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Abstract 

Background 

Protein secretion is a universal cellular process involving vesicles which bud and fuse 

between organelles to bring proteins to their final destination. Vesicle budding is mediated by 

protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and 

SNARE complexes. The Génolevures II sequencing project made available entire genome 

sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, 

Kluyveromyces lactis and Candida glabrata. Y.lipolytica is a dimorphic yeast and has good 

capacities to secrete proteins. The translocation of nascent protein through the endoplasmic 

reticulum membrane was well studied in Y.lipolytica and is largely co-translational as in the 

mammalian protein secretion pathway. 

Results 

We identified S.cerevisiae proteins involved in vesicular secretion and these protein 

sequences were used for the BLAST searches against Génolevures protein database 

(Y.lipolytica, C.glabrata, K.lactis and D.hansenii). These proteins are well conserved between 

these yeasts and Saccharomyces cerevisiae. We note several specificities of Y.lipolytica 

which may be related to its good protein secretion capacities and to its dimorphic aspect. An 

expansion of the Y.lipolytica Rab protein family was observed with autoBLAST and the 

Rab2- and Rab4-related members were identified with BLAST against NCBI protein 

database. An expansion of this family is also found in filamentous fungi and may reflect the 

greater complexity of the Y.lipolytica secretion pathway. The Rab4p-related protein may play 

a role in membrane recycling as rab4 deleted strain shows a modification of colony 

morphology, dimorphic transition and permeability. Similarly, we find three copies of the 

gene (SSO) encoding the plasma membrane SNARE protein. Quantification of the 



percentages of proteins with the greatest homology between S.cerevisiae, Y.lipolytica and 

animal homologues involved in vesicular transport shows that 40% of Y.lipolytica proteins are 

closer to animal ones, whereas they are only 13% in the case of S.cerevisiae. 

Conclusion 

These results provide further support for the idea, previously noted about the endoplasmic 

reticulum translocation pathway, that Y.lipolytica is more representative of vesicular secretion 

of animals and other fungi than is S.cerevisiae. 

 

Background 

Yarrowia lipolytica is a hemiascomycetous dimorphic yeast, generally regarded as safe 

(GRAS), which has been used for biotechnological applications. It is able to produce large 

amounts of several metabolites such as citric acid and to secrete a variety of extracellular 

proteins (alkaline or acid proteases, RNase, lipases etc.) [1]. Its good protein secretion 

capacities have allowed the engineering of powerful heterologous protein expression systems 

[reviewed in 2]. Y.lipolytica is also a conveniently tractable model organism, of which the 

secretion pathway was studied for several years in our laboratory [3]. We focused on the early 

steps of protein translocation in the endoplasmic reticulum [4, 5, 6, 7, 8], on the quality 

control of protein folding [9] and on the glycosylation pathway [10]. Several genes involved 

in these steps were cloned and analysed. 

The results of the Génolevures II sequencing project of four hemiascomycetous yeasts [11] 

allowed us to search for proteins involved in the secretion pathway of Y.lipolytica and we 

compared them to the proteins of the three other yeasts, Candida glabrata, Kluyveromyces 

lactis and Debaryomyces hansenii. C.glabrata has become the second most common cause of 

candidiasis after Candida albicans. C.glabrata is not dimorphic, in contrast to other Candida 



species, and is phylogenetically closer to Saccharomyces cerevisiae [12]. K.lactis is less 

closely related to S.cerevisiae and has the capacity to grow on lactose as a sole carbon source, 

it has been used for industrial applications [13, 14]. D.hansenii is a cryotolerant marine yeast 

which grows at salinities up to 24%. D.hansenii is the most common yeast found in cheese 

and provides proteolytic and lipolytic activities during cheese ripening [15]. In this work, we 

first established the list of proteins, predicted from whole genome analysis, which are 

potentially involved in vesicular transport in Y. lipolytica. Candidates were identified through 

BLAST searches against S. cerevisiae protein sequences. We then search for homologues of 

these proteins in the predicted protein set encoded by the three other genomes. Among the 

differences observed, we noticed a number of plasma membrane SNARE proteins (three 

Ssop) in Y.lipolytica compared to the four other yeasts. S.cerevisiae and C.glabrata have two 

SSO genes whilst in K.lactis and D.hansenii, we detected only one gene. We finally focused 

on one specific feature of the Y.lipolytica secretory pathway, namely the existence of a Rab4-

related protein. In mammalian cells, the GTP binding protein Rab4p is involved in the 

regulation of plasma membrane protein recycling [16]. A Rab4-related protein is also found in 

Schizosaccharomyces pombe and in filamentous fungi such as Neurospora crassa, 

Aspergillus fumigatus or Phaenerochaete chrysosporium but is absent from S.cerevisiae, 

Candida albicans [17] and the three other hemiascomycetous yeasts. We constructed a strain 

of Y.lipolytica deleted for the RAB4 gene and analysed its phenotypic pattern. 

 

Results and discussion 

Vesicle-mediated protein transport pathways 

The only membrane that a secretory protein must traverse is the membrane of the 

endoplasmic reticulum, the transport of the protein to its final destination continues through 



vesicles which bud and fuse between organelles [for reviews: 18, 19]. Vesicle budding is 

mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering 

factors and SNARE complexes.  

 

Vesicle budding 

Protein coats (see Additional file 1): 

 

Endoplasmic reticulum to Golgi transport 

Endoplasmic reticulum to Golgi transport is mediated by the action respectively of the COPII 

and COPI coat complexes [20, 21, 22, 23 for reviews]. The COPII coat is assembled on the 

endoplasmic reticulum membrane and allows cargo selection and membrane budding [24]. 

The COPI complex is involved in retrieval of recycled proteins back to the endoplasmic 

reticulum [25]. COP I subunits could also have a role in vacuolar sorting [26]. 

 

COPII coat vesicles (see Additional file 2-1) 

Vesicle budding is initiated by the activation of the GTPase Sar1p by the endoplasmic 

reticulum integral membrane guanine exchange factor Sec12p [27, 28]. Sar1p initiates 

membrane curvature [29, for mammalian Sar1p see 30]. The membrane-bound Sar1p-GTP 

recruits the heterodimer complex Sec23p-Sec24p. These pre-budding complexes are gathered 

by the Sec13p-Sec31p complex into nascent vesicles [see 31: the mammalian Sec13p-Sec31p 

structure]. The Sec23p subunit activates the hydrolysis of GTP by Sar1p and reverses the 

assembly process. Sec16p stabilizes the coat against premature disassembly after Sar1p 

hydrolyses GTP [32]. Using fluorescence resonance energy transfer to monitor the assembly 

and disassembly of COPII coat, it was suggested that a kinetically stable prebudding complex 



was maintained during multiple Sar1p GTPase cycles [33]. In S.cerevisiae, there are one 

Sec23p, one Sec23p-related protein, one Sec24p, two Sec24p-related proteins (Sfb2p and 

Sfb3p) and one Sec12p homologue (Sed4p). In Y.lipolytica and D.hansenii, all the COP II 

coat components are well conserved and we find two Sec23p-homologues, two Sec24p-

homologues but no Sed4p proteins. In C.glabrata, there are two Sec23p-homologues, three 

Sec24p-homologues and two Sec13p-homologues and in K.lactis we found the same proteins 

as in S.cerevisiae with the exception of Sfb2p and Sed4p. 

 

COP I coat vesicles (see Additional file 2-2) 

The COP I coat assembles by the same process as COP II complex involving an Arfp-GTPase 

[for a review about Arf1p : 34; mammalian Arf1p : 35; mammalian COPI assembly review: 

36]. All the S.cerevisiae components are conserved in Y.lipolytica, though the Y.lopolytica 

Sec28p is only weakly related to the S.cerevisiae protein. In K.lactis, the Arf1 protein 

homologue was not identified but another Arf protein could play the role of Arf1p (see 

Additional file 2-12). 

 

Post-Golgi transport 

In the trans-Golgi network, the proteins are sorted to the plasma membrane, the 

endosomal/vacuolar system or recycled back from the endosome. Coated vesicle adaptors 

facilitate cargo selection [for reviews: 19, 37].  

 

Adaptor protein complex (see Additional file 2-3) 

In S.cerevisiae, by homology to the mammalian adaptor protein (AP) subunit sequences, three 

potential heterotetrameric adaptor protein complexes have been identified [38]. Each complex 

is composed of two large (Aplp), one medium (Apmp) and one small (Apsp) subunits. The 



AP-1 complex is associated with clathrin-coated vesicles and is involved in retention of late 

Golgi membrane proteins [39] and trafficking to the vacuole [40]. This complex is alone able 

to associate with clathrin [38, 41]. Unlike the mammalian AP-2 complex which associates 

with endocytic clathrin-coated vesicles, the AP-2 complex of S.cerevisiae is apparently not 

involved in endocytosis. The AP-3 complex is involved in independent clathrin-coated vesicle 

transport of membrane proteins from Golgi to vacuoles [42]. In Y.lipolytica, we also identified 

three potential AP complexes. As in S.cerevisiae, two AP-1 medium subunits were found, but 

only two small subunits could be identified which could correspond to the AP-2 and AP-3 

small subunits. The three other yeasts have the same set of proteins as S.cerevisiae for their 

adaptor protein complexes. 

 

GGA proteins (Golgi-localized, γγγγ ear-containing, ARF-binding proteins) (see Additional 

file 2-3) 

GGA proteins are implicated in Golgi to endosomes clathrin-coated vesicle transport and bind 

to ubiquitin to facilitate this sorting [43, 44]. In S.cerevisiae, the GGA gene is duplicated but 

in the four yeasts studied, as in C. elegans and D. melanogater, there is only one gene: GGA2 

which, evolutionary, is closer to the hypothetical common ancestor [45]. 

 

Synaptojanin-like protein (see Additional file 2-3) 

The S.cerevisiae Inp53p, a synaptojanin-like protein acts together with the AP-1 complex in 

the Golgi to endosome clathrin-dependant pathway which is distinct from the direct Golgi to 

prevacuolar compartment mediated by GGA proteins [46]. 

 

Retromer complex (see Additional file 2-4) and sorting nexins (see Additional file 2-5) 



Sorting nexins play a role in retrieval of proteins from the prevacuolar compartment or post-

Golgi endosomes and different nexins operate in different classes of endosomes [reviewed in 

47, 48, 49]. The sorting nexins Snx4p, Snx41p and Snx42p are required for the retrieval of the 

SNARE Snc1p from the post-Golgi endosome; Grd19p and the retromer complex are 

involved in the retrieval of endosomal SNARE Pep12p from the prevacuolar compartment 

[50].The retromer complex consists of five proteins: Vps5p, Vps17p, two sorting nexins 

which form a dimer and associate with the complex formed by Vps26p, Vps29p and Vps35p 

[see 51, 52 for mammalian retromer complex structure]. 

 

Vesicle targeting and fusion 

RabGTPase (see Additional file 3 and Additional file 2-6) 

Rab proteins are small monomeric guanosine triphosphatase (GTPase) which are membrane-

associated and cycle between an active GTP-bound state and an inactive GDP-bound protein. 

These switches regulate all the steps in the secretion pathway. Mammalian Rab proteins 

belong to the Ras superfamily of GTPase. All the members of this superfamily have 

conserved nucleotide, phosphate and magnesium binding sequences but the Rab sequences 

can be distinguish by their C-terminal prenylation site and five Rab-specific regions (RabF) 

[53]. Pereira-Leal and Seabra [53] have also identified Rab subfamily specific regions 

(RabSF). They studied the evolution of the Rab family [54] and by their analysis, they 

observed that Rab proteins co-segregating in the phylogenetic trees showed a pattern of 

similar cellular localisation and/or function. In S.cerevisiae, Ypt1p, Ypt31p/32p and Sec4p 

are the essential Rab GTPases which regulate the exocytic pathway and Ypt6p, Ypt7p and 

Ypt51p/52p/53p are involved in the endocytic pathway. S.cerevisiae also has two other Rab 

GTPase, Ypt10p and Ypt11p which are also present in C.glabrata and we can find Ypt11p in 

K.lactis. Ypt10p seems to be involved in endocytic function and Ypt11p is required for 



endoplasmic reticulum inheritance [55]. In C.glabrata, a Ypt53p homologue could not be 

identified and in K.lactis it is Ypt32p which was not found. In Y.lipolytica, we can find 

homologues of the nine S.cerevisiae proteins necessary for the secretion pathway. Ypt10p and 

Ypt11p are absent but we can find two other Rab-related proteins, Rab2p and Rab4p as in the 

filamentous fungi [17]. The analysis of the phylogenic tree (Fig.1) obtained after alignment of 

several human Rabp, S.cerevisiae and Y.lipolytica Yptp sequences revealed that human 

Rab1p, Rab2p, Rab4p, Rab5p and Rab11p cosegregate with Y.lipolytica proteins. As N.crassa 

[56] and other filamentous fungi, Y.lipolytica has a large protein secretion capacity and is able 

to switch from a yeast life cycle to a filamentous form in response to environmental 

conditions; in this latter form it needs a better capacity of secretion and of recycling plasma 

membrane material. In mammalian cells, Rab2p has been proposed to regulate the retrograde 

transport between the Golgi and the endoplasmic reticulum [57] and Rab4p is involved in the 

recycling of plasma membrane proteins [see 16, 58 for a review about recycling pathways]. 

The comparison of the mouse, rat, human, N.crassa, Schizosaccharomyces pombe and 

Y.lipolytica sequences (Fig.2 and Additional file 4) shows that the nucleotide, phosphate and 

magnesium binding regions, the RabF and RabSF sequences are well conserved. We also 

compared these Rab4p sequences with other proteins of the mammalian Ras superfamily (data 

not shown) and we identified a sequence GIQYG next to the RabSF4 region, and particularly 

the tyrosine residue only present in the Rab4p sequences. The analysis with the NetPhos 

program (CBS prediction server) identified this tyrosine as a potential phosphorylation site. 

We suggest that this tyrosine could be important in the regulation of Rab4p activity. In order 

to get more information about this filamentous fungi specificity, we analysed the effects of a 

deletion of the gene coding for the Y.lipolytica Rab4-related protein. This deletion showed 

only slight phenotypic changes. The aspect of the colony on rich medium plate was slightly 

different (Fig.3). The ability to make the dimorphic transition was not impaired but at OD600 



of 10, we quantified that the percentage of cells undergoing a dimorphic transition for the 

wild type strain was 74% and 38% for the mutant strain and the cells in the yeast form had a 

more spherical appearance in the mutant strain than in the wild type and aggregated more 

readily (Fig.4). The round morphological aspect is also observed in the Y.lipolytica rac 

mutant, the Rac protein is another member of the Ras superfamily which is implicated in the 

induction of the hyphal growth [59]. The slight differences in the morphology of the mutant 

strains suggested a potential modification of the wall composition. This was confirmed by the 

increased sensitivity of the strain to calcofluor white (Fig.5), implicating an increase in chitin 

composition of the wall. We also observed a decrease in the sensitivity to SDS (Fig.5) 

suggesting a decrease in the porosity of the wall. These two events are also encountered when 

the genes coding for a heterotrimeric G-proteins of Aspergillus nidulans are mutated, these 

mutations in this filamentous fungus confer resistance to the antifungal plant PR-5 

(Pathogenesis-Related) protein [60]. We suggest that the Y.lipolytica Rab4 protein could be 

important to recycle the receptor associated with a heterotrimeric G-protein. The mutant 

Y.lipolytica rab4 strains were able to produce diploids as well as the wild type strain (data not 

shown) indicating that the recycling of the pheromone receptor, associated with a G-protein, 

was not impaired. The Y.lipolytica Rab4p does not regulate endocytosis as the incorporation 

of FM4-64 was the same as the wild type strain compared to a sls2 mutant strain in which the 

FM4-64 incorporation is delayed (Fig.6). Y.lipolytica Sls2p is homologous to the S.cerevisiae 

Rcy1p which plays a role in the recycling pathway (see “The vesicle-SNARE Snc1p 

recycling” section below). 

 

Regulation of Rab-GTPase [for reviews see 61, 62, 63, 64] 

Rab proteins cycle between cytosolic inactive GDP-bound form and active membrane 

associated GTP-bound form. The cytosolic form exists in a complex with a GDP dissociation 



inhibitor (GDI). Post-translational prenylation of the protein is important for its activity and 

prenylated Rabp is recruited to the appropriate membrane by a GDI displacement factor 

(GDF) which catalyses the dissociation step. The nucleotide exchange is favoured by the 

guanine nucleotide exchange factor (GEF). GTP-bound Rabp is then activated and can 

interact with its effectors. The recycling of the Rab protein is stimulated by the GTPase 

activating protein (GAP) and the GDP-bound Rab protein is released from the membrane by 

GDI. 

 

Prenylation [65, see 66 for mammalian prenylation] (see Additional file 2-7) 

Most of Rab proteins contain two C-terminal cysteine residues which are isoprenylated with 

two geranylgeranyl moieties. This reaction is catalyzed by geranylgeranyl transferase II 

(GGTase II), this enzyme has two subunits, a third subunit, Rab escort protein (REP), is a 

chaperone. 

 

GDP dissociation inhibitor (GDI) (see Additional file 2-7) 

Gdi1p recycles the Yptp/Sec4p proteins from their target membranes back to the vesicular 

pool [67]. 

 

GDI displacement factor (GDF) (see Additional file 2-7) 

In vitro experiments with mammalian proteins identified that Yip3p catalyses the dissociation 

of endosomal Rab proteins from GDI [68]. The Yip family (Yip1p, Yip2p, Yip3p, Yip4p, 

Yip5p and Yif1p) are membrane proteins which interact with prenylated Rab proteins [69]. In 

S.cerevisiae, Yip1p has been identified through a two-hybrid screen as a protein interacting 

with Ypt1p and Ypt31p in their GDP form [70]. With a similar screen, Yif1p has been 



identified as a Yip1p-interacting protein [71]. These two proteins form an integral membrane 

complex that bind Ypt1p and is required for Golgi membrane fusion by interaction with the 

Golgi SNARE proteins [72]. Yos1p (Yip One Suppressor 1) associates with Yip1p-Yif1p 

complex [73]. This protein was only identified in D.hansenii. 

 

Guanine exchange factor (GEF) (see Additional file 2-7) 

The activation and membrane stabilisation of the Rab protein are accompanied by exchange 

of the GDP for the GTP, this activity being catalysed by the guanine exchange factor. Each 

GEF is specific for a Rab protein and seems to be recruited by the activated Rabp playing a 

role immediately upstream in the secretion pathway [74, 75]. The TRAPP I protein complex 

binds the COP II vesicles and activates Ypt1p by guanine exchange [76]. TRAPP II Trs120p-

Trs130p subunits join the TRAPP I complex to switch the GEF activity from Ypt1p to 

Ypt31p-Ypt32p acting in late Golgi [77, 78]. Sec2p [see 79 for the crystal structure and 80 for 

the crystal structure of the Sec2p/Sec4p complex] is a highly efficient guanine exchange 

factor of Sec4p [81], the Rabp essential for exocytosis [82, see 83 for Sec4p regulation 

cascade, 84 for Sec2p association with exocyst]. Vps9p is the Ypt51p GEF [85]. The 

Ric1/Rgp1p is the Ypt6p GEF [86], the BLAST against the S.cerevisiae proteins showed only 

one subunit in Y.lipolytica, Rgp1p, but by comparison with the D.hansenii protein we could 

identify a potential Y.lipolytica Ric1p. And Vps39p is the Ypt7p GEF [87]. 

 

GTPase activating protein (GAP) (see Additional file 2-7) 

The recycling of the Rab protein is favoured by the GTPase activating protein. In 

S.cerevisiae, eight GTPase activating proteins have been identified and are not specific for 

one Rab protein in in vitro experiments [Gyp1p, Gyp6p, Gyp7p: 88; Gyp2p, Gyp3p, Gyp4p: 

89; Gyp5p, Gyp8p: 90]. In the four yeasts, the Gyp3p homologue, Gyp4p was not identified. 



Gyl1p is Gyp-like protein interacting with Gyp5p involved in the control of polarized 

exocytosis [91], this protein has an homologue only in C.glabrata but not in the three other 

yeasts. 

 

Tethering factors (see Additional file 5), [reviewed in 92, 93, 94] 

The secretory vesicles are tethered to their target membrane by two classes of molecules: 

coiled-coil proteins able to form homodimeric complex as long as several times the diameter 

of the vesicle and large multisubunit complexes. 

 

Endoplasmic reticulum-cis-Golgi-network 

Several factors are involved in the tethering of vesicles to the Golgi, TRAPP complex (see 

Additional file 2-8), COG complex (see Additional file 2-9) and Uso1p (see Additional file 2-

10). TRAPP is associated with the Golgi and two forms of the complex exist: TRAPP I (7 

subunits) acts in the endoplasmic reticulum to Golgi transport and TRAPP II which contains 

the TRAPP I subunits together with three other proteins acts in Golgi traffic. In Y.lipolytica 

only two TRAPP II specific subunits were identified by comparison with the S.cerevisiae 

protein sequences but for the Trs65p we used the protein identified in D.hansenii to detect a 

potential Y.lipolytica protein. Both complexes are able to interchange guanine nucleotide on 

Ypt1p. In vitro, TRAPP I can bind COPII vesicles by binding the coat Sec23p subunit [95] 

and this could be the first event before interaction of the vesicle with its target [76]. The 

crystal structure of the mammalian Bet3p, the most conserved TRAPP protein, reveals a 

dimeric structure with hydrophobic channels and a covalent modification with a palmitate 

[96, 97], the crystallographic study of the complex Bet3p-Trs33p reveals specific interactions 

between these subunits [98]. This subunit could be responsible for the targeting and the 

anchoring in the Golgi membrane and could direct the other TRAPP components to the Golgi 



[96, 99]. Trs120p, a TRAPP II subunit, is required for vesicle traffic from the early endosome 

to the late Golgi [100]. Trs120p and Trs130p TRAPP II subunits are conserved from yeast to 

mammals; the Trs65p subunit is conserved only in some fungi and unicellular eukaryotes 

[101]. The other tethering factors, Uso1p, a long coiled-coil protein and the COG complex 

composed of eight subunits in S.cerevisiae are recruited before the last step of membrane 

fusion. Uso1p and the COG complex also have a function in sorting of endoplasmic 

reticulum-vesicles containing GPI-anchored proteins [see 102 for a review about differential 

ER exit] and in retrograde vesicular trafficking within the Golgi [reviewed in 103]. The Uso1 

protein consists of an N-terminal globular head region, a coiled-coil tail which mediates 

dimerisation and a C-terminal acidic region. The NCBI Conserved Domain Architecture 

Retrieval Tool has identified in the Y.lipolytica Uso1 protein the first two domains but not the 

C-terminal acidic region. When we compare the consensus sequence of this region with the 

Y.lipolytica sequence, only the last 50 residues of this domain are well conserved. The 

Saccharomyces cerecisiae and the mammalian COG complex are composed of eight subunits, 

a multiple of four subunits, as one the GARP and the exocyst complexes (see below), which 

could reflect an interaction with a four-component complex such as the trans SNARE 

complex [92]. In Y.lipolytica, only five subunits were identified as probable COG proteins by 

comparison with the S.cerevisiae proteins. Cog1p, Cog2p and Cog7p were not detected by 

BLAST searches but in mammals these proteins were identified by their function as their 

sequence similarity with the S.cerevisiae proteins is low [104]. Cog2p was found in 

D.hansenii and its sequence used to make the BLAST search with the Y.lipolytica proteins. 

This allowed the identification of a potential Y.lipolytica Cog2p homologue, but Cog1p and 

Cog7p were not found in Y.lipolytica, and in D.hansenii, Cog1p was not found. These 

proteins probably exist but should be identified by another means. 

 



Cis-Golgi-network-Endoplasmic reticulum (see Additional file 2-11) 

Dsl1p complex is a large complex composed of the peripheral endoplasmic reticulum 

membrane proteins Dsl1p, Dsl3p (Sec39p) and Tip20p [105, 106]. Dsl1p contains three 

domains, an N-terminal coiled-coil region of 200 aminoacids which interacts with Tip20p, a 

central highly acidic region of interaction with Ret2p and Ret1p (two COP I subunits) and a 

conserved C-terminal sequence which could recruit cytoskeletal elements [105]. The 200 

amino acid N-terminus from the Dsl1p protein identified in Y.lipolytica does not align with 

the S.cerevisiae sequence. Nevertheless the Y.lipolytica sequence also contains potential 

coiled-coil regions (as determined by the coiled-coil prediction program, NPS@:Network 

Protein Sequence Analysis, [107]). The Tip20p sequence of Y.lipolytica has only 19 % 

identities with the S.cerevisiae sequence. This could explain the divergent N-terminal 

sequence of Dsl1p which is involved in the interaction of the two proteins. Dsl1p, Tip20p and 

Dsl3p are required for the stability of the SNARE complex at the endoplasmic reticulum 

[106]. 

 

Golgi 

S.cerevisiae TRAPP II complex (see Additional file 2-8) is composed of ten subunits and 

could have a role in retrograde transport of Golgi vesicles [108]. The trs130 mutant (coding 

for a TRAPP II subunit) displays synthetic interaction with mutation in a COPI subunit 

(Ret2p) and a deletion of ARF1 (see Additional file 2-12) is implicated in COPI formation 

[108]. 

A role of the COG complex (see above) has also been found in retrograde transport to early 

Golgi vesicles [109]. 

The VFT/GARP complex (see Additional file 2-13) localizes to the trans-Golgi network and 

is required for retrograde traffic from early endosomes to the Golgi [110, 111]. The 



S.cerevisiae complex is composed of four subunits [112, 113], it is the effector of Ypt6p and 

interacts with the SNARE Tlg1p. Only three subunits were identified in Y.lipolytica and 

D.hansenii but the undetected Vps51p unit also has no homologue in mammalian [114] and 

seems to be a regulatory subunit [97] which could be replaced by another protein as suggested 

by Liewen, et al. [114]. The structural analysis of the interaction between S. cerevisiae Tlg1p 

and Vps51p has determined an N-terminal peptide of Vps51p which deletion does not block 

transport to the late Golgi from endosomes [115]. 

Golgins (see Additional file 2-10, -12) [reviewed in 116, 117] are coiled-coil proteins which 

organize the structure and the trafficking pathways in the Golgi. These proteins have mainly 

been studied in mammalian cells but in Sacharomyces cerevisiae several homologues have 

been identified: Uso1p is the homologue of the mammalian p115 required for endoplasmic 

reticulum-to-Golgi transport; Grh1p, the GRASP65-homologue, a Golgi localized protein 

component of the spindle assembly checkpoint [118]; Imh1p, involved in transport between 

an endosomal compartment and the Golgi, Imh1p contains a Golgi-localization (GRIP) 

domain that interacts with activated Arl1p-GTP to be localized to the Golgi, this is regulated 

by Arl3p [119; 120] and Arl3p requires the N-terminal acetyltransferase NatC complex and 

the protein Sys1p to be targeted to the Golgi [121] [for a review about Arl proteins see 122]; 

Coy1p, the CASP homologue, a Golgi membrane protein related to Giantin, its deletion in 

S.cerevisiae restores normal growth to cells lacking the SNARE Gos1p [123] and Rud3p, a 

golgin-160-related protein, is a Golgi matrix protein that is involved in the structural 

organization of the cis-Golgi [124]. 

 

Golgi-Endosome, Endosome-Vacuole [37] 

The TRAPP II subunit Trs120p is required for vesicle traffic from early endosome to the late 

Golgi [100]. 



The Vps Class C/HOPS complex [reviewed in: 92, 125) (see Additional file 2-14): 

The HOPS complex composed of Vps11p, Vps18p, Vps16p, Vps41p with the protein Vps19p 

are the effectors of Ypt51p in endosomal traffic. In vacuolar transport, the complex seems to 

recruit the Rab Ypt7p GEF Vps39p which activates Ypt7p. Activated Ypt7p acts on the 

HOPS complex to promote tethering and binding to the SNARE Vam3p through the 

interaction with the SNARE-binding protein, Vps33p. Vps33p together with other HOPS 

complex subunits is found in complex with Vps8p, a hydrophilic membrane-associated 

protein [126]. HOPS complex binds phosphoinositides and SNARE Vam7p [127]. 

 

Golgi-Plasma Membrane 

The Exocyst (see Additional file 2-15, -16) 

The S.cerevisiae exocyst complex is composed of eight subunits (Sec3p, Sec5p, Sec6p, 

Sec8p, Sec10p, Sec15p, Exo70p and Exo84p), a quatrefoil complex as in the COG and the 

GARP complexes [92]. The activated Rab protein, Sec4p, present on the secretory vesicles, 

binds the exocyst subunit Sec15p in subcomplex with Sec10p resulting in the association with 

the other subunits and Sec3p [128]. Sec3p is the spatial landmark defining the sites of 

polarized exocytosis [129]. The localization of Sec3p is mediated by Rho GTPases, Rho1p 

[130] and Cdc42p [131]. Rho3p plays a role in exocytosis through its interaction with Exo70p 

[132, 133, 134). These Rho proteins also have a role in actin polymerisation. Assembly of the 

exocyst occurs when the subcomplex associated with the vesicles joins Sec3p and Exo70p on 

the plasma membrane [135]. The Sec6p subunit dimerizes and interacts with the SNARE 

Sec9p, playing a role in SNARE complex regulation [136]. A cyclical regulatory network 

contributes to the establishment and maintenance of polarized cell growth [137]. Bem1p 

interacts with Sec15p and is involved in the Cdc42p-mediated polarity [138]. 

 



SNARE (Soluble N-ethylmaleimide-sensitive factor Attachment protein 

REceptor) proteins [see reviews: 125, 17, 139, 140, 141 for mammalian SNAREs] (see 

Additional file 6 and Additional file 2-17) 

After the tethering of the vesicle close to its target membrane, the fusion of the membranes is 

initiated through the action of SM (Sec1/Munc18, see below) and SNARE proteins. SNARE 

proteins share one conserved sequence called the SNARE motif which contains 60-70 amino 

acids that include heptads repeat typical of coiled coils. They contain a C-terminal 

transmembrane domain or a hydrophobic post-translational modification motif. SNARE 

proteins associate to form complex undergoing conformational changes. Free SNARE motifs 

are unstructured and when they are associated in a complex they assemble into elongated 

four-helical bundles. SNAREs are present on the vesicle and the target membranes and the 

formation of the complex pulls the membrane close together. SNARE proteins are classified 

in to subfamilies based on a highly conserved layer of interacting amino acids (three 

glutamines: Qa-, Qb-, Qc-, one arginine: R-) in the centre of the helix bundle. All complexes 

contain one copy of each SNARE motif. In S.cerevisiae, twenty-four SNARE-encoding genes 

have been identified [reviewed in 139]. Twenty-two of these genes could be found in 

Y.lipolytica by sequence homology. As in other fungi [17], Vam3p and Spo20p were not 

detected. Spo20p, which seems specific to S.cerevisiae (also not identified in the three other 

yeasts), contains both Qb and Qc SNARE motifs and is required during sporulation for the 

prospore membrane formation [142, 143]. Vam3p SNARE is required for homotypic vacuole 

fusion in S.cerevisiae and there is no homologue outside the Saccharomycetes, the 

Saccharomycetaceae, K.lactis, has a Vam3p SNARE, but in D.hansenii, another 

Saccharomycetaceae as in Y.lipolytica (Dipodascaceae) the Vam3 protein was not detected. 

The mitosporic Saccharomycetales, C.glabrata, possess a Vam3 protein. Pep12p is a late 

endosomal Qa SNARE with sequence similarity with Vam3p, that can complement vam3 



mutants [144]. In Y.lipolytica and in D.hansenii, the BLAST searches allowed us to identify 

the Pep12p SNARE and another SNARE we propose to name Pep12p-like because its 

sequence is closer to Pep12p than to Vamp3p. This Pep12p-like SNARE could play the role 

of the S.cerevisiae Vam3p in both yeasts. A specificity of Y.lipolytica is the presence of three 

SSO genes resulting probably from gene triplication, and this seems unique to Y.lipolytica. 

The Sso proteins are implicated in the fusion of the secretory vesicles to the plasma 

membrane and S.cerevisiae Sso1p also has sporulation-specific functions [145]. The 

multiplicity of SSO genes in Y.lipolytica could reflect its good secretion capacity and its 

capacity to induce hyphal growth which needs better recycling of plasma membrane material. 

On the contrary, only one Sso protein (Sso2p) and one Snc protein (Snc2p) were found in 

K.lactis and D.hansenii. The SSO and SNC genes of K.lactis have been cloned by 

complementation in S.cerevisiae of sso2-1 and snc1∆ snc2∆ sem1∆ mutant strains. The 

K.lactis Ssop can perform both of the S.cerevisiae Ssop functions and the K.lactis Sncp seems 

to perform only the S.cerevisiae Sncp functions [146]. Sft1p was not detected in C.glabrata, 

Syn8p was not detected in C.glabrata and K.lactis and Nyv1p was not detected in D.hansenii. 

 

Regulation of fusion 

The Sec1/Munc18 (SM) proteins (see Additional file 2-18) [reviewed in 147] 

The SM proteins confer specificity to membrane fusion through their binding to the N-

terminal domain of the Qa SNARE protein. Four SM proteins have been found in 

S.cerevisiae, Sly1p acting between the endoplasmic reticulum and Golgi [148] and Sec1 at the 

final step of exocytosis, Vps45p and Vps33p playing a role between Golgi and endosomes 

and between endosomes and vacuole. Each SM protein can bind several Qa SNARE but also 

other SNARE implicated in the same complex, as has been shown for Sly1p [149]. In addition 



one SNARE can bind two SM proteins at the same organelle: Vps45p and Vps33p with 

Pep12p [126]. Mso1p, a Sec1p-interacting protein, binds to SNARE complex and plays an 

essential role for vesicle fusion during prospore membrane formation [150, 151]. 

 

Vsm1p (see Additional file 2-19) 

The phosphorylation of SNAREs by the cAMP-dependent protein kinase (PKA) regulates 

their ability to assemble into functional complexes [152, 153]. Phosphorylation of the Sed5p 

t-SNARE regulates endoplasmic reticulum-Golgi transport as well as Golgi morphology 

[154]. The Ssop phosphorylation allows the binding of Vsm1p, a negative regulator of 

secretion which prevents the formation of the SNARE complex [155]. Dephosphorylation of 

Ssop by ceramide activated protein phosphatase (CAPP) increases its ability to form a 

complex with Sec9p [152]. Three S.cerevisiae genes code for a PKA but only one gene could 

be identified in Y.lipolytica and D.hansenii and two were identified in C.glabrata and 

K.lactis. The CAPP is composed of two regulatory subunits (Tpd3p and Cdc55p) and one 

catalytic subunit (Sit4p) which were found by sequence homology in the four yeasts in 

addition to further one Tpd3p-like in C.glabrata. 

 

SNARE recycling 

SNARE complex dissociation (see Additional file 2-20): 

After the membrane fusion step, the trans-SNARE complex becomes a cis-SNARE complex 

whose dissociation requires the ATPase Sec18p and the soluble NSF-attachment protein 

(Sec17p) as cofactor [156, 157]. In vacuole fusion, Sec17p may displace HOPS from 

SNAREs to permit subsequent rounds of fusion [158]. Two Sec18 proteins were detected in 

C.glabrata. 

 



The vesicle-SNARE Snc1p recycling (see Additional file 2-20) 

The S.cerevisiae RCY1 gene has been identified with a screen for mutants affected in 

membrane traficking along the endocytic pathway [159]. Rcy1p contains an amino-terminal F 

box and a CAAX box motif in its carboxyl-terminal sequence. The F box region of the protein 

is required for the recycling of the vesicle-SNARE Snc1p. The CAAX box is required for its 

localization in polar growth regions. Rcy1p interacts with Skp1p through the F box motif and 

both proteins form a complex necessary for the recycling function [160]. Rcy1p is a positive 

regulator of Ypt6p [161]. Gyp1p, the Ypt1p GTPase activator is also involved in the recycling 

of Snc1p [162], as well as Snx4p, Snx41p and Snx42p [43]. The ARF-GAP Gcs1p facilitates 

the incorporation of the Snc1p into COPI recycling vesicles [163]. Rcy1p is a downstream 

effector of Ypt31, 32p [164]. 

In Schizosaccharomyces pombe, Pof6p, the Rcy1p-homologue, has been identified through a 

two-hybrid interaction with Skp1. Both proteins are required for normal septum processing 

and cell separation [165], a function which may also require the exocyst function [166]. 

Previous to these works, a mutation sls2-1, was isolated in Y.lipolytica that causes synthetic 

lethality when combined with the conditional lethal mutation in the 7S RNA of the signal 

recognition particle [167]. Rcy1p and Pof6p are the homologues of Sls2p. 

 

Conclusions 

The sequencing of four hemiascomycetous yeasts has allowed us to search for proteins 

involved in vesicular transport by comparison with proteins identified in S.cerevisiae. The 

method used does not allow the identification of a protein which does not exist in S.cerevisiae 

or does not belong to a protein family. To identify new candidates, a list from other organism 

should be established or experimental approach should be performed. The proteins identified 



are highly conserved between the five yeasts but we have brought to light several specificities 

of Y.lipolytica in keeping with its good protein secretion capacities and its dimorphic aspect. 

In Table 1, we summarize these differences. Some of the proteins for which we did not find 

homologues have probably a too divergent sequence to be identified through the BLAST 

searches and may be identified in the future by functional screens. But, the presence of 

Rab2p- and Rab4p-related proteins as is found in fungi, a potential role of Rab2-related 

protein and Ypt1p in vesicular transport between endoplasmic reticulum and Golgi and of 

Rab4-related protein in addition to Sls2p/Rcy1p in membrane recycling reflect the greater 

complexity of the Y.lipolytica secretion pathway, which is probably dictated by the necessity 

to secrete and recycle membrane material needed for its filamentous growth. In this work, we 

have shown that the Rab4p-related protein could have a role in this membrane recycling since 

a modification of the aspect of the colony, the decrease of the number of cells undergoing 

dimorphic transition and the change of the wall permeability of the rab4 deleted strain were 

observed. The three Sso proteins are also indicative of a large secretion capacity and a study 

of this specificity would be interesting. As previously shown through the diverse studies of 

Y.lipolytica, this dimorphic yeast has a secretion pathway closer to the mammalian one than 

has S.cerevisiae. Its translocation apparatus is largely devoted to the co-translational 

translocation of nascent peptides through the endoplasmic reticulum membrane as is seen in 

mammalian cells. C.glabrata and K.lactis are the closest to S.cerevisiae for the proteins listed. 

We found among the C.glabrata proteins, 2 COPII coat protein Sec13p-homologues and 2 

Sec18p-homologues implicated in the SNARE recycling and this seems to be specific to this 

yeast. For K.lactis and D.hansenii, only one Ssop and one Sncp were detected. Though 

D.hansenii is classified in Saccharomycetaceae, as is S.cerevisiae, and Y.lipolytica is a 

Dipodascacae, these two yeasts seem closer at least for the proteins involved in vesicular 

transport. These results are in agreement with the phylogenetic tree presented by Dujon et al 



[11]. In Fig.7a, we have shown the proportion of the 165 Y.lipolytica protein sequences listed 

(see Additionnal file 2: Y.lipolytica column) with the greatest homology to S.cerevisiae, 

C.glabrata, K.lactis, D.hansenii, Schizosaccharomyces pombe, N.crassa, other fungi, animals 

and plants sequences (see Additional file 7). 72% of these proteins are closest to fungi and 

N.crassa. If we exclude animals, plants and fungi (keeping only N.crassa) from this search 

(Fig.7b), we observed that 52% of the Y.lipolytica proteins listed are closer to N.crassa. The 

last comparison is performed without N.crassa (Fig.7c): in this case, 40% of the proteins are 

closer to D.hansenii. This could reflect their common physiology, the filamentous growth and 

good secretion ability for Y.lipolytica and N.crassa and their proteolytic and lipolytic 

activities and high salt tolerance [168] for Y.lipolytica and D.hansenii. These results confirm 

that considering the identified proteins playing a role in vesicular transport, Y.lipolytica is 

closer to the fungi than to S.cerevisiae. The proteins that are the best conserved between 

S.cerevisiae and Y.lipolytica, are the SNARE proteins (see Additional file 7). In Fig.8a, we 

have presented the percentage of the Y.lipolytica proteins with the greatest homology to the 

S.cerevisiae and animal: 40% of these proteins are closer to the animal ones, particularly, 

proteins of the AP complexes, Ypt and Arf proteins, TRAPP and HOPS complexes (see 

Additional file 7), whereas for S.cerevisiae, only 13% of these proteins are closer to animals 

than to Y.lipolytica (Fig.8b, see Additional file 8). Koumandou and coworkers [169] have 

analysed the protein sequences of tethering complexes and SM proteins from five eukaryotic 

supergroups. They conclude that the most recent common eukaryotic ancestor had a complex 

endomembrane system with COG, Exocyst, Dsl1, GARP tethering complexes which could 

have originated from one common ancestral complex, TRAPP and HOPS complexes which 

are independently derived and all four SM protein families represented. The phylogenetic tree 

presented by Dujon et al [11] indicates that Y.lipolytica may be less distant from the last 

common eukaryotic ancestor and the observation of a good sequence conservation between 



Y.lipolytica and animal TRAPP and HOPS subunits for example, suggests that these 

complexes are required for the evolution of multicellular organisms. Similarly, Hall et al. 

[170] showed that Rab4p was an ancient component of the endomembrane trafficking system 

since it exists, and its recycling function is conserved, in Trypanosoma brucei which belongs 

to an eukaryotic supergroup separated from that of yeast, fungi and animals. In Y.lipolytica 

also, the presence and the possible recycling role of a Rab4-like protein was observed while in 

S.cerevisiae and in the three other hemiascomycetous yeasts, this protein has been lost. These 

observations indicate that S.cerevisiae has diverged further from the last common eukaryotic 

ancestor than has Y.lipolytica, as far as vesicle-mediated protein transport pathways are 

concerned and that Y.lipolytica has retained the complexity of the trafficking system allowing 

evolution to a multicellular organization. So as has been said for fungi [171], we can say that 

«Yarrowia lipolytica and humans are closer than you think» and that this yeast constitutes an 

interesting model to study the secretion pathway. 

Methods 

Strains and growth conditions 

Escherichia coli strains DH5alpha (F’/endA1 hsdR17 (rK
-
 mK

+
) supE44 thi-1 recA1 gyrA 

(Nal
r
) relA1 ∆(lacIZYA-argF) U169deoR (φ80dlac∆(lacZ)M15) was used as host strain for 

bacterial transformations and plasmid propagation. 

The Yarrowia lipolytica strain INAG136463 (MatB, scr1 : : ADE1, SCR2, his-1, leu-2, ura3) 

was used for the inactivation of RAB4-related gene. 

Escherichia coli cells were grown in LB medium (1% bactotryptone, 1% yeast extract, 0.5% 

NaCl), 100 µg/ml ampicillin, 37°C. Yarrowia lipolytica cells were cultivated either on rich 

YPD medium (1% yeast extract, 1% bactopeptone, 1% glucose), 28°C, or on minimal 

medium : 0.67% yeast nitrogen base without amino acids (Difco laboratories), 2% glucose as 



carbon source, 50mM phosphate buffer pH 6.8, 28°C with amino acids required and 1,25 

mg/ml 5’-fluoroorotic acid for ura3
-
 strain selection. 

Gene inactivation 

Disruption was performed using the two-step «pop-in/pop-out» method [172]. The disrupted 

gene was obtained by the deletion of the BstEII-ClaI fragment of the RAB4-related gene 

cloned between the HindIII-KpnI sites of the p0 vector [173]. 

DNA techniques 

Standard techniques were used according to Sambrook et al. [174]. Enzymes were supplied 

by New England Biolabs. All vectors inserts were checked by sequencing by Genome express 

(France). 

Transformation procedures 

The E.coli strains were transformed by the method of Chung and Miller [175].Y. lipolytica 

strain transformations were carried out according to Xuan et al. [176]. 

Sensitivity to SDS and Calcofluor White 

Cells of the INAG136463 (wt) and two clones (1, 5) of the deleted rab4-related strains were 

grown in YPD medium. 5 µl droplets of serial dilutions of exponential growing cultures of 

each strain were inoculated on the surface of YPD plates containing 2.5 µg/ml, 5 µg/ml, 10 

µg/ml Calcofluor White (CW) or 0.0075 %, 0.015%, 0.03% sodium dodecyl sulfate (SDS). 

FM4-64 staining 

For the strains of yeast cells, 3 OD600 units of exponential growth in YPD medium (OD600 

0.5-1) were resuspended in 150 µl of YPD containing 40 µM FM4-64. Cells were incubated 

10 min. at 28°C and washed three times in ice-cold medium. Cells were resuspended in YPD 

and incubated at 28°C. Aliquots were taken at various times and internalization was stopped 



with 10 mM NaN3 and 10mM NaF. Stained cells were visualized using fluorescence optics 

[adapted from 159]. 

Informatic analyses 

Hemiascomycetous yeast genome sequences, BLAST searches of vesicular secretion proteins 

and BLAST results (performed Apr 25, 2003 with 1,093,702 sequences) were obtained from 

the Génolevures web site [180]. S.cerevisiae sequences were collected from Saccharomyces 

Genome Database [181]. BLASTs against protein databases were obtained from NCBI 

(BLAST with 4,554,902 sequences) [182] and Infobiogen web site [183]. Protein analyses 

were done with NCBI Conserved Domain Architecture Retrieval Tool [184], ExPASy 

Proteomics tools [185] and CBS Prediction Servers [186]. 

A list of proteins implicated in S.cerevisiae vesicular secretion was made from literature. 

These S.cerevisiae protein sequences were used for BLAST searches with the Génolevures 

web site. For protein families such as Rab protein, autoBLAST, which means BLAST of a 

sequence against its own genome, were made to identify all the members of the family. The 

protein sequences of the new members were identified by BLAST searches against the NCBI 

eukaryotic protein sequences. 

The percentages of proteins with the greatest homology (Fig.7 and 8) were determined by 

quantification of the best E-values obtained with the BLAST searches against the NCBI 

eukaryotic protein sequences. 
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Figures 

Figure 1  - Phylogenetic tree of some human Rabp, S.cerevisiae and Y.lipolytica Yptp. 

“]” indicates when Y.lipolytica protein sequences are closer to human ones. The tree was 

obtained with ClustalX program, 1.81 version [177] and presented with Treeview program, 

1.6.6 version [178]. 

Figure 2  - Ypt4p/Rab4p protein sequences alignment. 

The figure shows the upper quartile, for the full image, see Additional file 4. 

Mus musculus (Mm), Rattus norvegicus (Rn), Homo sapiens (Hs), Drosophila melanogaster 

(Dm), Neurospora crassa (Nc), Schizosaccharomyces pombe (Sp) and Yarrowia lipolityca 

(Yl) Ypt4/Rab4 protein sequences alignment was obtained with ClustalX program, 1.81 

version [177] and presented with GeneDoc program, 2.6.002 version [179]. 



Figure 3  - Colony morphology of Y.lipolytica strains. 

Wild type (wt) and two independent clones of rab4∆ (-1,-5) strains were grown as isolated 

colonies on solid YPD rich medium. Observation (64x) of a five days culture by binocular 

microscopy. 

Figure 4  - Disruption of Y.lipolytica RAB4 gene does not impair hyphal growth but 

affects dimorphic transition. 

Microscope observation of the wild type (wt) and the mutant (rab4∆) strains in liquid rich 

YPD medium exponential growth (OD600:2) and stationary phase (OD600:10). 

Figure 5  - SDS and Calcofluor white sensitivity. 

The rab4∆ (-1,-5) mutant strains are more sensitive to calcofluor white (CW) and more 

resistant to SDS than the wild type (wt) strain. 

Figure 6: Endocytosis in the rab4∆∆∆∆ mutant strain is not impaired. 

The incorporation of FM4-64 in the rab4∆-5 mutant strain is the same as in the wild type (wt) 

strain compared to a sls2 mutant strain in which the FM4-64 incorporation is delayed. 

Y.lipolytica Sls2p is homologous to the S.cerevisiae Rcy1p which plays a role in the recycling 

pathway (see “The vesicle-SNARE Snc1p recycling” section). Low panel: Nomarski. 

Figure 7  - The percentage of Y.lipolytica proteins with the greatest homology: 

a: to Saccharomyces cerevisiae, Candida glabrata, Kluyveromyces lactis, Debaryomyces 

hansenii, Schizosaccharomyces pombe, Neurospora crassa, other fungi, animals, plants 

proteins; b: to Saccharomyces cerevisiae, Candida glabrata, Kluyveromyces lactis, 

Debaryomyces hansenii, Schizosaccharomyces pombe, Neurospora crassa proteins; c: to 

Saccharomyces cerevisiae, Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii, 



Schizosaccharomyces pombe proteins. See Additional file 7 for the list of E-values obtained 

with BLAST of Y.lipolytica proteins against NCBI eukaryotic sequences. 

Figure 8  - Percentages of greatest homology. 

a: The percentage of Y.lipolytica proteins with the greatest homology to S.cerevisiae and 

animal proteins; b: The percentage of S.cerevisiae proteins with the greatest homology to 

Y.lipolytica and animal proteins. See Additional file 8 for the list of E-values obtained with 

BLAST of the S.cerevisiae proteins against NCBI eukaryotic protein sequences. 

 

Additional files 

Additional file 1 - Drawing of Yarrowia lipolytica identified proteins coats. 

PM: plasma membrane, ER: endoplasmic reticulum, RE: recycling endosome, EE: early 

endosome, LE: late endosome, MVB: multi-vesicular bodies, SV: secretory vesicle. 

 

Additional file 2 - List of Yarrowia lipolytica genes coding for the proteins potentially 

implicated in vesicular transport. 

They were obtained by comparison against Saccharomyces cerevisiae protein sequences, 

BLAST results come from Génolevures web site, if Candida glabrata, Kluyveromyces lactis, 

Debaryomyces hansenii protein was found is indicated (see Additional file 9 for the list of the 

Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii genes). 

 

Additional file 3 - Drawing of Yarrowia lipolytica identified Ypt/Rab GTPases. 

PM: plasma membrane, ER: endoplasmic reticulum, RE: recycling endosome, EE: early 

endosome, LE: late endosome, MVB: multi-vesicular bodies, SV: secretory vesicle. 



 

Additional file 4 – Full image of Figure 2 

 

Additional file 5 - Drawing of Yarrowia lipolytica identified tethering factors. 

PM: plasma membrane, ER: endoplasmic reticulum, RE: recycling endosome, EE: early 

endosome, LE: late endosome, MVB: multi-vesicular bodies, SV: secretory vesicle. 

 

Additional file 6 - Drawing of Yarrowia lipolytica identified SNARE and SM proteins. 

PM: plasma membrane, ER: endoplasmic reticulum, RE: recycling endosome, EE: early 

endosome, LE: late endosome, MVB: multi-vesicular bodies, SV: secretory vesicle. 

 

Additional file 7 - E-values 

E-values found for BLAST of Yarrowia lipolytica proteins against Saccharomyces cerevisiae, 

Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii, Schizosaccharomyces 

pombe (Sp), Neurospora crassa, other fungi, animals, plants, obtained with NCBI web site. 

Numbers between brackets indicate the order of best BLAST hits. 

Fungi : Ashbya gossypii (Ag), Aspergillus clavatus (Ac), Aspergillus fumigatus (Af), 

Aspergillus nidulans (Asn), Aspergillus niger (An), Aspergillus orizae (Ao), Aspergillus 

parasiticus (Ap), Aspergillus terreus (Ast), Chaetomium globosum (Chg), Coccidioides 

immitis (Ci), Coprinopsis cinerea (Cc), Cryptococus neoformans (Cn), Gibberzlla zeae (Gz), 

Hypocrea lixii (Hl), Magnaporthe grisea (Mg), Neosartorya fischeri (Nf), Neurospora crassa 

(Nc), Paracoccidioides brasiliensis (Pb), Phaeosphaeria nodorum (Pn), Ustilago maydis 

(Um).  



Animals : Aedes aegypti (Aa), Aiptasia pulchella (Ap), Anopheles gambiae (Ang), Apis 

mellifera (Am), Bombyx mori (Bm), Bos taurus (Bt), Caenorhabditis briggsae (Cb), 

Caenorhabditis elegans (Ce), Canis familiaris (Cf), Danio rerio (Dr), Drosophila grimshawi 

(Dg), Drosophila melanogaster (Dm), Drosophila pseudoobscura (Dp), Gallus gallus (Gg), 

Homo sapiens (Hs), Macaca mulatta (Mam), Mus musculus (Mm), Oryzias latipes (Ol), Pan 

troglodytes (Pt), Pongo pygmaeus (Pp), Rattus norvegicus (Rn), Strongylocentrus purpuratus 

(Stp), Xenopus laevis (Xl), Xenopus tropicalis (Xt). 

Plants : Arabidopsis thaliana (At), Brassica oleracea (Bo), Brassica rapa (Br), Hyacinthus 

orientalis (Ho), Lotus japonicus (Lj), Medicago truncatula (Mt), Nicotiana tabacum (Nt), 

Oenothera odorata (Oo), Oriza sativa (Os), Pisum sativum (Ps), Solanum chacoense (Soc), 

Solanum tuberosum (St), Zea mays (Zm). 

(As Debaryomyces hansenii Vps35p, Snx3p, Gyp2p, Sec20p, Sec18p sequences were absent 

from the NCBI database when the comparison was done, the e-values were obtained with the 

NCBI BLAST of the Debaryomyces hansenii protein sequence against Yarrowia lipolytica 

sequences). 

 

Additional file 8 - E-values 

E-values found for NCBI BLAST of Saccharomyces cerevisiae proteins against Yarrowia 

lipolytica and animal proteins (see Additional file 7 legend for list of abbreviations). 

 

Additional file 9 - List of Candida .glabrata, Kluyveromyces lactis, Debaryomyces hansenii 

genes coding for the proteins potentially implicated in vesicular transport. 

 



Table 1 - Differences observed for the five hemiascomycetous yeasts. 

 S. cerevisiae Y. lipolytica C. glabrata K. lactis D. hansenii 

COPII Sec24p, Sfb2,3p 

(Sec24p-related) 

Sec13p 

Sed4p 

2 proteins 

 

1 protein 

no hits 

3 proteins 

 

2 proteins 

1 protein 

2 proteins 

 

1 protein 

no hits 

2 proteins 

 

1 protein 

no hits 

Adaptor Aps1,2,3p 

Gga1,2p 

2 proteins 

1 protein (Gga2p) 

3 proteins 

1 protein (Gga2p) 

3 proteins 

1 protein (Gga2p) 

3 proteins 

1 protein (Gga2p) 

Sorting Nexin Snx41,42p 1 protein 2 proteins 2 proteins 2 proteins 

Yptp Ypt7p 

Ypt10p 

Ypt11p 

Ypt31-32p 

Ypt51,52,53p 

no hits 

1 protein 

no hits 

no hits 

2 proteins 

3 proteins 

Rab2,4p-related 

1 protein 

1 protein 

1 protein 

2 proteins 

2 proteins 

no hits 

1 protein 

no hits 

1 protein 

1 protein (Ypt31p) 

3 proteins 

no hits 

2 proteins 

no hits 

no hits 

1 protein (Ypt32p) 

3 proteins 

no hits 

Yptp regulation Yos1p 

Gyp4p 

Gyl1p 

no hits 

no hits 

no hits 

no hits 

no hits 

1 protein 

no hits 

no hits 

no hits 

1 protein 

no hits 

no hits 

COG complex Cog1p 

Cog2p 

Cog7p 

no hits 

1 protein  

no hits  

1 protein 

1 protein 

1 protein 

1 protein 

1 protein 

1 protein 

no hits 

1 protein 

1 protein 

Arfp Arf1,2,3p 

Arl1p 

2 proteins(Arf1,3p) 

2 proteins 

2 proteins(Arf1,2p) 

1 protein 

2 proteins (Arf2,3p) 

1 protein 

3 proteins 

1 protein 

Arl3p localization NatC complex  

(3 proteins) 

2 proteins 3 proteins 3 proteins 3 proteins 

GARP complex Vps51p no hits 1 protein 1 protein no hits 

SNARE-Qa 

 

SNARE-Qb,Qc 

SNARE-Qc 

 

SNARE-R 

Vam3p 

Sso1,2p 

Spo20p 

Sft1p 

Syn8p 

Nyv1p 

Snc1,2p 

Pep12p-like 

3 proteins 

no hits 

1 protein 

1 protein 

1 protein 

2 proteins 

1 protein 

2 proteins 

no hits 

no hits 

no hits 

1 protein 

2 proteins 

1 protein 

1 protein (Sso2p) 

no hits 

1 protein 

no hits 

1 protein 

1 protein (Snc2p) 

Pep12p-like 

1 protein (Sso2p) 

no hits 

1 protein 

1 protein 

no hits 

1 protein (Snc2p) 

Exocytosis 

SNARE 

regulation 

proteins 

Tpd3p (CAPP 

regulatory subunit) 

Tpk1,2,3p (PKA) 

1 protein 

 

1 protein 

2 proteins 

 

2 proteins 

1 protein 

 

2 proteins 

1 protein 

 

1 protein 

SNARE recycling Sec18p 1 protein 2 proteins 1 protein 1 protein 

See Additional file 2 for the list of proteins potentially implicated in vesicular transport. 
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