Geometric Differences between the Burgers and the Camassa-Holm Equations

Abstract : The Burgers equation and the Camassa-Holm equations can both be recast as the Euler equation for a right-invariant metric on the diffeomorphism group of the circle, the L2-metric for Burgers and the H1-metric for Camassa-Holm. Their geometric behaviors are however very different. We present a survey of this geometrical approach and discuss these differences.
Type de document :
Article dans une revue
Journal of Nonlinear Mathematical Physics, Taylor & Francis, 2008, 15 (Supplement 2), pp.116 - 132. 〈10.2991/jnmp.2008.15.s2.9〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00315951
Contributeur : Boris Kolev <>
Soumis le : lundi 1 septembre 2008 - 23:04:03
Dernière modification le : mercredi 10 octobre 2018 - 01:26:49

Identifiants

Collections

Citation

Boris Kolev. Geometric Differences between the Burgers and the Camassa-Holm Equations. Journal of Nonlinear Mathematical Physics, Taylor & Francis, 2008, 15 (Supplement 2), pp.116 - 132. 〈10.2991/jnmp.2008.15.s2.9〉. 〈hal-00315951〉

Partager

Métriques

Consultations de la notice

200