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ASYMPTOTIC BEHAVIOUR OF SELF-CONTRACTED PLANAR CURVES

AND GRADIENT ORBITS OF CONVEX FUNCTIONS

ARIS DANIILIDIS∗, OLIVIER LEY, AND STÉPHANE SABOURAU

Abstract. We hereby introduce and study the notion of self-contracted curves, which encom-
passes orbits of gradient systems of convex and quasiconvex functions. Our main result shows
that bounded self-contracted planar curves have a finite length. We also give an example of a
convex function defined in the plane whose gradient orbits spiral infinitely many times around
the unique minimum of the function.
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1. Introduction

This work is mainly devoted to the study of the length of bounded trajectories of the gradient
flow of convex (or quasiconvex) functions in the plane. The motivation for this study comes
from a well-known result due to S.  Lojasiewicz (see [15]), asserting that if f : Rn → R is a
real-analytic function and x̄ ∈ f−1(0) is a critical point of f , then there exist two constants
ρ ∈ [1/2, 1) and C > 0 such that

||∇f(x)|| ≥ C |f(x)|ρ (1.1)

for all x belonging to a neighborhood U of x̄. An immediate by-product is the finite length of
the orbits of the gradient flow of f lying in U . The proof is straightforward using (1.1) and is
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illustrated below: let γ : [0, +∞) → U be a gradient trajectory of f , that is, γ̇(t) = −∇f(γ(t)).
Then,

−

(
1

1 − ρ

)
d

dt

[
f(γ(t))1−ρ

]
= −〈γ̇(t),∇f(γ(t)〉 f(γ(t))−ρ = ||γ̇(t)||2 f(γ(t))−ρ ≥ C ||γ̇(t)||,

yielding

length(γ) =

∫ +∞

0
||γ̇(t)||dt < +∞. (1.2)

The aforementioned inequality (1.1) has been extended by K. Kurdyka in [13] for C1 functions
belonging to an arbitrary o-minimal structure (we refer to [11] for the relevant definition), in a
way that allows us again to deduce the finiteness of the lengths of the gradient orbits in this more
general context. In [3] and [4], a further extension has been realized to encompass (nonsmooth)
functions and orbits of the corresponding subgradient systems.

It should be noted that in the above cases the functions enjoy an important structural property
(o-minimality) and that, for general functions, there is no hope to prove a result like (1.2). A
classical example of J. Palis and W. De Melo ([16, page 14]) asserts that the bounded trajectories
of the gradient flow of an arbitrary C∞ function need not converge (in particular, they are of
infinite length). In the aforementioned example the critical set of the function is not reduced to
a singleton: in Section 7.1, we provide another example of a smooth function having a unique
critical point towards which all corresponding orbits converge, but again are of infinite length.

The case when f is a convex coercive function is particularly interesting in view of its potential
impact in numerical optimization (see [1], [3], [5], for example). But convex functions are far
from being analytic and they do not satisfy neither the  Lojasiewicz inequality nor its generalized
form established by Kurdyka, unless a growth condition is assumed (see [5, Sections 4.2–4.3]
for a sufficient condition and a counter-example). Nevertheless, their rigid structure makes it
natural to think that the orbits of their gradient flow are of finite length. It is rather surprising
that the answer of this question is not yet known in the literature except in some particular
cases.

Let us mention that in the framework of Hilbert spaces, this has been stated as an open
problem by H. Brézis [6, Open problems, p. 167]. In infinite dimension, R. Bruck [7] proved that
the (sub)gradient orbits of convex coercive functions are converging towards a global minimizer
of f but this convergence holds only with respect to the weak topology. Indeed, B. Baillon [2]
constructed a counterexample of a lower semicontinuous convex function f in a Hilbert space
whose gradient orbits do not converge for the norm topology. A straightforward consequence
is that these orbits have infinite length. Concurrently, there are some cases where a convex
coercive function f : H → R is known to have (sub)gradient orbits of finite length. This is true
when the set of minimizers of f has nonempty interior in the Hilbert space H (see H. Brézis [6]),
or whenever f satisfies a growth condition. For a detailed discussion and the proofs of these
facts, we refer to [5, Section 3-4].

The aforementioned results do not cover the simplest case of a convex smooth function defined
in the plane and having a unique minimum. One of the main results of this work is to prove the
following:

Theorem 1.1 (Convex gradient system). Let f : R2 → R be a smooth convex function with a

unique minimum. Then, the trajectories γ of the gradient system

γ̇(t) = −∇f(γ(t))

have a finite length.
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The proof of this result does not use the whole convexity of f but, instead, rather relies on the
convexity of its level-sets. More precisely, the conclusion of Theorem 1.1 remains also true for
the orbits of the gradient flow of a quasiconvex function (see Corollary 6.3).

Actually, both results will follow as consequences of a much more general result (Theorem 1.3)
about bounded self-contracted planar curves, which allows us to provide a unified framework for
this study.

Definition 1.2 (Self-contracted curve). A curve γ : I → Rn defined on an interval I of [0, +∞)
is called self-contracted, if for every t1 ≤ t2 ≤ t3, with ti ∈ I, we have

dist(γ(t1), γ(t3)) ≥ dist(γ(t2), γ(t3)). (1.3)

In other words, for every [a, b] ⊂ I, the map t ∈ [a, b] 7→ dist(γ(t), γ(b)) is nonincreasing.

We prove the following.

Theorem 1.3 (Main result). Every bounded continuous self-contracted planar curve γ is of

finite length. More precisely,

length(γ) ≤ (8π + 2) D(γ)

where D(γ) is the distance between the endpoints of γ.

Let us finally mention that, even if gradient orbits of convex functions have finite length in
the plane, they do not enjoy all the properties of the gradient orbits of real-analytic functions.
Indeed, on the one hand, the so-called Thom conjecture for the gradient orbits of real-analytic
functions holds true: if x∞ denotes the limit of the orbit γ(t), then the secants (γ(t)−x∞)/||γ(t)−
x∞|| converge towards a fixed direction of the unit sphere (see K. Kurdyka, T. Mostowski and
A. Parusinski [14]). On the other hand, as we show in Section 7.2, an analogous result fails
in the convex case. Indeed, the orbits of a convex gradient flow may turn around their limit
infinitely many times.

Our techniques only work in the two-dimensional case. We do not know whether Theorem 1.1
and Theorem 1.3 hold in greater dimension.

The article is organized as follows. In Section 2, we present basic properties of self-contracted
curves. In Section 3, we decompose each polygonal approximation of a bounded self-contracted
curve in an annulus centered at its endpoint into horizontal and vertical segments. We establish
upper bounds on the total length of the vertical segments in Section 3 and on the total length
of the horizontal segments in Section 4. The proof of the main result is presented in Section 5.
In Section 6, we show that the orbits of various dynamical systems are self-contracted curves.
Two (counter)-examples are presented in Section 7.

Notations. Throughout the manuscript, we shall deal with the finite-dimensional Euclidean
space Rn equipped with the canonical scalar product 〈·, ·〉. We denote by ‖ · ‖ (respectively,
dist(·, ·)) the corresponding norm (respectively, distance). Therefore, the distance between two
points x and y of R2 will be denoted by ‖x − y‖, dist(x, y) or sometimes |xy|. We also denote
by dist (x, S) the distance of a given point x ∈ Rn to a set S ⊂ Rn, by B(x, r) the closed ball
with center x ∈ Rn and radius r > 0 and by S(x, r) its boundary, that is, the sphere of the same
center and the same radius. For 0 < r < R, we denote by

U(r,R) := {x ∈ Rn | r < ‖x‖ ≤ R} (1.4)

the annulus centered at the origin O with outer radius R and inner radius r and by ∆R = R− r
its width. Let

[p, q] := {p + t(q − p) | t ∈ [0, 1]}



4 A. DANIILIDIS, O. LEY, AND S. SABOURAU

be the closed segment with endpoints p, q ∈ Rn. A subset S of Rn is called convex, if [p, q] ⊂ S
for every p, q ∈ S.

2. Self-contracted curves

Throughout this paper, we shall deal with curves γ : I → Rn, defined on an interval I of R.
We recall that the length of a curve γ : I → Rn is defined as

length(γ) = sup

{
k∑

i=1

dist(γ(ti), γ(ti+1))

}

where the supremum is taken over all the finite subdivisions {ti}
k+1
i=1 of I.

We shall need the following definition.

Definition 2.1 (Convergence of a curve). A curve γ : I → Rn is said to converge to a
point x0 ∈ Rn if γ(t) converges to x0 when t goes to t+ := sup I.
A curve γ : I → Rn is said to be bounded, if its image γ(I) is a bounded subset of Rn.

We start with an elementary property of self-contracted curves.

Proposition 2.2 (Existence of left/right limits). Let γ : I 7→ Rn be a bounded self-contracted

curve and (a, b) ⊂ I. Then, γ has a limit in Rn when t ∈ (a, b) tends to an endpoint of (a, b).
In particular, every self-contracted curve can be extended by continuity to the endpoints of I
(possibly equal to ±∞).

Proof. Since γ lies in a compact set of Rn, there exists an increasing sequence {ti} in (a, b) with
ti → b such that γ(ti) converges to some point of Rn, noted γ(b)+. Fix any i, j ∈ N∗ and let
ti < t < ti+j. By (1.3), we have

dist(γ(t), γ(ti+j)) ≤ dist(γ(ti), γ(ti+j)).

Letting j go to infinity, we derive

dist(γ(t), γ(b)+) ≤ dist(γ(ti), γ(b)+)

which gives γ(t) → γ(b)+.

Further, using the triangle inequality and the inequality (1.3), we have

dist(γ(t1), γ(t2)) ≤ dist(γ(t1), γ(t3)) + dist(γ(t3), γ(t2)) ≤ 2 dist(γ(t1), γ(t3)).

Using this inequality, we can show, as previously, that γ(t) converges as (a, b) ∋ t → a.

The last part of the assertion is straightforward. �

The following result is a straightforward consequence of Proposition 2.2.

Corollary 2.3 (Convergence of bounded self-contracted curves). Every bounded self-contracted

curve γ : (0, +∞) → Rn converges to some point x0 ∈ R2 as t → +∞. Moreover, the function

t 7→ dist(x0, γ(t)) is nonincreasing.

In the sequel, we shall assume that every self-contracted curve γ : I 7→ Rn is (defined and)
continuous at the endpoints of I.

Remark 2.4 (Basic properties).
(i) Inequality (1.3) shows that the image of a segment (a, b) by a self-contracted curve γ lies in
a ball of radius ρ := dist(γ(a), γ(b)).
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(ii) A self-contracted curve might not be (left/right) continuous. A simple example is provided
by the following planar self-contracted curve:

γ(t) =





(t, 1) if t ∈ (−∞, 0)
(0, 0) if t = 0
(t,−1) if t ∈ (0, +∞)

(iii) If t ∈ (a, b) 7→ γ(t) is a self-contracted curve, then the curve t ∈ (a, b) 7→ γ(a + b − t) is not
necessarily self-contracted.

(iv) Corollary 2.3 reveals that the trajectories of a general gradient system

γ̇(t) = −∇f(γ(t)), γ(0) = x0 ∈ Rn

might fail to be self-contracted curves. Indeed in [16, page 14] an example of a C∞ function
f : R2 → R is given, for which all trajectories of its gradient system are bounded but fail to
converge.

(v) In Section 6, we show that whenever f is (quasi)convex, the gradient trajectories are self-
contracted curves. Thus, bounded self-contracted curves might fail to converge for the strong
topology in a Hilbert space (see Baillon’s example in [2]).

From now on, we restrict ourselves to the two-dimensional case, and study the asymptotic
behaviour of self-contracted planar curves.

3. Horizontal and Vertical directions

In this section, we introduce a binary-type division of planar segments into horizontal and
vertical ones. We shall apply this decomposition for segments issued from polygonal line ap-
proximations of a bounded self-contracted curve. In this section, we derive an upper bound on
the total length of the vertical segments, while in the next section we shall do the same for the
total length of the horizontal ones. Combining both results we shall thus obtain an upper bound
estimation on the total length of a bounded self-contracted curve, establishing Theorem 1.3.

Fix 0 < r < R and let U(r,R) be the annulus defined in (1.4). Let σ be a segment
of U(r,R), not reduced to a point. Denote by p and q the endpoints of σ and by m its midpoint.
Switching p and q is necessary, we can assume that q is closer to the origin O than p, that is

dist(O, q) ≤ dist(O, p). Let Ômq := θ be the angle between the vectors
−−→
mO and −→mq, cf. Fig. 1.

Note that θ ∈ [−π
2 , π

2 ] (by convention, inverse-clockwise angles are positive).

Lemma 3.1 (Segment length estimate). Let σ be a segment of U(r,R) with endpoints p and q
such that θ 6= ±π

2 . Then

length(σ) ≤
2

cos θ
|dist(O, p) − dist(O, q)|.

Proof. Let p̄ be the orthogonal projection of p to the line Om. Using elementary trigonometry
in the right-angled triangle pp̄m, we derive

dist(m, p̄) =
1

2
cos θ · length(σ).

Hence,

dist(O, p) − dist(O,m) ≥
1

2
cos θ · length(σ).

Since dist(O, q) ≤ dist(O,m), the conclusion follows. �
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O

rR

q
θ

m

p

Figure 1.

Fix α ∈ (0, π
2 ), let λ ∈ (0, 1) be such that sin α < λ < 1, and set r := λR. Denote by

A := U(λR,R)

the corresponding annulus of (1.4), with width equal to ∆R = (1 − λ)R. We now introduce a
crucial definition in the proof of our main result.

Definition 3.2 (Classification of the segments). Let α ∈ (0, π
2 ), λ ∈ (0, 1) and A as above. A

nontrivial segment σ of A is said to be

• vertical, if θ lies in (−π
2 + α, π

2 − α) ;

• horizontal, pointing in the positive direction, if θ lies in [−π
2 ,−π

2 + α] ;

• horizontal, pointing in the negative direction, if θ lies in [π
2 − α, π

2 ].

For instance, the segment [p, q] in Fig. 1 points in the negative direction.

Definition 3.3 (Polygonal approximation). Let γ : I → R2 be a continuous self-contracted

planar curve converging to the origin O. We consider polygonal approximations {σi}
k+1
i=1 of γ in

the annulus A, as follows: Let t1 < t2 < · · · < tk+1 be a sequence of points of I with γ(ti) 6=
γ(ti+1) such that the restriction of γ to [t1, tk+1] lies in A. Refining the subdivision if necessary,
we can further assume that for every i ∈ {1, . . . , k} the segment σi with endpoints pi = γ(ti)
and qi = pi+1 = γ(ti+1) lies in A and that the length of σi is within any desired precision η > 0
of the length of γ|[ti,ti+1] (this precision η > 0 will be defined at the beginning of Section 4
and will only depend on α, λ and R). Since the function t 7→ dist(O, γ(t)) is nonincreasing
(cf. Corollary 2.3), we can further assume that, if σi := [pi, qi] is vertical, then qi is the closest
point of σi to the origin. We denote by mi := 1

2(pi + qi) the midpoint of σi.

Remark 3.4. It is worth noticing that the polygonal approximation of a self-contracted curve
introduced above is no more a self-contracted curve in general. Nevertheless, one still has

dist(pi, pl) ≥ dist(pj, pl) when 1 ≤ i ≤ j ≤ l ≤ k + 1,

which is the property we will use.

The total length of the vertical segments satisfies the following upper bound.
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Lemma 3.5 (Total vertical length upper bound). If {σi}
k+1
i=1 is a polygonal approximation of γ

in the annulus A, cf. Definition 3.3, then

∑

i∈V

length(σi) ≤
2

cos α
∆R

where the sum is taken over all indices i ∈ V ⊂ {1, . . . , k + 1} corresponding to the vertical

segments.

Proof. Let θi denote the angle between
−−→
miO and −−→miqi. Since i ∈ V, it follows that |θi| < α,

whence (cos θi)
−1 < (cos α)−1. From Lemma 3.1 (segment length estimation), we obtain

∑

i∈V

length(σi) <
2

cos α

∑

i∈V

dist(O, pi) − dist(O, qi).

Since dist(O, pi) > dist(O, qi), for all i ∈ {1, . . . , k} we deduce

∑

i∈V

dist(O, pi) − dist(O, qi) ≤
k∑

i=1

dist(O, pi) − dist(O, qi).

Now, since qi = pi+1, the right-hand term is equal to dist(O, p1) − dist(O, qk), which is less or
equal to the width ∆R of A. The proof is complete. �

4. Length estimate for horizontal directions

In this section, we keep the notations and the definitions from the previous section. In
particular,

α ∈ (0,
π

2
), sin α < λ < 1, A := U(λR,R) (4.1)

and {σi}
k+1
i=1 is a polygonal approximation of γ in the annulus A, cf. Definition 3.3.

We establish an upper bound on the total length of the horizontal segments issued from the
polygonal approximation of γ.

Let x ∈ A. The distance from the origin to the half-line Lx passing through x and making

an angle α > 0 with
−→
xO is equal to sin α · dist(O,x). Thus, the half-line Lx intersects the

circle S(0, λR) of radius λR centered at the origin at two points. These two points are noted
π(x) and π′(x), with π(x) closer to x than π′(x). Furthermore, the half-line Lx intersects A
along two segments ∆x and ∆′

x, where the endpoints of ∆x agree with x and π(x), and one
of the endpoints of ∆′

x agrees with π′(x). Note that minx∈A ‖ π(x) − π′(x) ‖> δ > 0. The
half-line Lx extends to a line which bounds a (closed) half-plane Hx containing the origin of the
plane. Denote by Hc

x the (closed) half-plane with the same boundary as Hx, not containing the
origin (see Fig. 2 for an illustration of these notations). The mappings x 7→ π(x) and x 7→ π′(x)
from A to S(0, λR) are clearly continuous, thus also uniformly continuous. Therefore, there
exists η > 0 such that for every pair of points x, y ∈ A which are η-close from each other (i.e.
dist(x, y) < η), we have

dist(x, π(y)) < dist(x, π′(y)), dist(π(x), π(y)) < dist(π(x), π′(x)),

and dist(π(x), π(y)) < dist(π(x), π′(y)). (4.2)

We shall further need the following technical lemmas.
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O

x

∆x

π(x)

π′(x)

∆′
x

Hc
x

LxHx

y ∆y

S(0, R)
S(0, λR)

Figure 2.

Lemma 4.1 (Essential disjointness of ∆x, ∆y). Let x and y be two distinct points of A such

that dist(O,x) > dist(O, y). If y ∈ Hx, then the segment ∆y lies in Hx. Furthermore, ∆y does

not intersect ∆x, except possibly at y.

Proof. Suppose first that y lies in ∆x. One easily checks that the angle Ôzπ(x) increases when

the point z moves from x to π(x) along ∆x. In particular, the angle Ôyπ(x) is greater than α.
Therefore, the segment ∆y lies in Hx and meets ∆x only at y.

Suppose now that y /∈ ∆x and (towards a contradiction) that ∆y intersects ∆x at z 6= y. Let
y′ denote the intersection point of ∆x with the circle of radius |Oy| centered at the origin. Then,
the image of ∆y by the rotation around the origin taking y to y′ does not lie in Hx (the image
of z should lie in Hc

x). On the other hand, this image agrees with ∆y′ since the rotation sends
the ray Oy to Oy′. From the previous discussion, we conclude that the image of ∆y is contained
in Hx. Hence a contradiction.

Finally, suppose that y /∈ ∆x, ∆y ∩ ∆x = ∅ and ∆y intersects ∆′
x at z. If z = π′(x), then

obviously ∆y lies in Hx. Suppose now that z 6= π′(x) (thus z 6= π(y)). Since the angle Ôzπ(y) is

positive while the angle Ôzπ′(x) is negative, we obtain that ̂π′(x)zπ(y) is positive which is not
possible. The proof is complete. �

Lemma 4.2 (Injectivity of π). Let σ := [p, q] be an horizontal segment of A, with midpoint m,

pointing in the positive direction. Assume dist(O, q) ≤ dist(O, p). Then,

(1) the restriction of π to σ is injective;

(2) if the length of σ is at most η, then the circular arc π([p,m]) lies in Hc
m.

Proof. Let x, y ∈ [p, q] with dist(p, x) < dist(p, y). Since the horizontal segment σ points in

the positive direction, the angle x̂Oy is positive and y lies in Hx. From Lemma 4.1 (Essential
disjointness of ∆x, ∆y), π(x) and π(y) are distinct (the case y = π(x) is impossible since it
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would yield that the angle π̂(x)Ox = ŷOx is positive, a contradiction). Hence the first part of
the lemma follows.

Let x ∈ (m, p]. From above, the midpoint m of σ lies in Hx and the segments ∆x and ∆m

do not intersect each other from Lemma 4.1. By definition of η, in view of (4.2) the points x
and π(x) are closer to π(m) than to π′(m). Thus, the segment ∆x, which does not intersect ∆m,
does not intersect ∆′

m either. That is, ∆x lies either in Hm or in Hc
m. Since the horizontal

segment σ is pointing towards the positive direction, the point x belongs to Hc
m. Therefore, the

same holds true for the other endpoint π(x) of ∆x. It follows that the circular arc π([p,m]) with
endpoints π(p) and π(m) is contained in Hc

m. �

Lemma 4.3 (Length estimate for horizontal segments). Let σ := [p, q] be an horizontal segment

of A with midpoint m, pointing in the positive direction. Assume dist(O, q) ≤ dist(O, p). Then,

length(σ) ≤
2

λ
length(π([p,m])).

Proof. The line passing through p and the origin O together with the circle of radius |Op|
centered at the origin define a decomposition of the circle of radius |pm| centered at p into four
arcs. One of these arcs, denoted by C, contains the point m. Let m′ be the endpoint of C lying
in the circle of radius |Op| centered at the origin, cf. Fig. 3 below. By construction,

length(σ) = 2 |pm| = 2 |pm′|. (4.3)

Since m′ is at the same distance from the origin as p, there exists a rotation ρ centered at the
origin which takes p to m′. This rotation sends the ray [O, p] to [O,m′] and preserves distances
and angles. Therefore, it also sends ∆p to ∆m′ . In particular, the rotation ρ maps π(p) to π(m′).
From Thales’ formula, we derive

|π(p)π(m′)|

|pm′|
=

|Oπ(p)|

|Op|
.

Hence,
|π(p)π(m′)| ≥ λ |pm′|. (4.4)

Since the endpoints of the segment [π(p), π(m′)] lie in the arc π([pm′]), we have

|π(p)π(m′)| ≤ length(π([p,m′])). (4.5)

When a point x, starting at m′, moves along C, the angle Ôxp increases from less than π
2

to π. Thus, there exists a unique point m′′ of C where the angle Ôm′′p is equal to π
2 + α.

By definition of an horizontal segment pointing in the positive direction, the angle Ômp lies
between π

2 and π
2 + α. Therefore, the point m lies in C between m′ and m′′, cf. Fig. 3.

The angles Ôm′′p and ̂Om′′π(m′′) are equal to π
2 + α and α. Therefore, the ray pm′′ makes a

right angle at m′′ with the line D′′ passing through m′′ and π(m′′). Thus, the line D′′ is tangent
to C at m′′. This implies that the points O, m and m′′ lie in the same half-plane delimited by
the line D′ passing through m′ and parallel to D′′. Since the ray Om′ makes an angle less than α
with D′ at m′, the angle between D′ and Lm′ (the half-line passing through m′ and making an

angle α > 0 with
−−→
m′O) is positive, cf. Fig. 3. Therefore, the points O, m and m′′ lie in Hm′ .

By applying Lemma 4.1 (Essential disjointness of ∆x, ∆y), successively for x = m′ and y = m,
and for x = p and y = m′, we obtain that π([p,m′]) is contained in π([p,m]) from the injectivity
of the restriction of π to the segments [p,m′] and [p,m], cf. Lemma 4.2. Hence,

length(π([p,m′])) ≤ length(π([p,m])). (4.6)
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O

p

q

π(m′′)

m′′

m

m′

D′′

D′

Lm′

S(0, λR)

α

Figure 3.

Putting together the inequalities (4.3), (4.4), (4.5) and (4.6), we obtain the desired bound. �

Let us now consider a polygonal decomposition in A

σi := [pi, qi], i ∈ {1, . . . , k}

of a bounded self-contracted curve γ converging to O, cf. Definition 3.3.

Lemma 4.4 (Disjointness of π(pi,mi) and π(pj ,mj)). Let σi and σj be two distinct horizontal

segments of a polygonal approximation of γ in A, cf. Definition 3.3, both pointing in the positive

direction. Then, the images by π of [pi,mi] and [pj ,mj ] are disjoint.

Proof. Switching the indices i and j if necessary, we can assume that i < j.
From Lemma 4.2, the arc π([pi,mi]) is contained in Hc

mi
. To prove the desired result, it is

enough to show that π([pj ,mj]) lies in the complement of Hc
mi

(i.e. the interior of Hmi
).

From the definition of a self-contracted curve, the points pj and qj are closer to qi than to pi

(see Remark 3.4). Thus, pj and qj, and so their barycenter mj , lie in the half-plane delimited
by the perpendicular bisector of σi. (Notice that this half-plane also contains the origin O, in
view of Corollary 2.3.) The half-line of this bisector with endpoint mi which makes an acute
angle with the ray miO is noted Dmi

. Since the horizontal segment σi points in the positive
direction, its half-bisector Dmi

makes an angle less or equal to α with miO. Thus, Lmi
lies in

the half-plane delimited by the perpendicular bisector of σi not containing the origin.

Now, since the function t 7→ dist(O, γ(t)) is nonincreasing, the points pj and qj , and so their
barycenter mj , belong to the disk of radius |Oqi| < |Omi| centered at the origin. Therefore, the
points pj and mj lie in Hmi

, and dist(O,mi) > max{dist(O, pj), dist(O,mj)}. From Lemma 4.1
(Essential disjointness of ∆x, ∆y), the segments ∆pj

and ∆mj
lie in Hmi

and do not intersect
its boundary. Therefore, their endpoints π(pj) and π(mj) also lie in the interior Hmi

. �

The total length of the horizontal segments satisfies the following upper bound.



SELF-CONTRACTED PLANAR CURVES AND GRADIENT ORBITS OF CONVEX FUNCTIONS 11

O

mi

pi

qi

Dmi

Lmi

S(0, λR)

Figure 4.

Lemma 4.5 (Total horizontal length upper bound). If {σi}
k+1
i=1 is a polygonal approximation of

γ in the annulus A, cf. Definition 3.3, then

∑

i∈H

length(σi) ≤
8π

1 − λ
∆R

where H is the set of indices corresponding to the horizontal segments.

Proof. From Lemma 4.3 (Length estimate for horizontal segments), the sum of the lengths of
the horizontal segments σi pointing in the positive direction satisfies

∑

i∈H+

length(σi) ≤
2

λ

∑

i∈H+

length(π([pi,mi])),

where H+ is the set of indices corresponding to the horizontal segments pointing in the positive
direction. Since the arcs π([pi,mi]) of the circle S(0, λR) are disjoint, cf. Lemma 4.4, we have

∑

i∈H+

length(π([pi,mi])) ≤ 2πλR.

Analogous arguments lead to a similar bound for the sum of the lengths of the horizontal
segments σi pointing in the negative direction. Recalling that ∆R = (1−λ)R the result follows.

�

5. Proof of the main result

In order to prove our main theorem (cf. Theorem 1.3), we shall first need the following result.

Proposition 5.1 (Length estimate in the annulus A). Every continuous self-contracted planar

curve γ converging to the origin O satisfies

length(γ ∩ A) ≤ (8π + 2) ∆R.

Proof. Consider a decomposition of γ into segments σi as in Definition 3.3 (refining a subdi-
vision does not decrease the sum). From Lemma 3.5 (Total vertical length upper bound) and
Lemma 4.5 (Total horizontal length upper bound), the length L of the polygonal line σ1σ2 · · · σk
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satisfies

L =
∑

i∈H

length(σi) +
∑

i∈V

length(σi)

≤

(
8π

1 − λ
+

2

cos α

)
∆R.

By taking the supremum of L over all such decompositions respecting the annulus A, we derive
the same upper bound for the length of γ ∩A. Finally, by letting α and λ go to zero, we obtain

length(γ ∩ A) ≤ (8π + 2) ∆R.

�

Now, we can derive our main result.

Proof of Theorem 1.3. From Corollary 2.3, the bounded continuous self-contracted curve γ con-
verges to a point. Using a translation if necessary, we can assume that this point agrees with
the origin O of R2.

Let t− = inf I. Denote by γ(t−) the limit of γ(t) when t goes to t−, (cf. Proposition 2.2
(Existence of left/right limits)). Set R0 = dist(O, γ(t−)). For i ∈ N, let Ai be the planar
annulus centered at the origin with outer radius Ri and inner radius Ri+1, where Ri+1 = λRi,
with λ ∈ (0, 1) given in (4.1). From Proposition 5.1 (Length estimate in the annulus), we have

length(γ ∩ Ai) ≤ (8π + 2) ∆Ri (5.1)

where ∆Ri is the width of Ai. Since λ < 1, the sequence Ri goes to zero and the sum of the width
of the disjoint annulus Ai is equal to R0. Thus, taking the sum of the above inequalities (5.1)
for i ∈ N we obtain the desired bound

length(γ) ≤ (8π + 2) dist(O, γ(t−)).

The proof is complete. �

6. Gradient and subgradient systems, and convex foliations

In this section, we apply Theorem 1.3 to derive length estimates, first for orbits of dynamical
systems of gradient or subgradient type, then for orbits orthogonal to a convex foliation. The key
fact is to observe that in some interesting particular cases (for instance, f convex or quasiconvex)
these curves are self-contracted. Recall however that this is not the case for gradient dynamical
systems defined by a general C∞ function, as already observed in Remark 2.4 (iv).

6.1. Gradient dynamical system – quasiconvex case. Let f : Rn → R be a Ck function
(k ≥ 1), x0 ∈ Rn and consider the Gradient Dynamical System

{
γ̇(t) = −∇f(γ(t)), t > 0

γ(0) = x0 ∈ Rn.
(6.1)

It follows directly from the standard theory of Ordinary Differential Equations (see [12], for
example) that the system (6.1) admits a solution (trajectory) γ : I 7−→ Rn, where I ⊂ [0, +∞),
which is a curve of class Ck−1. Note that the case k = 1 corresponds to mere continuity of γ,
while for k > 1 (or more generally, if f is assumed C1,1, that is, ∇f is Lipschitz continuous),
the trajectory γ is unique. In the sequel, we shall always consider maximal solutions of (6.1),
that is, for which I = [0, T ), where T > 0 is the maximal time such that γ is defined in [0, T ).
We shall refer to them as orbits of the gradient flow of f .

We will also need the following definition.
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Definition 6.1 (Convex, quasiconvex and coercive functions). A function f : Rn → R is called
convex (respectively, quasiconvex ) if its epigraph

epi f := {(x, y) ∈ Rn+1 | f(x) ≤ y}

is a convex subset of Rn×R (respectively, if for every y ∈ R the sublevel set {x ∈ Rn | f(x) ≤ y}
is a convex subset of Rn). A function f is called coercive (or proper), if its level sets are bounded,
or equivalently, if

lim
‖x‖→+∞

f(x) = +∞. (6.2)

It is straightforward to see that whenever f is coercive the corresponding flow orbits are
bounded curves and therefore I = [0, +∞) (the trajectories are defined for all t ≥ 0). Notice in
particular that the function

t 7−→ f(γ(t)), t ∈ [0, +∞)

is a natural Lyapunov function for the orbits of the flow, i.e. it is nonincreasing along the
trajectories. Moreover, unless γ meets a critical point (i.e. ∇f(γ(t∗)) = 0 for some t∗ ∈ [0, +∞)),
the function defined in (6.1) is decreasing and γ is injective.

Let us finally recall (e.g. [9, Theorem 2.1]) that a (differentiable) function f : Rn → R is
quasiconvex if and only if for every x, y ∈ Rn the following holds:

〈∇f(x), y − x〉 > 0 ⇒ f(y) ≥ f(x). (6.3)

We are now ready to establish the following result.

Proposition 6.2 (Quasiconvex orbits are self-contracted curves). The orbits of the gradient

flow of a quasiconvex C1,1 function are self-contracted curves.

Proof. Let γ : I 7−→ Rn be an orbit of the gradient flow of f . Let 0 ≤ t ≤ t1 be in I and consider
the function

g(t) =
1

2
||γ(t) − γ(t1)||2, t ∈ I.

In view of (6.1), we easily deduce that

g′(t) = 〈∇f(γ(t)), γ(t1) − γ(t)〉.

If g′(t) > 0 for some t ∈ [0, t1), then the quasiconvexity of f would imply that f(γ(t1)) ≥ f(γ(t))
(see (6.3)), which in view of (6.1) would yield that γ(t′) = γ(t1) for all t′ ∈ [t, t1] and ∇f(γ(t)) =
0, a contradiction. Thus, g is nonincreasing in the interval [0, t1], which proves the assertion. �

The following corollary is a straightforward consequence of the previous proposition and
Theorem 1.3 (Main result).

Corollary 6.3 (Orbits of a gradient quasiconvex flow). Let f : R2 → R be a coercive C1,1

quasiconvex function. Then, for every x0 ∈ R2, the orbit of the gradient flow (6.1) converges

and has finite length.

6.2. Subgradient dynamical systems - convex case. A convex function is a particular
case of a quasiconvex function. Therefore, Corollary 6.3 implies that the orbits of the gradient
flow of C1,1 convex functions are of finite length. It is well-known ([6]) that in the case of a
(nonsmooth) convex function f : Rn → R (or more generally, for a semiconvex function [10]), the
gradient system (6.1) can be generalized to the following differential inclusion, called Subgradient
Dynamical System {

γ̇(t) ∈ −∂f(γ(t)) a.e. t ∈ [0, +∞),
γ(0) = x0 ∈ Rn,

(6.4)
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where ∂f is the set of the subgradients (subdifferential) of f. If f : Rn → R is convex, then this
latter set is defined as

∂f(x) = {p ∈ Rn | f(y) ≥ f(x) + 〈p, y − x〉, ∀y ∈ Rn} for all x ∈ Rn .

The above formula defines always a nonempty convex compact subset of Rn, and reduces to
{∇f(x)} whenever f is differentiable at x, cf. [8]. It is also known that (6.4) has a unique
absolutely continuous solution γ : [0, +∞) → Rn, that is, the derivative γ̇(t) = d

dtγ(t) exists
almost everywhere and for every 0 ≤ t1 ≤ t2,

γ(t2) = γ(t1) +

∫ t2

t1

γ̇(t) dt .

The analogous of Proposition 6.2 holds true.

Proposition 6.4 (Subgradient convex flow orbits are self-contracted curves). Let f : Rn → R

be a convex continuous function. Then, for every x0 ∈ Rn, the trajectory γ of the subgradient

system (6.4) is a self-contracted curve.

Proof. We give a sketch of proof for the reader convenience (we refer to [6] for details). It is
easy to prove that t ∈ [0, +∞) 7→ f(γ(t)) is convex and that for almost all t ≥ 0 we have

d

dt
f(γ(t)) = −||γ̇(t)||2 ≤ 0.

Therefore t 7→ f(γ(t)) is nonincreasing and γ(t) ∈ {f ≤ f(x0)} is bounded. Moreover, for all
t1 > 0 and for almost all t ∈ [0, t1]

1

2

d

dt
||γ(t) − γ(t1)||2 = 〈γ̇(t), γ(t) − γ(t1)〉 ≤ f(γ(t1)) − f(γ(t)) ≤ 0.

This implies that t ∈ [0, t1) 7→ ||γ(t)−γ(t1)||2 is nonincreasing yielding that γ is a self-contracted
curve. �

When n = 2, we have the following generalization of Theorem 1.1.

Corollary 6.5 (Orbits of a subgradient convex flow). Let f : R2 → R be a convex continuous

function which admits a minimum. Then, for every x0 ∈ R2, the orbit of the gradient flow (6.4)
converges and has finite length.

6.3. Trajectories orthogonal to a convex foliation. In this section we consider orbits that
are “orthogonal” to a convex foliation. Let us introduce the definition of the latter. (For any
subset C ⊂ R2, int C denotes the interior of C and ∂C its boundary.)

Let {Cα}α∈[0,A] (where A > 0) be a family of subsets of R2 such that

(i) For all α ∈ [0, A], Cα is convex compact

(ii) If α > α′, then Cα ⊂ int Cα′ ,

(iii) For every x ∈ C0 \ int CA, there exists a unique α ∈ [0, A] such that x ∈ ∂Cα.

(6.5)

We shall refer to the above as a foliation made up of convex surfaces. We shall now define a notion
of “orthogonality” for an orbit γ with respect to this foliation. To this end, let T ∈ (0, +∞] and
γ : [0, T ) → R2 be an absolutely continuous curve. We say that the curve γ is “orthogonal” to
the foliation defined in (6.5) if the following conditions hold:

(i) for every t ∈ [0, T ), there exists α ∈ [0, A] such that γ(t) ∈ ∂Cα,

(ii) for almost all t ∈ (0, T ), if γ(t) ∈ ∂Cα, then for all x ∈ Cα, 〈γ̇(t), x − γ(t)〉 ≥ 0,

(iii) if t′ > t and γ(t) ∈ Cα, then γ(t′) ∈ Cα.

(6.6)
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Condition (ii) in (6.6) is a nonsmooth generalization of orthogonality: if ∂Cα is smooth at γ(t)
and γ is differentiable at t then γ̇(t) is orthogonal to the tangent space of ∂Cα at γ(t). Further,
condition (iii) guarantees that the curve γ(t) enters into each convex set of the foliation. In this
context, one has the following result.

Proposition 6.6 (Orbits orthogonal to a convex foliation). The curve γ is a bounded self-

contracted curve, thus, of bounded length.

Proof. The curve γ is clearly bounded. Let 0 ≤ t1 < T . Then, for almost all t ∈ [0, t1], we have

1

2

d

dt
||γ(t) − γ(t1)||2 = 〈γ̇(t), γ(t) − γ(t1)〉. (6.7)

By (6.6) (i), we have γ(t) ∈ ∂Cα for some α. By (6.6) (iii) and since t1 ≥ t, we also have
γ(t1) ∈ Cα. Therefore, (6.6) (ii) implies that the right-hand side of (6.7) is nonpositive. It
follows that t ∈ [0, t1] 7→ ||γ(t) − γ(t1)||2 is nonincreasing and γ is self-contracted. Applying
Theorem 1.3 finishes the proof. �

Remark 6.7. (i) The sublevel sets of a continuous quasiconvex function need not define a
convex foliation. Indeed, consider the quasiconvex function f : [−2, 2] → R given by

f(x) =





x, if − 2 ≤ x ≤ 0,
0, if 0 ≤ x ≤ 1,

x − 1, if 1 ≤ x ≤ 2.

Then the sublevel sets of f do not define a foliation on [−2, 2] ⊂ R since property (iii) of (6.5)
fails at the level set [f = 0]. This drawback appears whenever the level sets of such functions have
“flat” parts outside the set of their global minimizers. Actually, it follows from [9, Theorem 3.1]
that the sublevel sets of a continuous quasiconvex coercive function f define a convex foliation
if and only if the function is semi-strictly quasiconvex. (We refer to [9] for the exact definition
and basic properties of semi-strictly quasiconvex functions.)

(ii) Let f : R2 → R be a coercive C1,1 quasiconvex function and γ : [0, +∞) → R2 be the
solution of (6.1). Let x∞ be the limit of γ(t) as t → +∞ and assume that f has no critical
point in {f(x∞) < f ≤ f(x0)}. Then, it is not difficult to see that {f ≤ α}α∈[f(x∞),f(x0)] is a

family of C1 convex compact subsets which satisfies (6.5) (in fact, f is semi-strictly quasiconvex
in [f(x∞), f(x0)]) and γ satisfies (6.6).

(iii) Despite the first remark, Proposition 6.6 can be used to obtain the result of Corollary 6.3
without the extra assumption made in the second remark. The reason is that the trajectory
of the gradient flow will not pass through the flat parts of f anyway (if it does, then it stops
there). We leave the technical details to the reader.

7. Two counter-examples

7.1. Absence of Convexity. The second conclusion of Corollary 6.3 fails if f is not quasicon-
vex, even when the function is C∞ and has a unique critical point at its global minimum. Let
us give an explicit example below:

Define a function f : R2 → R in polar coordinates as

f(r, θ) = e−1/r(1 + r + sin(1
r + θ))

with f(O) = 0. The graph of f in the plane θ = 0 looks like the graph of Fig. 5.
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Figure 5.

One can check that f is smooth, positive away from O, with no critical point except at the
origin. The gradient trajectory of f issued from the point (r, θ) = ((3π

2 )−1, 0) remains close to
the spiral given by {

r =
(

3π
2 + t

)−1

θ = −t

where t runs over [0,∞). Therefore, it converges to the origin and its length is infinite.

7.2. Thom conjecture fails for convex functions. Let f : R2 → R be a convex continu-
ous function which admits a minimum. Then, Corollary 6.5 guarantees that the orbits of the
gradient flow of f have finite length (thus, a fortiori, are converging to the global minimum of
f). However, it may happen that each orbit turns around its limit infinitely many times. In
particular the corresponding statement of the Thom conjecture fails in the convex case.

We construct below a counter-example using a technique due to D. Torralba [18] which allows
us to build a convex function with prescribed level-sets given by a sequence of nested convex
sets. Let us recall his result.

For any convex set C ⊂ Rn, the support function of C is defined as δC(x∗) = supx∈C〈x, x∗〉
for all x∗ ∈ Rn. Let {Ck}k∈N be a decreasing sequence of convex compact subsets of R2 such
that Ck+1 ⊂ int Ck. Set

Kk = max
||x∗||=1

δCk−1
(x∗) − δCk

(x∗)

δCk
(x∗) − δCk+1

(x∗)
.

Then Torralba’s theorem [18] asserts that for every real sequence {λk}k∈N satisfying

0 < Kk(λk − λk+1) ≤ λk−1 − λk for every k ≥ 1, (7.1)

there exists a continuous convex function f such that for every k ∈ N, {f ≤ λk} = Ck. Moreover,
λk converges to min f and, for any k ≥ 0 and λ ∈ [λk+1, λk], we have

{f ≤ λ} =

(
λ − λk+1

λk − λk+1

)
Ck +

(
λk − λ

λk − λk+1

)
Ck+1 (7.2)

(i.e., the level-sets of f are convex interpolations of the two nearest prescribed level-sets).

Step 1. Constructing a first piece of trajectory. Consider the finite decreasing sequence of convex
sets C0 = B(O, 1), C1 = B(O, 0.9), C2 = E, C3 = B(O, 0.6) and C4 = B(O, 1/2) where E is a
compact set bounded by an ellipse (see Fig. 6). It is easy to find a sequence {λk} which satisfies
(7.1): set K = max{K1,K2,K3,K4} + 1 > 1 (since C ′ ⊂ int C implies δC > δC′), take λ0 = 1,
λ1 = 1/2 and

λk − λk+1 =
1

Kk
(λ0 − λ1). (7.3)
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Figure 6.

We then obtain a positive function f0 : C0 → R with argmin f0 := {f0 = min f0} = C4. Consider
the subgradient trajectory γ0 starting from the point A0 of C0 (see Fig. 6). It reaches A4 ∈ ∂C4.
From (7.2) this trajectory is radial (pointing towards the origin) between ∂C0 = {f0 = λ0} and
∂C1 = {f0 = λ1} and between ∂C3 = {f0 = λ3} and ∂C4 = {f0 = λ4}. Due to the presence

of the ellipse C2, the trajectory deflects with an angle θ := Â0OA4 > 0 in the clockwise direction.

Step 2. Construction of the function from the previous step. Consider the transformation
T = r ◦ h, where h is the homothety of center O and coefficient 1/2 and r is the rotation of
center O and angle θ. We define, for all k ∈ N and k̄ ∈ {0, 1, 2, 3}

Ck = T [k/4](Ck) where [k/4] is the integer part of k/4 and k = k (modulo 4)

(see Fig. 7 for the first steps of the construction).
The sequence of convex sets {Ck} satisfies the assumptions of Torralba’s theorem and we can
define a sequence {λk} as in (7.3) which satisfies (7.1) (note that {Kk} is 4–periodic since, for
all convex set C ⊂ R2 and x∗ ∈ R2, δT (C)(x

∗) = 1
2δC(r−1(x∗))). We obtain a convex continuous

function f : C0 → R+ with argmin f = {O}. The trajectory starting from the top of C0 spirals
around the origin and converges to O (see Fig. 7 where the beginning of the trajectory is drawn
with a deflection of 3θ).

Step 3. Smoothing f . Actually, the function f built above is C∞ except at the origin and at
the boundaries ∂Ck. It is possible to smooth out f in order to obtain a function which is C∞

everywhere except at the origin and Cm at the origin (for any fixed m ≥ 1). The smoothing
procedure is quite involved from a technical point of view and is omitted. We refer the interested
reader to [5, Section 4.3] where such a smoothing is realized (in a different context). This
procedure does not modify significantly neither the function nor its gradient trajectories (i.e.
they remain a spiral). This concludes the construction.
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Figure 7.
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