∈ Bt

N | τ + α(ℓ) ∈ Bt
N , ℓ = 1, ..., k},

Ht
N(D) = {(s) ∈ C(Zd) | sτ = (Ds)τ ∀τ ∈ Bt

N(D)}.

For example, with

(Df)τ =
1

2d

∑

i=1,...,d
ǫ=±1

fτ1,...,τi−1,τi+ǫ,τi+1,...,τd, (19)

the linear space Ht
N(D) is the space of fields which are “discrete harmonic” on

Bt
N , that is, sτ = 1

2d

∑
i=1,...,d

ǫ=±1

sτ1,...,τi−1,τi+ǫ,τi+1,...,τd for all τ with |τ − t| ≤ N − 1.

Let us call a difference operator D regular, if it possesses the following prop-
erties:
R.1 The vectors {α(ℓ)}1≤ℓ≤k span the entire Rd;
R.2 The coefficients wℓ = ρℓ exp{iφℓ} (ρℓ ≥ 0, φℓ ∈ R) are nonzero, and

(a)
k∑
ℓ=1

ρℓ ≤ 1; (b)
k∑
ℓ=1

ρℓα(ℓ) = 0. (20)

For example, the averaging operator (19) and its degrees are regular.
It turns out that the solutions of homogeneous difference equations with reg-
ular difference operators are well-filtered:

Proposition 12 Let D be a regular difference operator. Then there exists a
constant c = c(D) > 0 such that

∀N > 0 : Ht
N(D) ⊂ Ft

⌊cN⌋(0, c
−1). (21)

As a nontrivial application example for Proposition 12, consider the families
of random fields defined as follows. Let d ≤ 4, M be a positive integer, and R
be a positive real. Consider the family H+(M) of all deterministic continuous
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functions f on Rd which are harmonic in the interior of the box D0
2M = {x ∈

Rd : |xj | ≤ 2M, j ≤ d}:
(

d∑
j=1

∂2

∂x2
j

)
f(x) = 0, x ∈ intD0

2M . Now let H+(M,R)

be the family of random functions f such that all realizations of a function
belong to H+(M) and, besides this, E{‖f‖2

∞,2M} ≤ R2, where ‖f‖∞,2M is the
uniform norm on D0

2M . Restricting functions f from H+(M,R) on Z
d, we get

a family of random fields H(M,R) on Zd.

Proposition 13 Let d ≤ 4, M be a positive integer and R > 0 be a real. For
an appropriately chosen absolute constant c > 0, for all deterministic fields
(sτ ) ∈ H(M,R) one has

|t| ≤ cM,L ≤ cM ⇒ (sτ ) ∈ Ft
L(c−1R, c−1), (22)

and the filters q(T ) certifying the above inclusion can be chosen depending solely
on d, T .

4.3 Basic example of well-predicted signal: quasi-stable exponential polyno-
mial

Let us define a quasi-stable exponential polynomial (sτ ) on Zd as an exponen-
tial polynomial

sτ =
M∑

ℓ=1

cℓτ
α(ℓ) exp{ωT (ℓ)τ} (23)

where all partial frequencies ωj(ℓ) satisfy the restriction ℜ(ωj(ℓ)) ≤ 0. For
example, an algebraic polynomial (partial frequencies are zero) and a trigono-
metric polynomial (partial frequencies are imaginary) are quasi-stable.

Proposition 14 Let (sτ ) be a quasi-stable exponential polynomial on Zd of
partial sizes N1, ..., Nd. Then for every integer κ ≥ 0 and all t ∈ Zd one has

(sτ ) ∈ Pt
κ,T0,∞(0, ρκ,d(N1, ..., Nd)),

ρκ,d(N1, ..., Nd) =
d∏
j=1

[(2Nj − 1)1/22Nj (max[2, 2κ+ 1])Nj/2],

T0 = κ max
1≤j≤d

Nj

(24)

and the filters q(T ) certifying this inclusion can be chosen to be depending solely
on T, κ and on the collection of d sets Oj = {ωj(ℓ) : 1 ≤ ℓ ≤ M} of partial
frequencies.
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5 Appendix

5.1 Preliminaries

Norm relations. Let us list several evident relations between the introduced
semi-norms on C(Zd).
• [Parseval equality]:

(r, s)T ≡
∑

t:|t|≤T
rtst =

∑

µ∈Γd
T

(FT r)(µ)(FTs)(µ) ≡ 〈FT r, FT s〉T , (25)

where a is the complex conjugate of a ∈ C; in particular,

|r|T,2 = |r|∗T,2; (26)

A useful corollary of Parseval’s equality combined with the fact that |q|∗T,p =
|q̄|∗T,p is the relation

∣∣∣∣∣∣

∑

|t|≤T
atbt

∣∣∣∣∣∣
≤ |a|∗T,1|b|∗T,∞. (27)

• [Norms of convolutions of filters]

r, s ∈ C(Zd) ⇒ |r(z1, ..., zd)s(z1, , ..., zd)|p ≤ |r|1|s|p; (28)

• [Relations between | · | and | · |∗]: for p, q ∈ [1,∞] one has

|r|∗T,p ≤ (2T + 1)d[(1/p−1/2)++(1/2−1/q)+ ] |r|T,q, a+ = max[a, 0]; (29)

ord(r) + ord(s) ≤ T ⇒ |r(z1, ..., zd)s(z1, ..., zd)|∗T,p ≤ |r|1|s|∗T,p. (30)

Useful fact. In the sequel, we need the following simple and well-known fact:

Lemma 15 Let fj = ξj + iηj, 0 ≤ j < N , be a sequence of N standard Gaus-
sian complex-valued random variables, not necessarily independent of each
other. Then

[E{ max
0≤j<N

|fj|2}]1/2 ≤
√

2 lnN + 2;

P{ max
0≤j<N

|fj| > u+
√

2 lnN} ≤ exp{−u2/2} ∀u ≥ 0.
(31)
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Proof. We have

ψ(r) ≡ P{ max
0≤j<N

|fj| > r} ≤ min[1, N exp{−r2/2}] ⇒

P{ max
0≤j<N

|fj| > u+
√

2 lnN} ≤ N exp{−(u+
√

2 lnN)2/2} ≤ exp{−u2/2};

E{ max
0≤j<N

|fj |2} = −
∞∫

0
r2dψ(r) = 2

∞∫

0
rψ(r)dr ≤ 2

√
2 lnN∫

0
rdr

+2N
∞∫

√
2 lnN

r exp{−r2/2}dr = 2 lnN + 2. 2

5.2 Proof of Theorem 4

W.l.o.g., we may assume that t = 0. We denote by q∗ the filter associated with
(sτ ) via the description of the inclusion (sτ ) ∈ S0

3T (θ, ρ, T ). Let us set

|q∗|2 = ρ̂(2T + 1)−d/2; κ = θ(2T + 1)−d/2 [ρ̂ ≤ ρ] , (32)

so that

s̄ = q∗(∆)s⇒ max
τ :|τ |≤3T

E{|sτ − s̄τ |2} ≤ κ2. (33)

Finally, let

ΘT = max
τ :|τ |≤2T

|∆τ1
1 ...∆

τd
d e|∗2T,∞, (34)

and let φ̂ be the optimal solution, used in Algorithm A, of the optimization
problem (6).
10. We start with simple technical lemma:

Lemma 16 Let r(z1, ..., zd) = (q∗(z1, ..., zd))
2. Then r ∈ C2T (Zd) possesses

the following properties:

|r|2 ≤ |r|∗2T,1 ≤ 2d/2ρ̂2(2T + 1)−d/2; (35)

|r|1 ≤ ρ̂2; (36)
[
E{|(1 − r(∆))s|22T,2}

]1/2 ≤ κ(ρ̂+ 1)(4T + 1)d/2; (37)

|(1 − r(∆))y|∗2T,∞ ≤ |(1 − r(∆))s|2T,2 + (1 + ρ̂2)ΘT (38)

[
E
{(

|(1 − r(∆))y|∗2T,∞
)2
}]1/2

≤ σ(1 + ρ̂2)
√

4d ln(4T + 1) + 2

+κ(ρ̂+ 1)(4T + 1)d/2.
(39)
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(40)

Proof. (35): We have

|r|∗2T,1 =
∑

µ∈Γd
2T

|r(µ)|
(4T+1)d/2 =

∑

µ∈Γd
2T

|q∗(µ)|2
(4T+1)d/2 = (4T + 1)d/2

∑

µ∈Γd
2T

∣∣∣ q∗(µ)
(4T+1)d/2

∣∣∣
2

= (4T + 1)d/2(|q∗|∗2T,2)2 = (4T + 1)d/2|q∗|22T,2 ≤ 2d/2ρ̂2(2T + 1)−d/2.

Since |r|2 = |r|2T,2 = |r|∗2T,2 ≤ |r|∗2T,1, (35) follows.

(36): We clearly have |r|1 ≤ |q∗|21 ≤ ((2T + 1)d/2|q∗|2)2 = ρ̂2.
(37): Let h = (1− q∗(∆))s, so that by virtue of (sτ ) ∈ S0(θ, ρ, T ) and in view
of the origin of q∗ we have

max
τ :|τ |≤3T

E{|hτ |2} ≤ κ2. (41)

Setting g = (1 − r(∆))s, we have

gτ = ((1 + q∗(∆))(1 − q∗(∆))s)τ = ((1 + q∗(∆))h)τ = hτ + (q∗(∆)h)τ

⇒ |gτ | ≤ |hτ | + |q∗|2|∆−τ1
1 ...∆−τd

d h|T,2

⇒ (E{|gτ |2})1/2 ≤ (E{|hτ |2})1/2
+ |q∗|2

(
∑

τ ′:|τ ′−τ |≤T
E{|hτ−τ ′|2}

)1/2

;

applying (41) and taking into account that |q∗|2 = ρ̂(2T + 1)−d/2, we come to

max
τ :|τ |≤3T

E{|((1 − r(∆))s)τ |2} ≤ [κ(ρ̂+ 1)]2 , (42)

and (37) follows.
(38), (39): We have

|(1 − r(∆))y|∗2T,∞ ≤ |(1 − r(∆))s|∗2T,∞ + |(1 − r(∆))e|∗2T,∞
≤ |(1 − r(∆))s|∗2T,2 + |(1 − r(∆))e|∗2T,∞ = |(1 − r(∆))s|2T,2 + |(1 − r(∆))e|∗2T,∞
≤ |(1 − r(∆))s|2T,2 + |e|∗2T,∞ +

∑
τ :|τ |≤2T

|rτ ||∆τ1
1 ...∆

τd
d e|∗2T,∞

≤ |(1 − r(∆))s|2T,2 + (1 + |r|1) max
τ :|τ |≤2T

|∆τ1
1 ...∆

τd
d e|∗2T,∞.
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The resulting inequality combines with (36) to yield (38). Further, from the
resulting inequality and (37) it follows that

(
E
{(

|(1 − r(∆))y|∗2T,∞
)2
})1/2

≤ κ(ρ̂+ 1)(4T + 1)d/2 + (1 + |r|1)
(
E
{(

max
τ :|τ |≤2T

|∆τ1
1 ...∆

τd
d e|∗2T,∞

)2

︸ ︷︷ ︸
Θ2

T

})1/2

≤ κ(ρ̂+ 1)(4T + 1)d/2 + (1 + ρ̂2) (E{Θ2
T})

1/2

(we have used (36)). To derive (39) from the resulting inequality, it remains
to note that

(
E{Θ2

T}
)1/2 ≤ σ

√
4d ln(4T + 1) + 2. (43)

Indeed, the coordinates of the Fourier transform of ∆τ1
1 ...∆

τd
d e are, up to fac-

tor σ, standard complex-valued Gaussian random variables, so that σ−2Θ2
T is

the maximum of squared modulae of (4T + 1)2d of these variables; therefore
E{Θ2

T} ≤ σ2(4d ln(4T + 1) + 2) by Lemma 15. 2

20. We now study the properties of the solution φ̂ of problem (6).

Lemma 17 One has

|φ̂|2T,2 ≤ 2d/2ρ2(2T + 1)−d/2; (44)

|(1 − φ̂(∆))e|∗2T,∞ ≤ (1 + 2dρ2)ΘT ; (45)
[
E
{(

|(1 − φ̂(∆))e|∗2T,∞
)2
}]1/2

≤ σ(1 + 2dρ2)
√

4d ln(4T + 1) + 2; (46)

|(1 − φ̂(∆))s|∗2T,∞ ≤ |(1 − r(∆))s|2T,2 + 2(1 + 2dρ2)ΘT ; (47)
[
E
{(

|(1 − φ̂(∆))s|∗2T,∞
)2
}]1/2

≤ 2σ(1 + 2dρ2)
√

4d ln(4T + 1) + 2

+κ(ρ̂+ 1)(4T + 1)d/2.
(48)

Proof. (44): |φ̂|2T,2 = |φ̂|∗2T,2 ≤ |φ̂|∗2T,1 ≤ 2d/2ρ2(2T + 1)−d/2, (the concluding

inequality comes from the fact that φ̂ is feasible for (6)).
(45), (46): We have

|(1 − φ̂(∆))e|∗2T,∞ ≤ (1 + |φ̂|2T,1) max
τ :|τ |≤2T

|∆τ1
1 ...∆

τd
d e|∗2T,∞

≤
(
1 + (4T + 1)d/2|φ̂|2T,2

)
max

τ :|τ |≤2T
|∆τ1

1 ...∆
τd
d e|∗2T,∞

≤ (1 + 2dρ2) max
τ :|τ |≤2T

|∆τ1
1 ...∆

τd
d e|∗2T,∞
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(we have used (44)). The resulting inequality implies that

[
E
{(

|(1 − φ̂(∆))e|∗2T,∞
)2
}]1/2

≤ (1 + 2dρ2)

[
E

{
max

τ :|τ |≤2T

(
|∆τ1

1 ...∆
τd
d e|∗2T,∞

)2
}]1/2

≤ (1 + 2dρ2)σ
√

4d ln(4T + 1) + 2

(we have used (43)).
(48), (48): Note that the polynomial r defined in Lemma 16 is a feasible
solution of the optimization problem (6) by the first relation in (35), so that
the optimal value in the problem does not exceed J(r, y0

4T ). It follows that

(a) J(φ̂, y0
4T ) ≤ J(r, y0

4T )

⇒ (b) |(1 − φ̂(∆))y|∗2T,∞ ≤ |(1 − r(∆))y|∗2T,∞
⇒ (c) |(1 − φ̂(∆))s|∗2T,∞ ≤ |(1 − φ̂(∆))e|∗2T,∞ + |(1 − r(∆))y|∗2T,∞
⇒ (d)

[
E
{(

|(1 − φ̂(∆))s|∗2T,∞
)2
}]1/2

≤
[
E
{(

|(1 − φ̂(∆))e|∗2T,∞
)2
}]1/2

+
[
E
{(

|(1 − r(∆))y|∗2T,∞
)2
}]1/2

Relation (47) follows from (c) combined with (38) and (45) (recall that ρ̂ ≤ ρ).
Relation (48) follows from (d) combined with (46) and (39). 2

30. Our next step is to prove

Lemma 18 One has

∣∣∣
(
(1 − r(∆))(1 − φ̂(∆))s

)

0

∣∣∣ ≤ |((1 − r(∆))s)0|
+2d/2ρ2(2T + 1)−d/2 |(1 − r(∆))s|2T,2 ;

(49)

[
E
{∣∣∣
(
(1 − r(∆))(1 − φ̂(∆))s

)

0

∣∣∣
2
}]1/2

≤ κ(ρ̂+ 1)(2dρ2 + 1). (50)

Proof. We have

∣∣∣
(
(1 − r(∆))(1 − φ̂(∆))s

)

0

∣∣∣ ≤ |((1 − r(∆))s)0| +
∣∣∣
(
φ̂(∆)(1 − r(∆))s

)

0

∣∣∣

≤ |((1 − r(∆))s)0| + |φ̂|2T,2 |(1 − r(∆))s|2T,2
≤ |((1 − r(∆))s)0| + 2d/2ρ2(2T + 1)−d/2 |(1 − r(∆))s|2T,2 [see (44)]
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as required in (49). From the resulting inequality it follows that

[
E
{∣∣∣
(
(1 − r(∆))(1 − φ̂(∆))s

)

0

∣∣∣
2
}]1/2

≤
[
E
{
|((1 − r(∆))s)0|

2
}]1/2

+2d/2ρ2(2T + 1)−d/2
[
E
{
|(1 − r(∆))s|22T,2

}]1/2

≤ κ(ρ̂+ 1) + 2d/2ρ2(2T + 1)−d/2
[
E
{
|(1 − r(∆))s|22T,2

}]1/2
[see (42)]

≤ κ(ρ̂+ 1) + 2d/2ρ2(2T + 1)−d/2κ(ρ̂+ 1)(4T + 1)d/2 [see (37)]

and (50) follows. 2

40. Now we are able to complete the proof of Theorem 4. The error of the
estimate ŝ at the point t = 0 is

s0 − ŝ0 = s0 − (φ̂(∆)y)0 =
(
(1 − φ̂(∆))s

)

0
−
(
φ̂(∆)e

)

0
≡ ǫ

(1)
0 + ǫ

(2)
0 ,

ǫ(1)τ =
(
(1 − φ̂(∆))s

)

τ
, ǫ(2)τ =

(
φ̂(∆)e

)

τ
.

(51)

Setting fτ = e−τ , we have

|ǫ(2)0 | =

∣∣∣∣∣
∑

τ :|τ |≤2T
φ̂τe−τ

∣∣∣∣∣ ≤ |φ̂|∗2T,1|f |∗2T,∞ [see (27)]

≤ 2d/2ρ2(2T + 1)−d/2|f |∗2T,∞, [since φ̂ is feasible for (6)]

whence, by definition of ΘT ,

|ǫ(2)0 | ≤ 2d/2ρ2(2T + 1)−d/2ΘT . (52)

Applying (43), we derive from the latter inequality that

[
E
{
|ǫ(2)0 |2

}]1/2
≤ 2d/2σρ2(2T + 1)−d/2

√
2d ln(4T + 1) + 2. (53)

We further have

|ǫ(1)0 | =
∣∣∣
(
(1 − φ̂(∆))s

)

0

∣∣∣

≤
∣∣∣
(
r(∆)(1 − φ̂(∆))s

)

0

∣∣∣+
∣∣∣
(
(1 − r(∆))(1 − φ̂(∆))s

)

0

∣∣∣

≤︸︷︷︸
a

|r|∗2T,1|(1 − φ̂(∆))s|∗2T,∞ +
∣∣∣
(
(1 − r(∆))(1 − φ̂(∆))s

)

0

∣∣∣

≤︸︷︷︸
b

2d/2ρ2(2T + 1)−d/2|(1 − φ̂(∆))s|∗2T,∞

+
∣∣∣
(
(1 − r(∆))(1 − φ̂(∆))s

)

0

∣∣∣ (54)
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(the inequality a is given by (27), and b follows from the feasibility of φ̂ for
(6)), whence

[
E
{
|ǫ(1)0 |2

}]1/2 ≤ 2d/2ρ2(2T + 1)−d/2
[
E

{(∣∣∣(1 − φ̂(∆))s
∣∣∣
∗

2T,∞

)2
}]1/2

+
[
E
{∣∣∣
(
(1 − r(∆)(1 − φ̂(∆))s

)

0

∣∣∣
2
}]1/2

≤ 2d/2ρ2(2T + 1)−d/2
[
2dσ(1 + 2dρ2)

√
4d ln(4T + 1) + 2

+κ(ρ̂+ 1)(4T + 1)d/2
]

+ κ(ρ̂+ 1)(2dρ2 + 1)

(55)

(see (48), (50)). Combining (51), (53), (55), we finally get

[
E
{
|s0 − ŝ0|2

}]1/2 ≤ 2d/2σρ2(2T + 1)−d/2
√

2d ln(4T + 1) + 2

+2d/2ρ2(2T + 1)−d/2
[
2dσ(1 + 2dρ2)

√
4d ln(4T + 1) + 2

+κ(ρ̂+ 1)(4T + 1)d/2
]

+ κ(ρ̂+ 1)(2dρ2 + 1).

(56)

Recalling that ρ̂ ≤ ρ, κ = θ(2T + 1)−d/2 and that ρ ≥ 1, (7) follows.
Now assume that (s) is deterministic. In this case, from (54) combined with
(47) and (49) implies that

|ǫ(1)0 | ≤ 21+d/2ρ2(2T + 1)−d/2|(1 − r(∆))s|2T,2
+21+d/2ρ2(1 + 2dρ2)(2T + 1)−d/2ΘT + |((1 − r(∆))s)0| ,

(57)

while from (37), (42) it follows that

|(1 − r(∆))s|2T,2 ≤ κ(ρ̂+ 1)(4T + 1)d/2 ≤ 2d/2θ(1 + ρ),

|((1 − r(∆))s)0| ≤ κ(1 + ρ̂) ≤ θ(1 + ρ)(2T + 1)−d/2.
(58)

Therefore (57) implies that

|ǫ(1)0 | ≤ 33+dρ3 [θ + ρΘT ] (2T + 1)−d/2. (59)

Combining this relation with (52) and (51), we arrive at (8). 2
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5.2.1 Proof of Proposition 6

In the proofs to follow, we focus on the case of well-filtered signals; the rea-
soning in the case of well-predicted signals is completely similar.

The case of m = 1 is evident. Now let m ≥ 2, let T+ be an integer, 0 ≤ T+ ≤
L+, and let T = ⌊m−1T+⌋. Since sj ∈ Ft

L(θ, ρ) and clearly T ≤ L, there exist
filters qj such that

(a) : ord(qj) ≤ T ; (b) : |qj|2 ≤ ρj(2T + 1)−d/2;

(c) : |qj|1 = |qj|T,1 ≤ (2T + 1)d/2|qj|2 ≤ ρj ;

(d) : [E {|sjτ − (qj(∆)sj)τ |2}]1/2 ≤ θj(2T + 1)−d/2 ∀(τ : |τ − t| ≤ L).

(60)

Now let filter q be defined by

1 − q(z) =
m∏

j=1

(1 − qj(z)), z = (z1, ..., zd).

Observe that

ord(q) ≤ mT ≤ T+. (61)

Note that

|q|2 ≤ 2mρ1...ρm(2T + 1)−d/2 ≤ (2m− 1)d/22mρ1...ρm(2T+ + 1)−d/2. (62)

Indeed, we clearly have

|q(z)|2 =

∣∣∣∣∣
m∑
ℓ=1

(−1)ℓ+1 ∑
1≤j1<j2<...<jℓ≤m

qj1(z)qj2(z)...qjℓ(z)

∣∣∣∣∣
2

≤
m∑
ℓ=1

∑
1≤j1<j2<...<jℓ≤m

|qj1(z)qj2(z)...qjℓ(z)|2 ≤︸︷︷︸
a

m∑
ℓ=1

∑
1≤j1<j2<...<jℓ≤m

ρj1
ρj2

...ρjℓ

(2T+1)d/2

≤ [(1 + ρ1)...(1 + ρm) − 1](2T + 1)−d/2 ≤︸︷︷︸
b

2mρ1...ρm(2T + 1)−d/2

(a is by (60.b− c) since |u(z)v(z)|2 ≤ |u|1|v|2, |u(z)v(z)|1 ≤ |u|1|v|1], b is due
to ρj ≥ 1), as required in (62). Further, by (60.c), for the filters

Qj(z) =




j−1∏

ℓ=1

(1 − qℓ(z))








m∏

ℓ=j+1

(1 − qℓ(z))




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one has

|Qj |1 ≤ (1 + ρ1)...(1 + ρj−1)(1 + ρj+1)...(1 + ρm) ≤ 2m−1ρ1...ρm
ρj

. (63)

Now let τ ∈ Zd be such that |τ − t| ≤ L+. We have

[
E
{
|(1 − q(∆))s)τ |

2
}]1/2

=


E






∣∣∣∣∣∣

m∑

j=1

λj
(
1 − q(∆))sj

)

τ

∣∣∣∣∣∣

2








1/2

≤
m∑

j=1

[
E
{∣∣∣λj

(
1 − q(∆))sj

)

τ

∣∣∣
2
}]1/2

=︸︷︷︸
a

m∑

j=1

[E{|λj|2}]1/2
[
E
{∣∣∣
(
1 − q(∆))sj

)

τ

∣∣∣
2
}]1/2

≤
m∑

j=1

[E{|λj|2}]1/2
[
E
{∣∣∣
(
Qj(∆)(1 − qj(∆))sj

)

τ

∣∣∣
2
}]1/2

≤︸︷︷︸
b

m∑

j=1

[E{|λj|2}]1/2|Qj |1 max
τ ′:|τ ′−τ |≤(m−1)T

[
E
{∣∣∣
(
(1 − qj(∆))sj

)

τ ′

∣∣∣
2
}]1/2

≤ 2m−1ρ1...ρm(2T + 1)−d/2
m∑

j=1

θj [E{|λj|2}]1/2
ρj

≤


(2m− 1)d/22m−1ρ1...ρm
m∑

j=1

θj [E{|λj|2}]1/2
ρj



 (2T+ + 1)−d/2

where a is due to independence of λj and (sj) and b follows from (63), (60.d),
and since

|τ ′ − τ | ≤ (m− 1)T, |τ − t| ≤ L+ ⇒ |τ ′ − t| ≤ L+ + T+ ≤ L.

Combining the resulting inequality, (61), (62) and taking into account that
T+ ∈ {0, 1, ..., L+} is arbitrary, we conclude that s ∈ Ft

L+(θ+, ρ+). Note that
by construction, the filters certifying the latter inclusion are independent of
λj. 2

5.2.2 Proof of Proposition 7

(i): Let T ≤ L, and let q be such that

ord(q) ≤ T, |q|2 ≤ ρ
(2T+1)d/2 ,

max
τ :|τ−t|≤L

[
E
{
|((1 − q(∆))s)τ |

2
}]1/2 ≤ θ

(2T+1)d/2 .
(64)
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Let us set q̂τ = exp{iωT τ}qτ , τ ∈ Zd. Then ord(q̂) ≤ T , |q̂|2 = |q|2 and

((1 − q̂(∆))ŝ)τ = exp{i[ωT τ + φ]}sτ
−∑

τ ′
(exp{iωT τ ′}qτ ′)(exp{i[ωT (τ − τ ′) + φ]}sτ−τ ′)

= exp{i[ωT τ + φ]} ((1 − q(∆))s)τ ,

so that (64) remains valid when q, (s) are replaced with q̂, (ŝ). Thus, (ŝ) ∈
Ft
L(θ, ρ). (i) is proved; (ii) is evident. 2

5.2.3 Proof of Proposition 8

Let T ≤ L, and let q = (qτ )τ∈Zd be such that ord(q) ≤ T , |q|2 ≤ ρ(2T +1)−d/2,

[
E
{
|((1 − q(∆))s)τ |

2
}]1/2 ≤ θ(2T + 1)−d/2 ∀(τ ∈ Z

d : |τ − t| ≤ L).

Setting q+
τ1,...,τd+

= (2T+1)−(d+−d)qτ1,...,τd, we clearly have ord(q+) ≤ T , |q+|2 ≤
ρ(2T + 1)−d

+/2 and

[
E
{∣∣∣
(
(1 − q+(∆))s+

)

τ

∣∣∣
2
}]1/2

≤ θ(2T + 1)−d/2 ∀(τ ∈ Z
d+ : |τ − t+| ≤ L).

It remains to note that θ(2T + 1)−d/2 ≤ θ+(2T + 1)−d
+/2 for 0 ≤ T ≤ L. 2

5.2.4 Proof of Proposition 9

Let T ≤ L, and let q′ ∈ CT (Zd′), q′′ ∈ CT (Zd′′) be such that

(a) : |q′|2 ≤ ρ′(2T + 1)−d
′/2, |q′′|2 ≤ ρ′′(2T + 1)−d

′′/2,

s′τ ′(ξ) =
∑
ν′
s′τ ′−ν′q

′
ν′ , |τ ′ − t′| ≤ L,

s′′τ ′′(ξ) =
∑
ν′′
s′′τ ′′−ν′′q

′′
ν′′ , |τ ′′ − t′′| ≤ L

. (65)

Let q(z1, ..., zd) = q′(z1, ..., zd′)q
′′(zd′+1, ..., zd), so that

q ∈ CT (Zd), |q|2 = |q′|2|q′′|2 ≤ ρ′ρ′′(2T + 1)−d/2 (66)

(see (65.a)). Now let τ = (τ ′, τ ′′) be such that |τ − (t′, t′′)| ≤ L. We have

(q(∆)s(ξ))τ =
∑

(ν′,ν′′)∈Zd′×Zd′′
s′τ ′−ν′(ξ)s

′′
τ ′′−ν′′(ξ)q

′
ν′q

′′
ν′′ =

∑

ν′∈Zd′
s′τ ′−ν′q

′
ν′s

′′
τ ′′(ξ)

= s′τ ′(ξ)s
′′
τ ′′(ξ) = s(τ ′,τ ′′),
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which combines with (66) to yield that (sτ ) ∈ F
(t′,t′′)
L (0, ρ′ρ′′). 2

5.2.5 Proof of Proposition 10

We start with the following two evident facts:

Lemma 19 Let (sj) ∈ C(Zd) be deterministic fields belonging to Ft
L(θ, ρ),

j = 1, 2, ... such that sjτ → sτ , j → ∞, for every τ ∈ Zd. Then (s) ∈ Ft
L(θ, ρ).

Indeed, for every T , 0 ≤ T ≤ L, the filters qj,T ∈ CT (Zd) which certify the
inclusions (sj) ∈ Ft

L(θ, ρ) satisfy |qj,T |2 ≤ ρ(2T + 1)−d/2 and therefore have a
limiting point qT ∈ CT (Zd) with |qj|2 ≤ ρ(2T + 1)−d/2. The filters {qT}0≤T≤L
clearly certify the inclusion (s) ∈ Ft

L(θ, ρ). 2

Lemma 20 For every t ∈ Z, the univariate exponential field (sτ = exp{ωτ}),
ω ∈ C, belongs to Ft

∞(0,
√

2).

Indeed, assuming ℜ(ω) ≥ 0 and given T ≥ 0, let us set q(z) = 1
T+1

[1 +

exp{−ω}z−1 + exp{−2ω}z−2 + ... + exp{−Tω}z−T ]. Then q ∈ CT (Z), |q|2 =
(T+1)−1/2 ≤ 21/2(2T+1)−1/2, while clearly q(∆)s ≡ s. In the case of ℜ(ω) < 0,
the same reasoning holds true for q(z) = 1

T+1
[1+ exp{ω}z+exp{2ω}z2 + ...+

exp{Tω}zT ]. 2

To complete the proof, we need the following fact:

Lemma 21 Let (sτ ) be a “simple” exponential polynomial – a deterministic

exponential polynomial of the form (sτ ) =
M∑
ℓ=1

cℓ exp{ωT (ℓ)τ}. Then

∀t ∈ Z
d : (sτ ) ∈ Ft

∞(0, ρd(N1, ..., Nd)), (67)

where ρd(·, ..., ·) is given by (16) and N1, ..., Nd are the partial sizes of the
polynomial. Besides this, the filters q(T ) certifying the above inclusion can be
chosen to depend solely on T and on the collection of the d sets Oj = {ωj(ℓ) :
ℓ = 1, ...,M}.

Lemma 21 ⇒ Proposition 10: Assume first that the coefficients cℓ in (15) are
deterministic. Since every one of the univariate functions f(t) = tk, 0 ≤ k ≤ m,
is, uniformly on compact sets, the limit, as ǫ→ +0, of appropriate linear com-
binations of the m+ 1 exponents exp{−kǫ}, the exponential polynomial (15)
is the pointwise, on Zd, limit, as i → ∞, of simple exponential polynomi-
als (siτ ) with extended sets of “frequencies” {ωj(ℓ)}j,ℓ: in the approximating
polynomials, every one of these frequencies is replaced by (mj + 1) frequen-
cies ωj(ℓ) − kǫi, 0 ≤ k ≤ mj . Note that by the definition of partial sizes
of exponential polynomials, the approximating polynomials have exactly the
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same partial sizes as the original polynomial (sτ ). Combining Lemmas 21 and
(19), we immediately conclude that the exponential polynomial (15) belongs
to Ft

∞(0, ρd(N1, ..., Nd)). Since the filters q(T ),i certifying well-filterability of
the approximating polynomials (siτ ) can be chosen to depend solely on T
and the sets of partial frequencies of these approximating polynomials, from
the proof of Lemma 19 it follows that the filters q(T ) certifying the inclusion
(sτ ) ∈ Ft

∞(0, ρd(N1, ..., Nd)) can be chosen to depend solely on T and the sets
of partial frequencies of (sτ ), as required in Proposition 10. We have proved
Proposition 10 for the case of a deterministic exponential polynomial; since
the filters certifying well-filterability of such a polynomial are independent of
the coefficients cℓ, the result is valid for random polynomials as well. 2

Proof of Lemma 21. Proof is by induction in d.
Base d = 1 is readily given by Lemma 20 combined with Proposition 6.
Step 1 ≤ d⇒ d+ 1: Let sτ =

∑
ℓ
cℓ exp{ωT (ℓ)τ} be a simple exponential poly-

nomial on Zd+1 with partial sizes Nj and the sets of partial frequencies Oj ,
j = 1, ..., N . Let T ≥ 0, and let t ∈ Zd+1. By the inductive hypothesis, there
exist filters g(T ) ∈ CT (Zd), h(T ) ∈ CT (Z) (depending solely on T and on
O1,...,Od+1) such that

(a) : |g(T )|2 ≤ ρd(N1, ..., Nd)(2T + 1)−d/2,

(a′) : |h(T )|2 ≤ ρ1(Nd+1)(2T + 1)−1/2,

(b) : rτ =
∑

ν∈Zd

rτ−νg
(T )
ν ∀τ ∈ Zd ∀(rτ ) ∈ E(O1, ...,Od),

(b′) : pτ =
∑
ν∈Z

pτ−νh
(T )
ν ∀τ ∈ Z ∀(pτ ) ∈ E(Od+1),

(68)

where E(O1, ...,Om) is the space of all simple exponential polynomials on Z
m

with the sets of partial frequencies O1, ...,Om. Setting q(T )
τ = g(T )

τ1,...,τd
h(T )
τd+1

, τ ∈
Zd+1, we clearly have

q(T ) ∈ CT (Zd+1), |q(T )|2 = |g(T )|2|h(T )|2 ≤ ρd(N1, ..., Nd)ρ1(Nd+1)

= ρd+1(N1, ..., Nd+1)
(69)

(see (68.a, a′). Further, for every (sτ ) ∈ E(O1, ...,Od+1) we have, setting τ =
(τ ′, τ ′′) with τ ′ ∈ Zd, τ ′′ ∈ Z:

∑

ν∈Zd+1

q(T )
ν sτ−ν =

∑

ν′∈Zd

g
(T )
ν′

(
∑
ν′′∈Z

h
(T )
ν′′ sτ ′−ν′,τ ′′−ν′′

)
=︸︷︷︸
a

∑

ν′∈Zd

g
(T )
ν′ sτ ′−ν′,τ ′′

=︸︷︷︸
b

sτ ′,τ ′′
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(a is by (68.b′) since (sτ ′−ν′,µ)µ∈Z ∈ E(Od+1), b is by (68.b) since (sµ,τ ′′)µ∈Zd ∈
E(O1, ...,Od)), which combines with (69) to imply that

(sτ ) ∈ St∞(0, ρd+1(N1, ..., Nd+1), T ).

Thus, the filters q(T ) (which depend solely on T and O1,...,Od+1) certify the
inclusion (sτ ) ∈ Lt

∞(0, ρd+1(N1, ..., Nd+1). The inductive step is completed. 2

5.2.6 Proof of statement in Remark 11

It suffices to prove that for every nonnegative integer T and every m, d there
exists a filter q(T ), ord(q(T )) ≤ T , depending solely on T,m, d, such that

(a) q(T )(∆)p = p for every polynomial (17),

(b) |q(T )|2 ≤
(

16m√
2T+1

)d ≡ Θd.
(70)

This well-known fact can be proved by induction in d completely similar to
the one used to prove Lemma 21; the only difference is in the Base, which now
should be replaced with the following statement:

Lemma 22 Let p(τ) =
m∑
ℓ=0

pℓτ
ℓ be a deterministic univariate algebraic polyno-

mial of degree m. Then for every T ≥ 0 there exists a filter q ∈ CT (Z), depend-
ing solely on T,m, with |q|2 ≤ 16m(2T +1)−1/2 such that p(t) =

∑
ν
q(T )
ν p(t−ν)

for all t ∈ Z.

Proof. By evident reasons, it suffices to prove that for a given T ≥ 0 there
exists a collection of weights qt, −T ≤ t ≤ T , such that

T∑

t=−T
qt = 1,

T∑

t=−T
qtt

i = 0, i = 1, ..., m,
T∑

t=−T
q2
t ≤ Θ2 ≡ 256m2

2T + 1
.

By the standard separation arguments, this is the same as to prove that for
every real algebraic polynomial r(t) of degree ≤ m such that r(0) = 1 one

has
T∑

t=−T
r2(t) ≥ 2T+1

256m2 , or, which is the same, that for the real trigonometric

polynomial ρ(φ) = r(T sin(φ)) one has

T∑

t=−T
ρ2(φt) ≥

2T + 1

256m2
, φt = asin(t/T ). (71)
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Note that the degree of the trigonometric polynomial ρ(·) is ≤ m and that
ρ(0) = 1. Besides this, ρ(φ) = ρ(π − φ); due to the latter fact,

M ≡ max
φ

|ρ(φ)| = max
|φ|≤π

2

|ρ(φ)| ≥ |φ(0)| = 1.

By Bernstein’s Theorem on trigonometric polynomials, we have |ρ′(φ)| ≤ mM .
Now let φ∗ ∈ [−π/2, π/2] be a point such that |ρ(φ∗)| = M , let ∆̂ be the
segment of the length 1

m
centered at φ∗, and ∆ be the part of this segment

in [−π/2, π/2]. Note that the length of ∆ is at least 1
2m

and that for φ ∈ ∆
one has |ρ(φ)| ≥ |ρ(φ∗)| − 1

2m
(mM) ≥ M/2. Let n be the minimum number

of points φt belonging to a segment δ ⊂ [−π/2, π/2] of the length 1/(2m), the
minimum being taken over all positions of δ in [−π/2, π/2]. It is immediately
seen that n ≥ (1 − sin(π/2 − 1/(2m)))T − 2 ≥ T

16m2 − 2, whence

T∑

t=−T
ρ2(φt) ≥

∑

t:φt∈∆

ρ2(φt) ≥
M2

4
n ≥ M2

4

[
T

16m2
− 2

]
≥ 1

4

[
T

16m2
− 2

]
.

When T ≥ 64m2, the latter quantity is ≥ 2T+1
256m2 , and in any case

T∑
t=−T

ρ2(φt) ≥

ρ2(φ0) = 1. Thus, we always have
T∑

t=−T
ρ2(φt) ≥ 2T+1

256m2 , as required in (71). 2

5.2.7 Proof of Proposition 12

In the proof to follow, ci stand for positive constants depending solely on D.
10. We start with the following evident observation:

Lemma 23 There exists c1 such that for every polynomial p(t) of one variable
satisfying the relation p(1) = 1 one has

M ≤ c1N, deg(p) ≤ c1N,

(s) ∈ Ht
N(D) ⇒ sτ = (p(D)s)τ ∀(τ : |τ − t| ≤M).

(72)

20. Let us fix a positive integer N , and let

δ(ω) =
k∑
ℓ=1

wℓ exp{iωTα(ℓ)} : [−π, π]d → C,

Ωd
N =

{
ω ∈ Rd | ωj ∈

{
qπ

2N+1

}

|q|≤N
, j = 1, ..., d

}
,

(73)

and let ν be the normalized counting measure on Ωd
N : ν({ω}) = (2N+1)−d, ω ∈

Ωd
N . Observe that in view of R.2 the function δ(·) maps Ωd

N into the unit disk
D = {ζ ∈ C | |ζ | ≤ 1}. Let µ be the distribution of values of δ|Ωd

N
, so that µ is
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the measure supported by the finite set M = {ζ | ∃ω ∈ Ωd
N : ζ = δ(ω)}, and

µ({ζ}) =
∑

ω∈Ωd
N

:δ(ω)=ζ

ν({ω}). Let also F (α) = µ ({ζ | ℜ(ζ) ≥ 1 − α}) , α ≥ 0.

Lemma 24 There exists c2 ∈ (0, 1) such that

M ⊂ M̂ =
{
ζ | |ζ | ≤ 1, |ℑ(ζ)| ≤ c−1

2 (1 − ℜ(ζ))3/2
}
, (74)

F (α) ≤ c−1
2 [αd/2 +N−d], 0 ≤ α ≤ 2. (75)

Proof. (74), (75) are evident when
k∑
ℓ=1

ρℓ < 1, since then |δ(ω)| ≤ 1 − c2 for

properly chosen c2 and all ω. Thus, in the sequel we focus on the case of
k∑
ℓ=1

ρℓ = 1 (recall that
k∑
ℓ=1

ρℓ ≤ 1 by R.2).

20.1) Let K = {ω ∈ [−π, π]d : δ(ω) = 1}. Since ρℓ > 0,
∑
ℓ
ρℓ = 1 and

δ(ω) =
∑
ℓ
ρℓ exp{iφℓ + ωTα(ℓ)}, a point ω ∈ K must satisfy the equations

exp{i[φℓ + ωTα(ℓ)]} = 1 ∀(1 ≤ ℓ ≤ k), (76)

whence φℓ +ωTα(ℓ) ∈ 2πZ ∀(1 ≤ ℓ ≤ k). Since Rank{α(ℓ) : 1 ≤ ℓ ≤ k} = d,
the latter system of equations implies that K belongs to a set of the form
r + AZd with certain d × d nonsingular matrix A (depending solely on D).
The cardinality of the intersection of latter set with the cube [−π, π]d does
not exceed certain c3. Thus, CardK ≤ c3.
20.2) Let ω ∈ K, and let dω ∈ R

n be such that |dω| ≤ 1. Then

δ(ω + dω) =
k∑
ℓ=1

ρℓ exp{i[φℓ + ωTα(ℓ)]} exp{i(dω)Tα(ℓ)}

=︸︷︷︸
a

k∑
ℓ=1

ρℓ exp{i(dω)Tα(ℓ)}

⇒ |δ(ω + dω)| =

∣∣∣∣∣
k∑
ℓ=1

ρℓ exp{i(dω)Tα(ℓ)}
∣∣∣∣∣

≤︸︷︷︸
b

∣∣∣∣∣
k∑
ℓ=1

ρℓ

(
1 + i(dω)Tα(ℓ) − 1

2

(
(dω)Tα(ℓ)

)2
)∣∣∣∣∣+ c4|dω|3

=︸︷︷︸
b

∣∣∣∣∣
k∑
ℓ=1

ρℓ

(
1 − 1

2

(
(dω)Tα(ℓ)

)2
)∣∣∣∣∣+ c4|dω|3 ≤︸︷︷︸

c

1 − c5|dω|2 + c4|dω|3

(for a, see (76), b is by (20.b), c is due to Rank ({α(ℓ)}ℓ) = d). It follows that
with properly chosen c6 one has

∀(ω ∈ [−π, π]d, |δ(ω) − 1| ≤ α) ∃ω̄ ∈ K : |ω − ω̄| ≤ c−1
6

√
α. (77)
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Since Card (K) ≤ c3 by 20.1) and |δ(ω)| ≤ 1 for all ω, we conclude that

ν
(
{ω ∈ Ωd

N : |δ(ω) − 1| ≤ α}
)
≤ c7[α

d/2 +N−d] ∀α ≤ 2. (78)

20.3) Now we can complete the proof of (74), (75). Let ω̄ ∈ K, dω ∈ Rd,
|dω| ≤ 1. We have

δ(ω̄ + dω) =
k∑
ℓ=1

ρℓ exp{i[φℓ + ω̄Tα(ℓ)]} exp{i(dω)Tα(ℓ)}

=︸︷︷︸
a

k∑
ℓ=1

ρℓ exp{i(dω)Tα(ℓ)} =
k∑
ℓ=1

ρℓ

(
1 + i(dω)Tα(ℓ)

−1
2

(
(dω)Tα(ℓ)

)2 − i
6

(
(dω)Tα(ℓ)

)3
+ rℓ(ω, dω)

)
,

[|rℓ(ω, dω)| ≤ c10|dω|4]

=︸︷︷︸
b

k∑
ℓ=1

ρℓ

(
1 − 1

2

(
(dω)Tα(ℓ)

)2 − i
6

(
(dω)Tα(ℓ)

)3
+ rℓ(ω, dω)

)

(79)

(for a, see (76), for b, see (20)). Taking into account that
∑
ℓ
ρℓ = 1 and

c11|dω|2 ≤ ∑
ℓ
ρℓ
(
(dω)Tα(ℓ)

)2 ≤ c12|dω|2, we conclude from (77) combined

with (79) that for properly chosen c13 one has

ω ∈ [−π, π]d ⇒ |ℑ(δ(ω))| ≤ c13(1 −ℜ(δ(ω)))3/2,

and (74) follows. By (74) one has |1 − δ(ω)| ≤ c14(1 − ℜ(δ(ω))), so that (75)
follows from (78). 2

30. Let n be a positive integer, and let Tn(ζ) be the Tschebyshev polynomial
of degree n. Recall that this polynomial is defined as follows:

Tn(ζ) =
wn + w−n

2
, where w = ζ + i

√
1 − ζ2. (80)

In (80), the choice of the branch of
√· affects the value of w, but does not

affect the value of wn + w−n; since we intend to work with ζ from the unit
disk, so that ℜ(1−ζ2) > 0, in the calculations to follow we deal with the main
branch of

√· in the closed right half-plane. On the segment [−1, 1] of the real
axis one has Tn(ζ) = cos(n acos(ζ)), whence Tn(1) = 1, T ′

n(1) = n2. From

these relations it follows that the function Pn(ζ) = 1−Tn(ζ)
n2(1−ζ) is a polynomial of

degree n− 1, and Pn(1) = 1.
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Lemma 25 One has

pn(α) ≡ max
ζ

{|Pn(ζ)| : ζ ∈ M̂,ℜ(ζ) = 1 − α}

≤ qn(α) =

{
c15, 0 ≤ α ≤ 1

n2

c15(1+c15α)n

n2α
, 1

n2 ≤ α ≤ 2
.

(81)

Proof. Let ζ = 1 − α+ iβ ∈ M̂, so that

|β| ≤ c16α
3/2. (82)

We have

w ≡ ζ + i
√

1 − ζ2 = 1 − α + iβ + i
√

2α− α2 − 2i(1 − α)β + β2

= 1 − α + iβ + i
√

2α
√

1 − 0.5α+ [0.5β − i(1 − α)](β/α)

= 1 + i
√

2α+ r1(ζ), |r1(ζ)| ≤ c17α

(83)

(since |β/α| ≤ c16
√
α by (83)). Note that completely similar considerations

demonstrate that

w−1 = ζ − i
√

1 − ζ2 = 1 − i
√

2α + r2(ζ), |r2(ζ)| ≤ c17α. (84)

30.1) Assume, first, that 0 ≤ α ≤ 1
n2 . In this case from (83) it follows that

|1 − w| ≤
√

2n−1, whence, taking into account (83),

|wn − (1 + n(w − 1) + n(n−1)
2

(w − 1)2)| ≤ c17(n|w − 1|)3 ≤ c18n
3α3/2,

|w−n − (1 − n(w − 1) + n(n+1)
2

(w − 1)2)| ≤ c17(n|w − 1|)3 ≤ c18n
3α3/2

⇒
∣∣∣w

n+w−n

2
− 1

∣∣∣ ≤ n2

2
|w − 1|2 + c18n

3α3/2 ≤ c19(n
2α + n3α3/2) ≤ c20n

2α.

Thus, one has |Pn(ζ)| =

∣∣∣wn+w−n

2
−1

∣∣∣
n2|α−iβ| ≤ c15, as required in (81) for the case of

0 ≤ α ≤ 1
n2 .

30.2) Now consider the case of 1
n2 ≤ α ≤ 2. From (83), (84) it follows that

|w| ≤ 1 + c21α, |w−1| ≤ 1 + c21α, whence |Pn(ζ)| =

∣∣∣wn+w−n

2
−1

∣∣∣
n2|α−iβ| ≤ c22(1+c21α)n

n2α
,

as required in (81). 2

40. Let Q(ζ) = 1+ζ
2

. It is immediately seen that

ζ = 1 − α + iβ ∈ M̂ ⇒ |Q(ζ)| ≤ 1 − c23α [c23 <
1

2
]. (85)
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Now let c24 be a positive integer which is ≥ c15
c23

(see (81)). Consider the
polynomial Sn(ζ) = Pn(ζ)Q

c24n(ζ).

Lemma 26 For every positive integer n, the polynomial Sn(ζ) possesses the
following properties:

(a) : deg(Sn) ≤ c25n; (b) : Sn(1) = 1;

(c) : max
ζ

{|Sn(ζ)| : ζ ∈ M̂, ℜ(ζ) = 1 − α} ≤ c15 min
[

1
n2α

; 1
]
.

(86)

Proof. Relations (86.a− b) are evident (take into account that Pn(1) = 1 and
deg(Pn) ≤ n). To verify (86.c), note that if ζ = 1− α+ iβ ∈ M̂, then in view
of (81) one has

0 ≤ α ≤ 1
n2 ⇒ |Sn(ζ)| ≤ |Pn(ζ)||Q(ζ)|c24n ≤ |Pn(ζ)| ≤ c15;

1
n2 ≤ α ≤ 2 ⇒ |Sn(ζ)| ≤ |Pn(ζ)||Q(ζ)|c24n ≤︸︷︷︸

a

c15
(1+c15α)n

n2α
(1 − c23α)c24n

≤ c15
exp{c15nα}

n2α
exp{−c23c24nα} ≤︸︷︷︸

b

c15
n2α

(for a, see (85), b is due to c23c24 ≥ c15). 2

50. Now we are ready to complete the proof of Proposition 12. Given a positive
integer n, let us set Rn(ζ) = Sdn(ζ). In view of (86) one has

(a) : deg(Rn) ≤ c26n; (b) : Rn(1) = 1;

(c) : max
ζ

{|Rn(ζ)| : ζ ∈ M̂, ℜ(ζ) = 1 − α} ≤ rn(α)

≡ c26 min
[

1
n2dαd ; 1

]
.

(87)

Consider the filters q(n)(z) given by q(n)(∆) = Rn(D), n = 0, 1, ... By (87.b)
and Lemma 23 we have

T ≤ c27N

1 ≤ n(T ) ≡ ⌊c27T ⌋
(s) ∈ Ht

N(D)






⇒






ord(q(n(T ))) ≤ T,

sτ = (q(n(T ))(∆)s)τ ∀(τ : |τ − t| ≤ c27N).
(88)

By Parseval’s equality, we have also (in what follows, n = n(T ))

|q(n)|22 =
∫

Ωd
N

|Rn(δ(ω))|2ν(dω) =
∫

M

|Rn(ζ)|2µ(dζ) ≤︸︷︷︸
a

2∫

0

r2
n(α)
︸ ︷︷ ︸
ρn(α)

dF (α) (89)
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with a given by (87.c), (74) and the definition of F (·). Let γ be the measure
on [0, 2] defined by G(α) ≡ γ([0, α]) = c−1

2 (αd/2 +N−d), so that

F (α) ≤ G(α) ≡ γ([0, α]) ∀α ∈ [0, 2] (90)

(see (75)). We have

2∫

0

ρn(α)dF (α) = ρn(2) −
2∫

0

ρ′n(α)F (α)dα ≤︸︷︷︸
a

ρn(2)

−
2∫

0

ρ′n(α)G(α)dα = ρn(2) − ρn(2)G(2) +

2∫

0

ρn(α)γ(dα)

≤︸︷︷︸
b

2∫

0

ρn(α)γ(dα) =︸︷︷︸
c

c−1
2

[
c28

2∫

0

min2
[
n−2dα−d, 1

]
α

d
2
−1dα

+ρn(0)N−d
]
≤︸︷︷︸
d

c30
[
N−d + n−d

]
≤ c31(2T + 1)−d

(91)

(a holds since ρn(·) is nonincreasing, see (87.c), and by (90), b holds since c2 ∈
(0, 1), see Lemma 24, c is by (87.c) and (89), d is due to n = n(T ) = ⌊c27T ⌋).
Combining (89) and (91), we conclude that

|q(n(T ))|2 ≤ c32(2T + 1)−d/2. (92)

From (88) and (92) we conclude that if L = ⌊c33N⌋ and T ≤ L is such that
n(T ) ≡ ⌊c27T ⌋ ≥ 1, then

∃q(T ) ∈ CT (Zd) :






|q(T )|2 ≤ c32(2T + 1)−d/2,

sτ = (q(T )(∆)s)τ ∀(τ, |τ − t| ≤ L, (s) ∈ Ht
N(D))

(93)

(indeed, one can choose, as a required q(T ), the filter q(n(T ))). Setting q(T )(z) ≡
1 for T < 1

c27
, we enforce the validity of (93) for all T , 0 ≤ T ≤ L. Thus,

Ht
N(D) ⊂ Ft

⌊c29L⌋(0, c34). 2

5.2.8 Proof of Proposition 13

Lemma 27 Let f ∈ H+(M) be a deterministic function, let N ≤ M/2, and
let t ∈ Zd, |t| ≤ N . Consider the “discrete box” Bt

N = {τ ∈ Zd : |τ − t| ≤ N},
and let φ be a deterministic function on Bt

N which coincides with f on the
“discrete boundary” ∂Bt

N ≡ {τ ∈ Zd : |τ − t| = N} of Bt
N and is “discrete
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harmonic”: τ ∈ Zd, |τ − t| < N ⇒ φτ = 1
2d

∑
ǫ=(ǫ1,...,ǫd)

|ǫ1|=...=|ǫd|=1

φτ+ǫ. Then

τ ∈ Bt
N ⇒ |f(τ) − φτ | ≤ c1‖f‖∞,2MN

−2 (94)

(from now on, ci are positive absolute constants).

Proof. First, we should prove that the “discrete harmonic” function φ on
Bt
N which coincides with f on ∂Bt

N does exist. This fact is well known; we
present here its proof just for the sake of completeness. Let ψ be a function
on ∂Bt

N . Consider the following random walk on Bt
N : arriving for the first

time at a point τ from ∂Bt
N , we pay penalty ψ(τ) and terminate; from an

“interior point” τ ∈ intBt
N ≡ Bt

N\∂Bt
N we make a random step of length 1

along one of the coordinate axes, choosing every one of 2d possible steps with
probability 1/(2d). It is immediately seen that the expected penalty payed at
the termination, treated as a function of the initial state, is a discrete harmonic
function with the boundary values ψ.
Now, since |t| ≤ N and 2N ≤ M , the function f is harmonic in the “continuous
box” Dt

2N = {τ ∈ Rd : |τ−t| ≤ 2N}, and the uniform norm of f in this square
does not exceed ‖f‖∞,2M . From the standard results on harmonic functions it
follows that

∀(τ ∈ Dt
N) :

∣∣∣∣∣
∂κ

∂xκj
f(τ)

∣∣∣∣∣ ≤ c2‖f‖∞,2MN
−κ, κ = 1, 2, 3, 4, j = 1, ..., d. (95)

Consequently, for the basic orths ej , j = 1, ..., d we have

τ ∈ Dt
N , |s| ≤ 1 ⇒

∣∣∣∣∣f(τ + sej) −
3∑

κ=0

1

κ!

∂κ

∂xκj
f(τ)sκ

∣∣∣∣∣ ≤ c3|s|4‖f‖∞,2MN
−4.

Since f is harmonic, we conclude that

|(Df)τ | ≤ c4‖f‖∞,2MN
−4, τ ∈ Bt

N . (96)

Now let h = f |
Zd − φ ∈ C(Bt

N) and let h±τ = hτ ± 2c4‖f‖∞,2M

N4

d∑
j=1

(τj − tj)
2.

Taking into account (96) and the fact that φ is discrete harmonic, we have for
τ ∈ intBt

N :

(Dh+)τ = (Dh)τ +
2c4‖f‖∞,2M

N4
> 0, (Dh−)τ = (Dh)τ −

2c4‖f‖∞,2M

N4
< 0,

whence both the maximum of h+ and the minimum of h− over Bt
N are attained

at ∂Bt
N . Since at the discrete boundary of Bt

N we have f = φ and therefore
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h+ ≤ 4c4‖f‖∞,2MN
−2, we conclude that τ ∈ Bt

N ⇒ hτ ≤ h+
τ ≤ max

τ∈∂Bt
N

h+
τ ≤

2dc4‖f‖∞,2MN
−2. By similar reasons, τ ∈ Bt

N ⇒ hτ ≥ h−τ ≥ min
τ∈∂Bt

N

h−τ ≥

−2dc4‖f‖∞,2MN
−2. 2

Now let |t| ≤ M/8 and L ≤ M/8. Given T , 0 ≤ T ≤ L, and applying
Proposition 12, we can build filter q(T ) ∈ CT (Zd) such that

|q(T )|2 ≤ c5(2T + 1)−1, φτ =
∑

|ν|≤T
φτ−νq

(T )
ν ∀(τ : |τ − t| ≤ L) (97)

for every φ which is discrete harmonic in the discrete box Bt
2L. Now let

f ∈ H(M,R). Applying Lemma 27, we can find function φ which is dis-
crete harmonic in the box Bt

2L and such that |φτ − fτ |2 ≤ c26‖f‖2
∞,2ML

−4 for
τ ∈ Bt

2L. From (97) it now follows that

∀(τ : |τ − t| ≤ L) :

[
E

{
|fτ −

∑
|ν|≤T

fτ−νq
(T )
ν |2

}]1/2

≤ c6 [E{‖f‖2
∞,2M}]1/2

︸ ︷︷ ︸
≤R

L−2(1 + |q(T )|1) ≤ c6RL
−2(1 + |q(T )|2(2T + 1)d/2)

≤ c8RL
−2 ≤ c9R(2T + 1)−d/2

(recall that d ≤ 4). 2

The proof of Proposition 14 is completely similar to that of Proposition 10.
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