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ABSTRACT 
 

The high-order ambiguity function (HAF) was 
introduced for the estimation of polynomial-phase signals 
(PPS). Currently the HAF suffers from noise-masking 
effects and from the appearance of undesired cross terms 
in the presence of multi-components PPS. The multi-lag 
product HAF concept was then proposed as a way to 
improve the performances of the HAF. Nevertheless, 
performances of the new methods are affected by the error 
propagation. This effect is due to the technique used for 
polynomial order reduction, common for current 
approaches : signal multiplication with the complex 
exponentials formed with the estimated coefficients. 

In this paper, we introduce an alternative method to 
reduce the polynomial order, based on the successive 
unitary signal transformation, according to each 
polynomial order. We will prove that this method 
considerably reduces the effect of error propagation. 

 
1. INTRODUCTION 

 
It is well known that there is no transformation from 

the Cohen's class which can produce the complete 
concentration along the instantaneous  frequency law 
(IFL) when this one is a nonlinear function of time. 
Therefore, different high order distributions have been 
developed in order to better match the non-linear time-
frequency behavior of the analyzed signal [1], [2], [3], [4]. 
For example, the polynomial phase signal constitutes a 
good model in a variety of applications (e.g. Radar, 
Communication, etc ) [1].  

One of the first approaches to estimate the parameters 
of the PPSs [2] provides good results for high signal-to-
noise ratio (SNR). Nevertheless, since the HAF is a non-
linear method, it suffers from three basic problems : 1)  
noise-masking effects for low SNR, 2) cross terms in the 
presence of multi-component PPSs (mc-PPSs) and 3) the 
propagation of the approximation error from an order to 
other.  

Recently, different methods have been proposed in 
order to eliminate the first two limitations. The key point 
is to use the multi-lag concept in the HAF computing 
procedure [1]. Moreover, multiplying the HAFs obtained 
for some lag sets (product HAF - PHAF), the 

performances related to 1) and 2) are considerably 
improved with respect to multi-lags HAF [1].  
 Nevertheless, the effect of propagation error remains a 
serious limitation when we try to estimate a deeply non-
linear IFL (underwater transitory signals, digital 
modulation, etc). Therefore, we propose a new procedure 
for polynomial order compensation, based on the 
recursive signal warping. In fact, using the order reduction 
property of the warping technique, the idea is to iteratively 
apply this method to reduce the phase orders. 
 This paper is organized as follows. In section 2, we 
present the Product HAF method. The major limitation of 
the PHAF, related to the error propagation effect, is 
described in section 3. Afterwards, using the warping 
technique [5], a new method for order compensation is 
proposed in section 4. Some examples will be presented in 
section 5.  We will finally present some remarks in 
"Conclusion and Perspective" (section 6). 
 

2. PRODUCT HIGH-ORDER AMBIGUITY 
FUNCTION 

 
As it was illustrated in [1], [2], the classical HAF 

algorithm presents some limitations, related to the noise 
robustness and the cross-terms presence. In order to solve 
these aspects, the multi-lag HAF (mlHAF) concept has 
been initially proposed in [1]. In fact, the mlHAF is based 
on the generalization of the high order instantaneous 
moment HIM [2] : 
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where ( )iτττ ,...,, 21=iτ  is the lag set. Applying the 
Fourier transform to (1), we obtain the ml-HAF of the 
signal s(t) : 
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 The main property of HIM is that, assuming a PPS 
model for the analyzed signal, i.e. 
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the Kth order HIM is reduced to a harmonic  with 
amplitude 

22 −k

A , frequency ω~  and phase φ~ : 
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K

k ak 1!~ −= τω  (5). 
 

 Based on these results, Porat [2] has proposed an 
algorithm which estimates sequentially the coefficients 
{ak}. At each step, using a spectral analysis method, we 
estimate the spectral peak and, using the HAF, we 
compute an estimation value ( kâ ) of ak. Using this value, 
the effect of the phase term of the higher order is 
removed: 
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Using the ml-HIM concept (relation (1)), Barbarossa 
and al [1] introduced the Product HAF: the mlHAFs 
computed, via relation (2), for different lag sets  
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are multiplied, obtaining also a more robust method and a 
cross-term free representation :  
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The simulation results given in [1] proved that the 
PHAF solves both noise robustness and ambiguity 
problems, providing also a correct IFL estimation. 
Nevertheless, the analyzed signals were characterized by 
smooth time-frequency behavior (usually, 3th order PPs). 
If this condition is not verified, one of the major limitation 
of the PHAF based approaches, related to the error 
propagation phenomenon, acts. This phenomenon is 
studied in the next section. 

 
3. ERROR PROPAGATION IN POLYNOMIAL 

PHASE MODELING 
 

Let consider the signal given in (3) and we denote with 
Kâ  the estimation of the kth order polynomial coefficient. 

In real applications [2], since a spectral estimation of a 
discrete sequence is involved, this value differs from the 
theoretic one by KKK aa ˆ−=ε - the approximation error. 
This error is directly related to the number of points in 
Fourier transform and to the SNR ([1]). Using this 
estimate, we remove, via (6), the k order phase component   
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 The (k-1)th order HIM of s(k)(t) is expressed as  
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 This expression is a consequence of the main HAF 
property previously presented : the (k-1)th  order HIM of a 
PPS is a sinusoid with an angular frequency related, via 
(5), to the (k-1)th  order polynomial coefficient. 
Nevertheless, due to the measurement error existing for 
the kth order, 1ˆKa −  is not the correct value of the (k-1)th 
order polynomial coefficient of signal s(k-1). In order to 
find the relation between the errors at order k and (k-1), 
we can  evaluate ( )1

1 ;τ−
−
 
 

K
KHIM s  using the recurrent 

definition given in (1) and the relation (4) and (5). We 
obtain the following expression :  
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where R is a residual term which does not depend on t. 
Since the mlHAF evaluation supposes the computation of 
Fourier transform of HIM, we focus only on the 
coefficient of t. Therefore, if we compare the 
corresponding terms which appear in (10) and (11) we 
obtain the following relation between the errors for two 
consecutive orders :     
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and, with the notation 1 1 1ˆε − − −= −K K Ka a , we obtain : 
 

 1 KK Kε ε τ− =    (13) 
 

 Furthermore, using the optimal value of the lag 
proposed in [2]  i.e. KN /=τ  (N-sample number), we get: 
 

1 KK Nε ε− =                                     (14)
 

This relation shows that the error existing at a given 
order is transmitted at the inferior order by multiplication 
of N. The next figure illustrates this dependence for N=10. 

  
 
 
 

 
 
 
 
 

 
Figure 1. Error propagation effect. 

 

From this figure, it can be observed that even if the 
measurement error for the highest order is insignificant, 
its effect through the lower orders becomes deeply 
disturbing. It explains why the error propagation effect 
does not affect the polynomial estimation when a small 
approximation order is required (3 or 4). Nevertheless, 
there are many situations which impose a high 
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approximation order : digital modulations, transitory 
signals, etc. One example is given in figure 2 where we 
process, via PHAF-based phase modeling method, a 
frequency shift keying (FSK) modulation. 

 
Figure 2. PHAF-based phase modeling of a FSK signal 

 
 The theoretical IFL is plotted in figure 2.b. Note that 
the SNR is about 30 dB. The PHAF-based estimation 
procedure is applied, starting with the order 9. At the 
superior orders (9, 8, 7) PHAF performs quite well : the 
propagation error is insignificant, but its effect is 
accumulated and it becomes disturbing for inferior orders 
(down to 6). This can be observed in the figure 2.a. , 
where the peak locations give information about the 
estimation quality. Consequently, the estimation of the 
polynomial coefficients is not correct (figure 2.b); the 
evaluated IFL does not match the correct time-frequency 
behavior of the FSK modulation. 
 A potential solution to reduce the error propagation is 
proposed in next section. 
 
4. WARPING-BASED PHASE ORDER REDUCTION 
 

In time-frequency analysis, the warping operator 
principle has recently become a very useful concept for 
generation of non-linear time-frequency representation 
(TFR) [5]. Mathematically, a warping operator is defined 
as a unitary transform U on l2(ℜ), whose effect is x-axis 
deforming :     
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where w is a smooth, one-to-one function, comprising a 
large subclass of unitary transformations ([5]). Generally, 

these functions, called warping functions, are chosen to 
ensure the “linearization” of signal time-frequency 
behavior. The design of a warping function associated to a 
signal is possible if the signal modulation nature is 
known.[5]. This is not always possible, especially in the 
case of passive systems. For this case, the polynomial 
phase modeling seems to be a potential solution for signal 
IFL describing.  
 To reduce the error propagation effect, we propose the 
replacement of this technique with a warping-based 
method. More precisely, we define a particular warping 
operator as : 
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where ˆ
ka  is the kth order estimated polynomial coefficient. 

The following example illustrates the effect of this 
warping operator for a 3th order PPS given by : 
 

( ) 4 2 6 32 (0.25 4.610 310 )j t t ts t e π − −− ⋅ ⋅ + ⋅ ⋅=      (17) 
 

 The Wigner-Ville Distribution (WVD) of this signal is 
depicted in figure 3. Using the warping operator obtained 
by the particularization of the relation (16) (for k=3 and 

6

3
ˆ 2.8 10a −= ⋅ ) we obtain a linear time-frequency structure 
(i.e. a 2th order PPS) as illustrated in figure 3. 
 

 
Figure 3. Order reduction using the warping operator (16) 

  
 Therefore, in order to reduce the polynomial order we 
apply, in an iterative manner, a warping operator designed 
as shown in (16).  The effect of this operator on the PPS 
defined in (3) is depicted by : 
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 Therefore, the result of the warping transform of a Kth 
order PPS consist in a (K-1)th order PPS for new temporal 
variable ( )tw

K . The (K-1)th order PHAF of this signal, with 
respect to variable ( )tw

K , peaks to a frequency location 
related, via relation (5), to the aK-1 coefficient. Once aK-1 
estimated, we construct the (K-1)th order unitary operator 
UK-1 as indicated in (16). The process is iterated until all 
polynomial coefficients are estimated. 



As the relation (18) shows, the (K-1)th coefficient of 
the signal (UKy) depends only on the aK-1 coefficient, 
avoiding also the process of error propagation to the lower 
orders. This will be practically proved in the next section.  

 
5. SIMULATION RESULTS 

 
In this section, we firstly give the performances in 

terms of estimated variances as a function of the SNR. We 
assumed a 3th order PPS embedded in white gaussian 
noise. Two methods were compared – classical PHAF 
estimation method and PHAF-based estimation method 
with warping-based phase compensation (denoted 
“WarpComp” method). Each variance was computed for 
500 trials and, for each order, it was compared with the 
Cramer-Rao bound (CRB), theoretically evaluated in [2]. 

 

 
Figure 4. The estimated variances versus SNR 

 

 The first plot proves that, for the highest order, the 
performances of both methods are similar : the estimation 
of the highest order coefficient depends on the noise only. 
The next two pictures show that, using the warping-based 
phase compensation, the estimation performances remains 
close to the CRB as in the case of the highest-order 
coefficient. Consequently, the performances of this 
method depend only on the noise, whereas in the PHAF 
case they are affected also by the error propagation 
phenomenon.  
 The error propagation effect reduction is also 
illustrated in the next figure, using the signal presented in 
the figure 2. This figure shows, the proposed method 
provides a much more accurate estimation of the IFL of a 
FSK signal. It is illustrated by an existence of a single 
peak at each polynomial order. Consequently, the 
polynomial order reduction through the procedure based 
on the warping operators (section 4) considerably 
improves the performances of the PHAF-based estimation 
procedure.  
 The statistical analysis and the result for a FSK signal 
prove that this method can successfully be used to 
estimate the polynomial model of a general class of 
signals. 
 
 
 

 
Figure 5. PHAF estimation using warping phase reducing  

   
  6. CONCLUSION AND PERSPECTIVES 

 
In this paper we have proposed a method, for 

polynomial order reduction, based on the warping 
principle, applied to each polynomial order. This method 
constitutes an attractive way to attenuate the effect of 
error propagation which inherently appears in any 
estimation algorithm of the PPSs. As shown by the results, 
this method, associated with a modern procedure for 
polynomial phase modeling, provides accurate time-
frequency information about the analyzed signal. 

In further works, we intend to apply this procedure in 
real contexts, such underwater signal processing or digital 
modulation recognition.  
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