Bilayer vesicles of amphiphilic cyclodextrins: host membranes that recognize guest molecules. - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Chemistry Année : 2005

Bilayer vesicles of amphiphilic cyclodextrins: host membranes that recognize guest molecules.

Résumé

A family of amphiphilic cyclodextrins (6, 7) has been prepared through 6-S-alkylation (alkyl=n-dodecyl and n-hexadecyl) of the primary side and 2-O-PEGylation of the secondary side of alpha-, beta-, and gamma-cyclodextrins (PEG=poly(ethylene glycol)). These cyclodextrins form nonionic bilayer vesicles in aqueous solution. The bilayer vesicles were characterized by transmission electron microscopy, dynamic light scattering, dye encapsulation, and capillary electrophoresis. The molecular packing of the amphiphilic cyclodextrins was investigated by using small-angle X-ray diffraction of bilayers deposited on glass and pressure-area isotherms obtained from Langmuir monolayers on the air-water interface. The bilayer thickness is dependent on the chain length, whereas the average molecular surface area scales with the cyclodextrin ring size. The alkyl chains of the cyclodextrins in the bilayer are deeply interdigitated. Molecular recognition of a hydrophobic anion (adamantane carboxylate) by the cyclodextrin vesicles was investigated by using capillary electrophoresis, thereby exploiting the increase in electrophoretic mobility that occurs when the hydrophobic anions bind to the nonionic cyclodextrin vesicles. It was found that in spite of the presence of oligo(ethylene glycol) substituents, the beta-cyclodextrin vesicles retain their characteristic affinity for adamantane carboxylate (association constant K(a)=7.1 x 10(3) M(-1)), whereas gamma-cyclodextrin vesicles have less affinity (K(a)=3.2 x 10(3) M(-1)), and alpha-cyclodextrin or non-cyclodextrin, nonionic vesicles have very little affinity (K(a) approximately 100 M(-1)). Specific binding of the adamantane carboxylate to beta-cyclodextrin vesicles was also evident in competition experiments with beta-cyclodextrin in solution. Hence, the cyclodextrin vesicles can function as host bilayer membranes that recognize small guest molecules by specific noncovalent interaction.A family of amphiphilic cyclodextrins (6, 7) has been prepared through 6-S-alkylation (alkyl=n-dodecyl and n-hexadecyl) of the primary side and 2-O-PEGylation of the secondary side of alpha-, beta-, and gamma-cyclodextrins (PEG=poly(ethylene glycol)). These cyclodextrins form nonionic bilayer vesicles in aqueous solution. The bilayer vesicles were characterized by transmission electron microscopy, dynamic light scattering, dye encapsulation, and capillary electrophoresis. The molecular packing of the amphiphilic cyclodextrins was investigated by using small-angle X-ray diffraction of bilayers deposited on glass and pressure-area isotherms obtained from Langmuir monolayers on the air-water interface. The bilayer thickness is dependent on the chain length, whereas the average molecular surface area scales with the cyclodextrin ring size. The alkyl chains of the cyclodextrins in the bilayer are deeply interdigitated. Molecular recognition of a hydrophobic anion (adamantane carboxylate) by the cyclodextrin vesicles was investigated by using capillary electrophoresis, thereby exploiting the increase in electrophoretic mobility that occurs when the hydrophobic anions bind to the nonionic cyclodextrin vesicles. It was found that in spite of the presence of oligo(ethylene glycol) substituents, the beta-cyclodextrin vesicles retain their characteristic affinity for adamantane carboxylate (association constant K(a)=7.1 x 10(3) M(-1)), whereas gamma-cyclodextrin vesicles have less affinity (K(a)=3.2 x 10(3) M(-1)), and alpha-cyclodextrin or non-cyclodextrin, nonionic vesicles have very little affinity (K(a) approximately 100 M(-1)). Specific binding of the adamantane carboxylate to beta-cyclodextrin vesicles was also evident in competition experiments with beta-cyclodextrin in solution. Hence, the cyclodextrin vesicles can function as host bilayer membranes that recognize small guest molecules by specific noncovalent interaction.
Fichier non déposé

Dates et versions

hal-00313167 , version 1 (27-08-2008)

Identifiants

  • HAL Id : hal-00313167 , version 1

Citer

P. Falvey, Cw Lim, R. Darcy, T. Revermann, U. Karst, et al.. Bilayer vesicles of amphiphilic cyclodextrins: host membranes that recognize guest molecules.. Chemistry, 2005, 11, pp.1171-1180. ⟨hal-00313167⟩
70 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More