Fonctions L d'Artin et nombre de Tamagawa motiviques

Abstract : In the first part of this text, we define motivic Artin L-fonctions via a motivic Euler product, and show that they coincide with the analogous functions introduced by Dhillon and Minac. In the second part, we define under some assumptions a motivic Tamagawa number and show that it specializes to the Tamagawa number introduced by Peyre in the context of Manin's conjectures about rational points of bounded height on Fano varieties.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00315608
Contributor : David Bourqui <>
Submitted on : Friday, August 29, 2008 - 11:36:09 AM
Last modification on : Friday, November 16, 2018 - 1:22:38 AM
Document(s) archivé(s) le : Thursday, June 3, 2010 - 7:11:02 PM

Files

bourqui_tamagawa_motivique_080...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00315608, version 1
  • ARXIV : 0808.4058

Citation

David Bourqui. Fonctions L d'Artin et nombre de Tamagawa motiviques. New York Journal of Mathematics, Electronic Journals Project, 2010, 16, pp.179-233. ⟨hal-00315608⟩

Share

Metrics

Record views

256

Files downloads

82