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Abstract. During boreal winter months, mean longitude-
dependent ozone changes in the upper troposphere and lower
stratosphere are mainly caused by different ozone transport
by planetary waves. The response to radiative perturbation
induced by these ozone changes near the tropopause on the
circulation is unclear. This response is investigated with the
ECHAM4 general circulation model in a sensitivity study.

In the simulation two different mean January realizations
of the ozone field are implemented in ECHAM4. Both ozone
fields are estimated on the basis of the observed mean Jan-
uary planetary wave structure of the 1980s. The first field
represents a 14-year average (reference, 1979–1992) and the
second one represents the mean ozone field change (anomaly,
1988–92) in boreal extra-tropics during the end of the 1980s.
The model runs were carried out pairwise, with identical ini-
tial conditions for both ozone fields. Five statistically in-
dependent experiments were performed, forced with the ob-
served sea surface temperatures for the period 1988 to 1992.

The results support the hypothesis that the zonally asym-
metric ozone changes of the 80s triggered a systematic alter-
ation of the circulation over the North Atlantic – European
region. It is suggested that this feedback process is impor-
tant for the understanding of the decadal coupling between
troposphere and stratosphere, as well as between subtropics
and extra-tropics in winter.

Key words. Meteorology and atmospheric dynamics (gen-
eral circulation; radiative processes; synoptic-scale meteo-
rology)

1 Introduction

The atmosphere is a complex system with interacting pro-
cesses of dynamics, radiation and chemistry. For instance,
ozone depletion will change the radiative forcing, and there-
fore, the whole behaviour of the atmosphere (e.g. Ra-
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maswamy et al., 2001). While the dominant ozone depletion
in higher latitudes and higher altitudes seems to be caused
by changed ozone chemistry (WMO, 1999), a large frac-
tion of the inter-decadal changes of zonal mean ozone in the
tropopause region of the extra-tropics is dynamically caused.

The longitudinal dependence of the decadal ozone change
is mainly caused by the change in the planetary waves, as
was shown by Hood and Zaff (1995) and Peters et al. (1996)
for January during the 1980s. The decadal change in the zon-
ally asymmetric fields of the atmospheric flow shows a high
anti-correlation between total ozone and tropopause height
for January means (e.g. Schmitz et al., 2000; Steinbrecht
et al., 1998). Over Europe a large area of ozone depletion
was observed in January during the 1980s, the magnitude
was twice as large in its centre as the trend of the zonal mean
ozone changes (e.g. McPeters et al., 1996; Bojkov and Fio-
letov, 1995). By using a linear transport model, Peters and
Entzian (1998) calculated the 3-dimensional ozone changes
of the 80s for all winter months, and found they were related
to the changes in the ultra-long waves. The changes were
strongest below the ozone layer maximum (near 70 hPa in
mid-latitudes).

Quasi-stationary zonally asymmetric ozone changes may
be affected by transport and through photochemical reac-
tions. Both processes operate on different time scales in the
tropopause region of the extra-tropics. The transport due to
planetary waves dominates the horizontal ozone distribution
on the time scale of a few days to a month, while the chem-
ical reaction time is much longer. Therefore, changes in the
ultra-long waves presumably controlled the large-scale ozone
changes (Kurzeja, 1984).

Note, for synoptic waves, Dobson et al. (1929) already
knew the connection between anti-cyclonic (cyclonic) flow
and low (high) total ozone caused by convergence (diver-
gence) of ozone poor (rich) air in the upper troposphere and
lower stratosphere.

Near the tropopause region, even small radiative heat-
ing (cooling) rates are able to change the radiation bal-
ance very efficiently, as shown by many model studies us-
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ing radiative-convective models (e.g. Ramanathan and Dick-
inson, 1979; Forster, P. M. de F. and Shine, 1997). For in-
stance, Forster, P. M. de F. and Shine (1997) showed, us-
ing the fixed dynamical heating approximation to adjust the
stratospheric temperatures, that the temperature change de-
pends significantly on the vertical distribution of the ozone
change. Further, the authors concluded that the ozone near
the tropopause has the greatest influence on the surface tem-
perature. Including the large-scale circulation longitude-
dependent ozone, changes near the tropopause have the po-
tential of coupling the tropospheric and stratospheric circu-
lation, and subtropics and extra-tropics during winter, be-
cause longitude dependent ozone changes are in the same
order as the zonal mean ozone change. The influence of
this radiative forcing over many days or several weeks on the
large-scale circulation is not known. Therefore, we examine
the influence of longitude-dependent ozone changes on the
large-scale dynamics, especially over the North Atlantic –
European region during January, where these decadal ozone
changes were extreme in the 1980s.

A state-of-the-art general circulation model (GCM) like
ECHAM4-CHEM, used for time-slice experiments (e.g. Steil
et al., 1998) with the full coupling of dynamics, radiation and
chemistry, involves a high order of complexity. The appear-
ance of many interacting processes makes it hard to verify
feedback processes in the GCM. Further, the full coupling of
photochemistry and dynamics needs much more computer
resources. In addition, the models have to be run for a long
time (many years) in order to obtain a more realistic and sta-
ble climate state.

However, the reduction of the complexity from fully cou-
pled models to weakly coupled or un-coupled models (e.g.
Austin and Butchart, 1992; Rasch et al., 1995; Stevenson
et al., 2000) or the use of models with parameterised chem-
istry (e.g. Cariolle and D́eqúe, 1986; Roelofs et al., 1999) are
efficient ways to study the link between ozone and circula-
tion. In sensitivity experiments with ozone photochemistry
Austin and Butchart (1992) found that the planetary wave
activity in mid-latitudes at about 300 hPa strongly modu-
lates the ozone hole variability. Nevertheless, to examine the
feedback mechanisms of longitude-dependent ozone changes
on the circulation, carefully designed sensitivity experiments
with a GCM seem to be appropriate. Note, many authors
(e.g. Ramaswamy et al., 1996; Hansen et al., 1997; Graf
et al., 1998; Langematz, 2000) focused mainly on the climate
response of zonally averaged ozone changes, which will be
explicitly excluded in this study.

As a first step, we used the ECHAM4 GCM, including the
ozone radiative effects due to the modified ozone distribution
but without chemistry. The decadal changes of zonally asym-
metric ozone in January during the 80s were implemented di-
rectly into the radiation code, resulting in a model with con-
sistent change in the radiative flux. With the known and fixed
change in the longitude-dependent ozone profiles, following
the calculations of Peters et al. (1996) (see Appendix A),
we performed a series of sensitivity experiments. The ozone
field implementation and the radiation effects are described

in Sect. 2. The experiment design is given in Sect. 3. The
results presented in Sect. 4 are focused on the circulation re-
sponse over the North Atlantic – European region. The re-
sults support the hypothesis that the longitudinal asymmetry
of ozone changes induces a systematic modification of the
circulation over the North Atlantic – European region.

2 Ozone field implementation and the direct radiation
effects

Because no ozone analysis data sets were available the 3-
dimensional dependence of the January “reference”, ozone
distribution used in the sensitivity experiments was calcu-
lated on the basis of a simplified continuity equation, as
described in detail in the Appendix A. From the known
mean January fields of geopotential and temperature, as
well as zonal mean zonal velocity and ozone, the longitude-
dependent ozone field was constructed. The ozone dis-
tribution of January 1979 based on satellite measurements
(McPeters et al., 1984) was used as a zonal mean ozone
distribution of the period 1979–1992. This field includes,
to some extent, the ozone decrease of the years before the
1980s, as known from ground-based and satellite measure-
ments (e.g. WMO, 1999). But no inter-decadal and decadal
changes in the zonal mean ozone field of the 80s were in-
cluded, as mentioned in the Introduction. Furthermore, no
longitudinal variability was introduced below 500 hPa, or
above 70 hPa, or in the tropics. The ozone content, which
is not taken into account by the model below 500 hPa and
above 70 hPa, is constructed by adding 45 DU (Dobson Unit)
to the “reference” ozone, 15 DU for the lower troposphere
and 30 DU for the upper stratosphere, as known from the
estimation of mean ozone profiles. This addition is based on
the mean vertical ozone distribution at the station Lindenberg
(Feister et al., 1987). The “reference” January ozone field
has a more realistic geographical distribution in the extra-
tropics between 500 and 70 hPa, in comparison to the stan-
dard ECHAM4 ozone field. The “anomaly” ozone field is the
superposition of the “reference” ozone field, and the extra-
tropical longitude-dependent ozone change only in latitudes
north of 30◦ N, and for the end of the 1980s. For the up-
permost three layers and for some of the lowest layers, no
change was done explicitly, so that the anomaly was concen-
trated between the ozone layer maximum and the 500 hPa
layer.

The total ozone anomaly as used in the sensitivity experi-
ments is shown in Fig. 1a. This anomaly represents the dif-
ference between the ozone field at the end of the 1980s and
the “reference” field. The total ozone anomaly shows a wave-
like pattern. The highest positive anomaly is found over the
North Atlantic, with values up to 10 DU, and over Central
Europe the value goes down to−10 DU. Secondary ozone
maxima exist over North America and around the Caspian
Sea, and secondary minima are placed over East Siberia,
the Pacific and the western North Atlantic. The height-
longitude cross section (not shown) at 50◦ N indicates that



I. Kirchner and D. Peters: Modelling the wintertime response 2109

Figure 1 a

(a)

Figure 1 b

(b)

Figure 1 c

(c)

Fig. 1. Ozone anomaly and direct radiation forcing at 70 hPa Ozone anomaly and direct radiation forcing estimated under January conditions
averaged over 10 days:(a) Vertically integrated ozone difference,(b) Solar radiation forcing due to the ozone difference at 150 hPa (model
level 6),(c) Same as (b) but for the thermal radiation at 70 hPa (model level 4).

the ozone change in the 1980s is concentrated between the
tropopause and the ozone layer maximum at about 70 hPa in
mid-latitudes.

Note, that the amount of the anomaly is nearly half as large
as the observed zonally asymmetric ozone change during the
whole decade, especially over Europe (Peters et al., 1996).
In other words, here the introduced total ozone anomaly ac-
counts for about 50% of the zonally asymmetric observed
trend in the 80s.

In order to study the direct net effect of ozone forcing, the
solar and thermal heating rates have been estimated simulta-
neously. This was done by running the radiation code twice,
first, with the “reference” ozone field for January, and then
including the ozone anomaly. The difference in the heating
rates measures the instantaneous (direct) radiative perturba-
tion of the ozone anomaly without any feedback. In Figs. 1b
and c the solar (thermal) radiative perturbation in the layer

of its maximum is shown based on a ten-day average. The
solar part shows a weak cooling over Europe and a heating
over the North Atlantic Ocean at 150 hPa. The thermal part
shows a weak heating over Europe and a cooling over the
North Atlantic at 70 hPa. For both fields a large-scale struc-
ture with zonal wave numbers 3 to 4 dominates, consistent
with the ozone difference (anomaly) field shown in Fig. 1a.

Furthermore, to examine the vertical structure of the per-
turbation, the height-latitude cross section of positive (nega-
tive) ozone anomaly over the North Atlantic (European) sec-
tor is shown as a zonal average between 40◦ W and 10◦ W in
Fig. 2 (0◦ and 30◦ E in Fig. 3). In part (a) of Figs. 2 and 3
the ozone anomaly and in part (b) of Figs. 2 and 3 the net
heating rate change are plotted, respectively, from level 13
near 700 hPa to the model top. The solar heating change is
given in part (c) of Figs. 2 and 3, and the thermal heating rate
change is given in part (d) of Figs. 2 and 3.
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Figure 2 a

(a)

Figure 2 b

(b)

Figure 2 c

(c)

Figure 2 d

(d)

Fig. 2. Ozone anomaly and radiation forcing zonally averaged (40◦ W–10◦ W). Zonally averaged (40◦ W–10◦ W) vertical distribution of the
ozone anomaly and radiation forcing of January averaged over 10 days:(a) Ozone difference,(b) Net radiation heating due to the ozone
difference,(c) Same as (b) but only solar radiation heating,(d) Same as (b) but only thermal radiation heating.

Over the eastern North Atlantic (Fig. 2), the positive ozone
anomaly centered at about 150 hPa in mid-latitudes causes a
narrow net heating to be shifted slightly equatorward. It is
reduced poleward due to the absence of solar radiation over
the winter pole. The solar radiation and the thermal radia-
tion rate contribute both to the net heating below the 100 hPa
layer. But the cooling due to the thermal radiation domi-
nates in mid-latitudes above the 100 hPa layer. Both effects
together tend to decrease the lapse rate near the tropopause
region.

Over the European sector (Fig. 3), the negative ozone
anomaly is shifted northward in comparison to the location
of the positive ozone anomaly over the North Atlantic (see
Fig. 2). A narrow net cooling follows in mid-latitudes be-
low the 100 hPa layer (dominated by the solar radiation) and
a net heating above this layer (thermal radiation dominates).
Therefore, over Europe, the vertical structure of the radiative
perturbation tends to increase the lapse rate in the tropopause
region.

Both examples demonstrate the regional and altitude de-
pendent change in sign of the ozone anomaly forcing: heat-
ing (cooling) in the upper troposphere corresponds to cool-
ing (heating) in the lower stratosphere over the North At-

lantic (Europe). Such weak heating, of locally only up to
0.01 K/day, can have a strong effect on the stability near the
tropopause (e.g. Forster, P. M. de F. and Shine, 1997). This
heating systematically reduces the thermal stability in the up-
per troposphere near the tropopause over the North Atlantic
and increases the stability over Europe. The magnitude of the
heating/cooling is weak, but the induced three-dimensional
stability changes could amplify the net heating/cooling of
the atmosphere due to feedback processes. These feedbacks
can only be investigated by model simulations as discussed
below. Note, the meridional gradient between subtropical
and middle latitudes near the tropopause (below 100 hPa) is
weakened over the North Atlantic and enhanced over Europe
(not shown). Also, the heating (cooling) causes upper level
divergence (convergence), leading to a tendency of the sur-
face pressure to decrease (increase).

3 Sensitivity experiments

The sensitivity experiments were performed with the
ECHAM4 GCM using T42 horizontal resolution and 19 ver-
tical levels up to 10 hPa. A detailed description of the model
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Figure 3 a

(a)

Figure 3 b

(b)

Figure 3 c

(c)

Figure 3 d

(d)

Fig. 3. Ozone anomaly and radiation forcing zonally averaged (0–30◦ E). Same as in Fig. 2, but zonally averaged (0–30◦ E).

physics is given by Roeckner et al. (1996). The starting con-
ditions (the first of October) of the GCM experiments are
taken from the standard ECHAM4 AMIP run (see Stendel
and Bengtsson, 1997) for five different years: 1988, 1989,
1990, 1991, 1992. With the two reconstructed ozone dis-
tributions, pairwise wintertime experiments were performed.
For each pair (one experiment with the new reference ozone
and one with the anomaly ozone) the sea surface temperature
field was also taken from the AMIP2 data set of the corre-
sponding winters (88/89, 89/90, 90/91, 91/92 and 92/93).

In the experiments the ozone field implementation was
changed in comparison to the standard ECHAM4 version
(see Sect. 2). Both ozone fields were initially preprocessed
on pressure levels and on a 5× 5◦ grid, followed by an in-
terpolation onto the horizontal grid of ECHAM4 during the
initialisation. At every time step vertical interpolation to the
model’s hybrid levels was performed. During this vertical
transformation, the ozone column integral was conserved.

For the experiments, first we adjusted the model dynam-
ics to the “reference” ozone field and ran the model from the
beginning of October until the end of November, for each
of the five statistically independent time slices. After the
first of December we ran the model twice. In the so-called
“reference” experiment we continued the free ECHAM4 run
over two months until the end of January without any fur-

ther alterations of the ozone. In the so-called “anomaly”
experiment we used the “anomaly” ozone field without any
further changes. The difference between the “reference”
and the “anomaly” ozone field is relatively small and ex-
ists per definition only in the middle and high northern lat-
itudes. Hence, a 30-day adjustment of the dynamics is suf-
ficient. Both data pools (“reference” and “anomaly” experi-
ment) with 5 independent simulations were analysed for Jan-
uary, and the results are presented in the next section. The
observed longitude-dependent decadal ozone changes in De-
cember and January are quite similar (Peters and Entzian,
1998), and therefore, justifies using the composed January
ozone field for the full experiment.

4 Dynamical response

First of all, we are interested in a possible global response,
visible in the fields of hydrodynamics and thermodynam-
ics, that is caused by the large-scale ozone anomaly in the
extra-tropics of the Northern Hemisphere in January. For
our diagnostics the meridional velocity, as an indicator of the
planetary wave structure, in combination with temperature,
was chosen. The difference between the ensemble means
(“anomaly” minus “reference” experiment) of the meridional
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Figure 4 a

(a)

Figure 4 b

(b)

Fig. 4. Meridional wind and temperature response at 200 hPa. Mean meridional wind(a) and temperature(b) response at 200 hPa, regions
inside a significance level of 80% (light), 90% (middle) and 95% (dark) are shaded.

Figure 5 a

(a)

Figure 5 b

(b)

Figure 5 c

(c)

Fig. 5. Geopotential height, vorticity and zonal wind response at 200 hPa. Mean geopotential height(a), vorticity (b), and zonal wind(c)
response at 200 hPa for the North Atlantic-European region, shading as in Fig. 4.

velocity and the temperature at the 200 hPa layer are shown
in Fig. 4. The amplitudes are of the order of±5 m/s and
±1.5 K, respectively. The difference pattern shows a large-
scale wave-like structure (with wave number 1–6) on both
hemispheres organised as wave tracks.

One track appears in northern mid-latitudes, beginning
over the western North Atlantic, passing Europe and end-
ing over Asia. Another track starts at the same region, but
moves southward to Africa. A third wave track occurs in
the Southern Hemisphere. It starts over the subtropical east-
ern South Pacific Ocean, passing South America, the South
Atlantic and Africa, and ending over the Indian Ocean. A
comparison of the significant changes in meridional veloc-
ity with temperature changes shows that significance in both
fields only occurs in the extra-tropics.

By also including the 100 hPa layer results and the vor-
ticity and divergence at 500 hPa, 200 hPa, 100 hPa, 70 hPa
(not shown), we find three regions of significant (local T-test)
changes. The first one is the North Atlantic-European region,
the second area is the North Polar region and the third one is
a band from South America to South Africa (SA2-region).
The larger areas of significance over the SA2-region are con-
nected to a weaker large-scale wave variability during the
austral summer, as known from global analysis (e.g. Randel,
1992).

We focus on the North Atlantic-European region where the
ozone anomaly dominates (Fig. 1) and examine the dynam-
ics in more detail. Also in reference to above, there exists
a strong Rossby wave track in the difference field of geopo-
tential height, relative vorticity and zonal wind at 200 hPa
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Figure 6 a

(a)

Figure 6 b

(b)

Fig. 6. Stationary flux changes over the North Atlantic. Stationary flux changes (Plumb, 1985) over the North Atlantic due to the ozone
anomaly.

Figure 7 a

(a)

Figure 7 b

(b)

Fig. 7. Transient flux changes over the North Atlantic. Transient flux changes (Trenberth, 1986) over the North Atlantic due to the ozone
anomaly for a high-pass filtered flow (2–6 days).

(Fig. 5). The track starts over the subtropical middle North
Atlantic, indicated by a trough, and follows an anti-cyclonic
curve. A course given further is determined by a high pres-
sure system northwards of the Azores and a Black Sea low.
Consistent with that, the changes in vorticity (Fig. 5b) and
zonal wind (Fig. 5c) show positive (negative) values on the
northward (southward) side of the anti-cyclone, which are
also statistically significant (95%).

The temperature difference field in 200 hPa (see Fig. 4b)
shows a strong cooling of about−1.5 K in connection with
the high northwards of the Azores, and an increase of about
1.5 K northwards of the Faroe Islands, and over the Black Sea
region in connection with low pressure systems. The signifi-
cant temperature change is mainly linked to adiabatic cooling
in the upper troposphere (heating in the lower stratosphere)
of ascending (descending) air.

The longitude extended Eliassen-Palm flux vector
changes, another large-scale diagnostics, are calculated as
suggested by Plumb (1985) (called Plumb flux). The sta-
tionary wave difference of the sample averages (“anomaly”

minus “reference”) was calculated and then the correspond-
ing Plumb flux was estimated. At 250 hPa (Fig. 6a) in the
North Atlantic extra-tropics, an upward flux mainly directed
eastward is found, and over Europe a stronger southeast-
ward component occurs. The strong flux changes over the
subtropical North Atlantic are not considered because the
geostrophic approximation used for the flux calculation is
only valid in the extra-tropics.

To study the height-longitude behaviour, an average over
the latitude band 40◦ N–60◦ N is calculated. It shows
(Fig. 6b) a feature which is concentrated over the North
Atlantic-European region with a strong upward-eastward
component over the eastern North Atlantic and a strong
downward-eastward component over Europe. The conver-
gence near the surface between 40◦ W and 20◦ W is dom-
inated by a strong differential vertical heat flux. In the
tropopause region (near 300 hPa), in the same longitude
band, a convergence is found that is a result of a strong dif-
ferential vertical heat flux and meridionally momentum flux.
A large divergent area occurs over Europe at about 300 hPa
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Figure 8 a

(a)

Figure 8 b

(b)

Figure 8 c

(c)

Fig. 8. Storm track variability at the 500 hPa layer. Storm track variability at the 500 hPa layer for mean January(a) Variance of the band-
pass filtered (2–6 days) geopotential height at the 500 hPa for the “reference” experiment,(b) Same as (a) but for the “anomaly” experiment,
(c) Difference between “anomaly” and “reference” experiment.

with higher wave activity, which could decelerate the zonal
mean wind (Plumb, 1985). The projection of a 3-dimensional
Plumb flux structure onto the 200 hPa layer is in good agree-
ment with the planetary wave track described above.

For the propagation, as well as for the reflection of ultra-
long waves in a basic stream, the wave-wave interaction be-
tween quasi-stationary waves plays an important role. But
transient eddies are also known to have an important effect
on the longitude-dependent circulation (e.g. Trenberth, 1986;
Hoskins et al., 1983; Fraedrich et al., 1993). A 2–6 day fil-
ter of daily values (deviation from the monthly mean) is used
for the analyses of transient eddies. The high-pass structure
change of these eddies is studied by estimating the extended
Eliassen-Palm flux after Trenberth (1986) as a difference of
the ensemble means of both experiment pools.

At 250 hPa (Fig. 7a) a strong upward-eastward flux con-
tribution is found over eastern Canada and the western North
Atlantic. The lower track orbits to the south and is ori-
ented downwards over the middle subtropical North Atlantic.
The upper track is more zonal and passes Europe. A lat-
itude band average (40◦ N–60◦ N) shows clearly a height-
longitude structure concentrated over the North Atlantic-
European region. Strong upward-eastward eddy heat flux
occurs westward of 40◦ W with a strong momentum flux in
the tropopause region which extends eastward over Europe.
The horizontal divergence of the eddy flux vector shows three
centres of possible longitude-dependent basic stream de-
celeration 90◦ W–50◦ W, 30◦ W–15◦ W, 3◦ E–13◦ E and two
larger regions of acceleration 50◦ W–30◦ W and 15◦ W–3◦ E.

The storm-track activity (2–6 days band-pass filtered
500 hPa geopotential height field, defined as the standard de-

viation of the bandpass filtered field, is correlated to the mean
cyclone tracks (e.g. Trenberth, 1991). In Fig. 8, the January
average of the storm-track variability for the “reference” and
the “anomaly” experiment are shown and agrees well with
the eddy flux estimates of Fig. 7. The difference (Fig. 8c)
shows a clear signal which is linked to the northward shift of
the jet stream over the Atlantic (see Fig. 5c).

In the ozone “anomaly” runs the cyclonic activity is en-
hanced on the northwestern and northern flank of its centre
and over the southeastern area of the North Atlantic storm-
track. In addition, on the eastern side (over East Europe)
the cyclone activity will be less spread and reduced. This
stronger barrier effect is expected from the 200 hPa geopo-
tential height field change over the North Atlantic (centred
on the eastern side) and over northern Russia, where anti-
cyclonic disturbances occur (Fig. 5a).

The enhanced geopotential height variance in 500 hPa
occurs in a band over the North Atlantic, over a line be-
tween negative and positive geopotential height (1000 hPa)
changes (Fig. 9a). This fact is known from observations of
North Atlantic variability, such as the North Atlantic oscil-
lation (NAO) (e.g. Hurrel, 1995; Hastenrath and Greischar,
2001). The positive mean geopotential height anomaly (at
1000 hPa), whose centre is placed over a region northwards
of the Azores Islands (about 40 gpm), correlates on its north-
ern flank with more cloud-cover percentage and more liquid
water content (Fig. 9b and c), and on its southern flank with
less in both quantities. The precipitation (Fig. 9d) decreases
over the region of the anti-cyclonic disturbances. All these
patterns agree quite well with observations of positive NAO
phase realisations (Thompson and Wallace, 2001).
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Figure 9 a

(a)

Figure 9 b

(b)

Figure 9 c

(c)

Figure 9 d

(d)

Fig. 9. Ozone anomaly response. The ozone anomaly response for mean January as difference between “anomaly” and “reference” experi-
ment (regions inside a significance level of 80% are shaded)(a) For geopotential height at 1000 hPa,(b) For total cloud cover,(c) For vertical
integrated liquid water,(d) For precipitation.

5 Summary and discussion

In this sensitivity study, a simple estimation of the large-scale
three-dimensional ozone change in the 1980s during January
was introduced. The ozone fields describe the right phase lo-
cations and vertical ozone profiles in the extra-tropics of the
Northern Hemisphere, as observed. The sensitivity experi-
ments show that the zonally asymmetric ozone changes in the
upper troposphere and lower stratosphere (north of 30◦ N) in-
duced a systematic modification of the circulation.

Three significant wave tracks were found, two occur over
the North Atlantic and one over the South Atlantic. Fur-
thermore, the results show a statistically significant response
over three large regions, namely over the North Atlantic-
European, Arctic and SA2-region.

It can be concluded that the ozone changes through the re-
lated relative weak radiative perturbation near the tropopause
are important for the coupling between troposphere and
stratosphere and also between subtropics and extra-tropics
during boreal winter decades.

A very efficient feedback mechanism including planetary
waves, storm tracks, convective activity and water vapour
was investigated. The instantaneous radiative perturbation
due to the ozone anomaly (see Figs. 1, 2 and 3) alone cannot
explain the strong response over the North Atlantic. There-
fore, we analysed the difference in the radiative net heating
in the temperature tendency equation for mean January con-
ditions. In the heating rate difference of the dynamically bal-
anced state the signature of the ozone anomaly was found in
the solar part near 150 hPa (Fig. 10a) and upwards (Fig. 10c).
The heating area agrees well with more ozone in this height

region over the North Atlantic. This additional ozone causes
a primary decreasing in the lapse rate near the tropopause
(Fig. 2), which allows the convection to reach higher levels.
The resulting increase in water vapour causes additional so-
lar heating. Note, without dynamics this heating would be
balanced due to the counteracting emission of long wave ra-
diation and thermal heating increases.

The model results at 150 and 100 hPa show a different
large-scale distribution of mean January difference in ther-
mal heating (Fig. 10b and d), dependent on the action of dy-
namics, but also a factor of 10 larger than the direct thermal
radiative perturbation induced by the ozone change. Both
perturbations together described the total radiative perturba-
tion for mean January conditions, and this is one order of
magnitude larger than the total instantaneous radiative per-
turbation through the ozone change.

In summary, the sensitivity study confirms that small
ozone anomalies near the tropopause result in a stronger ef-
fect on the stability than expected from instantaneous ra-
diative perturbation due to positive feedbacks. These feed-
backs steered the cyclonic activity over the North Atlantic,
as shown in our results and induced the reported planetary
wave structure changes.

To focus on the North Atlantic-European region, where
the ozone changes are largest, the model results show a real-
istic physical picture of the atmospheric circulation changes
as known from many observational studies of decadal circu-
lation changes, especially in the 1980s (e.g. Hurrel, 1995).

The mean ozone anomaly structure, typical for the end
of the 1980s, is correlated with an enhanced NAO positive
phase with a stronger Azores high and weaker Icelandic low
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Figure 10 a

(a)

Figure 10 b

(b)

Figure 10 c

(c)

Figure 10 d

(d)

Fig. 10. Ozone anomaly forcing with feedbacks. Mean January forcing difference due to ozone anomaly including dynamical feedbacks
(positive values light shaded, negative values dark shaded).(a) For solar radiation at level 5 (near 100 hPa),(b) For thermal radiation same
level as (a),(c) For solar radiation at level 6 (near 150 hPa),(d) For thermal radiation same level as (c).

at the surface. The mean ozone anomaly induced in the
model a similar pattern near the surface (Fig. 9a) that could
enhance the dynamical variability in the North Atlantic-
European region. The storm tracks are shifted to the north
and intensified. Therefore, the divergence of the induced
transient eddies will force the jet stream shift and produce
quasi-stationary waves changes as well.

A statistical significant dynamical response is also found
over the Arctic region. This can be explained by an inten-
sification of transient wave activity in mid-latitudes which
forces quasi-stationary waves that propagate upward and
northward into the polar stratosphere. The waves are filtered
and reflected by the polar jet, so that a large-scale wave with
wave number one is dominant.

There are open questions which should be studied in the
future. The robustness of this result should be checked in
other model configurations. Further, the locally significant
area over SA2-region could be forced directly over the At-
lantic by Rossby wave propagation through a westerly wind
guide (“westerly ducts”) over the tropical West Atlantic (not
shown). The frequency of such Rossby wave breaking events
is highest during the northern winter (Waugh and Polvani,
2000). On the other hand, in the southern summer, the large-
scale variability over the Southern Hemisphere mid-latitudes
is relatively weak, so that a significant response would be
easier to detect. Some similar experiments with a linear
enhanced ozone anomaly show an amplified response, but
with a different structure and with high variability in the
North Atlantic-European region. This means that carefully
designed experiments are necessary to detect some thresh-
old values. Further studies should also include the effect of

the zonal mean ozone trend and be extended to include the
middle atmosphere and should aim at the problem of inter-
decadal variability of ozone. Similar runs for each winter
seems to be possible but should also be carefully designed.

Appendix A

A1 Estimation of 3D ozone fields

The linearised stationary equation for the mass mixing ratio
of a zonally asymmetric tracerη∗, neglecting source terms
reads (following Peters et al., 1996)

[U ]

a cosϕ

∂η∗

∂λ
= −

v∗

a

∂[η]

∂ϕ
− w∗

∂[η]

∂Z
(A1)

Z = −H ln

(
p

ps

)
, (A2)

whereZ is the vertical coordinate,λ is the longitude andϕ is
the latitude;p is the pressure andps = 1000 hPa. (U, v,w)
represents the velocity components. [. . .] means zonally av-
eraged values and a star deviation from them.

In the extra-tropics quasi-geostrophic relations hold:

v∗
=

1

af cosϕ

∂φ∗

∂λ
(A3)

w∗
= Ż∗

= −
1

N2

(
[U ]R

aH cosϕ

∂T ∗

∂λ
−

[U ]Z

a cosϕ

∂φ∗

∂λ

)
, (A4)

whereφ is the geopotential,f is the Coriolis parameter,a
is the Earth’s radius, andT is the temperature. Equation (4)
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is the linearised version of the stationary energy equation,
but without a diabatic heat source term. The thermal wind
equation,TϕR = −aHUZ, was introduced;ϕ and Z in-
dices are derivatives.N2 is height and latitude dependent.
The constants used areH = 7.321 km,a = 6.37 · 103 km,
ρ = ρ0e

−Z/H with ρ0 = 1.225 kg/m3, R = 287 m2/K/s2.
Equations (3) and (4) inserted in Eq. (1) gives the continuity
equation in a form where the geopotential and temperature
appear explicitly. The zonally asymmetric resolution was
realised by a Fourier decomposition and calculated numer-
ically as vertical profiles at 14 layers from 500 hPa to 10 hPa.

The observed amplitudes and phases of the geopotential,
temperature and zonal mean fields were taken from the mean
January values of Randel (1992). The zonal mean ozone dis-
tribution of January 1979 is based on data from McPeters
et al. (1984) for NIMBUS7 SBUV instrument. A check and
discussion of the model results are also given in Peters et al.
(1996).
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