
HAL Id: hal-00309687
https://hal.science/hal-00309687

Submitted on 7 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flexible Bindings for Type-Safe Embedded Operating
Systems.

Damien Deville, Christophe Rippert, Gilles Grimaud

To cite this version:
Damien Deville, Christophe Rippert, Gilles Grimaud. Flexible Bindings for Type-Safe Embedded
Operating Systems.. ECOOP Workshop on Programming Languages and Operating Systems, in
association with the 18th ACM ECOOP conference, Jun 2004, Oslo, Norway. �hal-00309687�

https://hal.science/hal-00309687
https://hal.archives-ouvertes.fr


Flexible Bindings for Type-Safe Embedded Operating Systems

Damien Deville, Christophe Rippert, Gilles Grimaud

IRCICA/LIFL, Univ. Lille 1, UMR CNRS 8022
INRIA Futurs, POPS research group∗

{Damien.Deville,Christophe.Rippert,Gilles.Grimaud}@lifl.fr

1 Introduction

This paper presents the binding model implemented in Camille, an extensible operating sys-
tem for resource-limited devices. Modern embedded systems need on the first hand to fully
exploit the limited hardware on which they run and on the other hand to dynamically adapt
themselves to changes in their runtime environment. Camille is an exokernel which support
static customization of components and dynamic loading of system extensions. Dynamic kernel
and application adaptation is implemented by an inter-component communication model. This
model is based on flexible bindings which permit to fully customize the way components inter-
act with each others. Bindings can be static, virtual or compiled to guarantee performances
of inter-component communications. This paper shows that it is possible to build a flexible
operating system without sacrificing runtime performances, even for devices as constrained as
smart cards.

We first present the architecture of the Camille exokernel and the intermediate language
Façade into which applications and system components are translated to ease type verifica-
tion. We then describe the component model implemented in Camille and the inter-component
communication scheme based on embedded binding factories. We then details the binding gen-
eration process and the various verifications which can be enforced when implementing bindings.
We present some experimental results we have obtained when monitoring the performances of
our native code generator. Finally, we conclude and discuss the future work we plan to conduct
concerning extraction of selected properties from generated code.

2 The Camille exokernel

Camille [1] is an extensible operating system designed for resource-limited devices, such as
smart cards for instance. It is based on the exokernel architecture [2] and advocates the same
principle of not imposing any abstractions in the kernel, which is only in charge of demultiplexing
resources. Camille provides secure access to the various hardware and software resources
managed by the system (e.g. the processor, memory pages, native code blocks, etc.) and
enables applications to directly manage those resources in a flexible way.

Camille is designed to ensure portability, extensibility, confidentiality and integrity of appli-
cations and system extensions. Portability is guaranteed by using Façade [3], an object-oriented
intermediate language. Application and operating system extensions which are programmed us-
ing a high level language as C or Java for instance, are translated into Façade by a code

∗This work is partially supported by grants from the CPER Nord-Pas-de-Calais TACT LOMC C21, the French
Ministry of Education and Research (ACI Sécurité Informatique SPOPS), and Gemplus Research Labs.



converter or a dedicated compiler, before they are loaded in the embedded system. Camille

currently includes a Java to Façade converter and a backend for generating Façade from C
using GCC. Embedded operating systems built with Camille are extensible since both applica-
tions or system extensions can be loaded dynamically. To avoid the overhead usually induced
by interpreting an intermediate language, Camille includes an on-the-fly native code generator
which compiles extensions while they are loaded in the system. Finally, confidentiality and in-
tegrity of extensions are guaranteed since Façade supports the Proof Carrying Code model [4].
Extensions are thus validated when loaded in the operating system by a verifier, which ensures
their type-correctness. The type-checking algorithm has a linear cost thanks to the simplicity
of the Façade language [5].

Camille itself is written using a type-safe subset of the C language. The kernel is made
of a set of components whose only task is to safely expose the hardware resources. The kernel
forms a trusted computing base and can be translated in Façade using a customized version
of GCC1. Façade is a very simple and compact intermediate language composed of only five
instructions2. Façade includes three control flow instructions (jump, jumpif and jumplist),
and two instructions for method invocation (return and invoke). Since all operations are
mapped as method invocations, a Façade program can be seen as a composition of bindings
between the components implementing the operations.

3 Binding generation in Camille

Camille supports various types of bindings, including fully dynamic and static ones. All
bindings are described by the invoke instruction in Façade, but their implementations can
vary. For instance, components can interact using virtual method calls, static method calls or
through external bindings. An external binding can be seen as an inline of the callee method
code into the caller component, which usually speeds up greatly the execution of the operation.
Bindings are implemented when translating extensions from Façade to native code using the
Camille embedded compiler. Bindings can be translated to native code using a linear algorithm
thanks again to the simplicity of Façade. This binding creation scheme differs from standard
component-based operating systems. In the Think architecture for instance [6], bindings are
created through explicit calls to dedicated components called binding factories and are typically
instantiated by using interceptors to permit dynamic replacement of components. Camille ad-
vocates a different approach, since bindings can be either specified at source-level as in Think,
or defined using customization tools and instantiated through automatic code generation. The
definition of bindings through system customization tools is simplified thanks to the modular
approach used both for the operating system and the applications. Similarly, Façade eases the
instantiation of bindings since tools only have to generate an invoke instruction, which will be
implemented as needed by the embedded compiler.

Each component in Camille provides a method bind which is in charge of checking the
legitimacy of binding creating requests and generating the type safe native code implementing
bindings to this component. This method materializes the concept of binding factories in the
Camille component model. It is called when a method using a binding is loaded and compiled.
Several components are involved in the compilation of bindings. For every compiled method, a
persistent instance of component Code is created. This instance contains the signature of the
method and the generated binary code. During the compilation of the loaded component, a
transient instance of component CompileContext is also created. This object includes all the
necessary information for translating the Façade code of the method into an executable format
(which can be either binary or a bytecode interpretable by the system). For instance, it can

1This means that the kernel itself can be dynamically loaded and translated into native code when bootstrap-
ping the system.

2Façade can be seen as a “RISC for bytecode” approach.



L_muladd: // d <- s muladd a b
// read DestVar
d <- CardCode ReadVar stream

// d <- s mul a
CardInt bind src dest code cc stream MUL // read a in stream

// d <- d add b
CardInt bind dest dest code cc stream ADD // read b in stream

Figure 1: Composite binding for a MulAdd operation.

provide a translation table to map Façade variables to hardware registers, which can be used by
the register allocation algorithm. Instances of CompileContext also contains type information
used by the PCC verifier. Operations related to code generation are defined by intances of
component Code and are implemented in instances of component CodeN to generate native code
and in instances of component CodeV to generate bytecode. Generating bytecode destined to
be interpreted, instead of native code, can be relevant if reducing the footprint of the generated
code is more important than the runtime performances of the method.

Façade code is processed through an instance of the abstract component Stream. It is
simple for instance to produce an input stream from the embedded communication serial line.
Loading a new extension consists in creating an instance of component Code with an instance of
Stream as a parameter. For every Façade instruction, the instance of Code determines which
component implements the associated operation. The bind method of this component is then
called to implement the binding. For instance, when compiling the simple expression dstByte

<- srcByte + #1, component Code uses the type information associated with the srcByte

object to determine that it is an instance of component Byte. Thus, it is the bind method of
component Byte which is used to implement the addition. In this simple case, the operation
can easily be externalized and so inlined in the code of the method performing the addition, by
using the instance of CodeN to generate the binary code.

For more complex operations, bindings can be implemented as static or virtual method calls.
A component inheriting a method from one of its parents can also choose to delegate compilation
of bindings to this method by calling the bind method of its superclass. Thus, compilation of
a binding can result in a lookup of the bind method which will really compile it, in a way very
similar to the lookup done when calling a virtual method in standard object-oriented languages,
but realized here during linking. In this way binding policies can be inherited.

Compilation methods can also be overloaded when creating a new component, to customize or
perform additional checks when linking two components. Another interesting example would be
to increment a counter each time the copy operator of a component is called (this operator is used
to copy the reference of a component to another). Thus, it would be possible to check whether
the component is still referenced before unallocating its memory space, thereby preventing some
null pointer exceptions. Finally, compilation methods can be composed to produce more complex
bindings. For instance, a programmer needing an operation to compute the dst <- src * b +

a expression3 simply needs to implement a binding calling the bind(mul, ...) method followed
by a call to bind(add, ...) as illustrated in Figure 1.

The binding factories in Camille allow enforcing a fine control on binding creation. When
compiling a binding, the destination component knows from which component the binding re-
quest comes thanks to the CompileContext component as explained before. Thus, the desti-
nation component can check if its protection policy allows the creation of the binding before
compiling it. Standard protection mechanisms as Access Control Lists or capabilities can be
implemented in the kernel to manage access control policies. Some verifications can be enforced
statically when compiling the binding, and interceptors or verification stubs can be used when
dynamic checks are required. Similarly, bind methods can use different compilation schemes de-

3This y = a×x+b expression is frequently used for cryptographic protocols implemented in embedded systems.



pending on which component requests the binding. For instance, a bind method can choose to
skip some access control tests if the binding request comes from a trusted component validated
by a certificate. Finally, the bind methods can be used to inject security mechanisms in the
generated binary code.

4 Experimental results

We present in this section some experimental results which validate the approach advocated in
Camille. We implemented a prototype of Camille on a platform based on an AVR chipset
from Atmel. This chipset includes a 8/16-bit CPU, 32 KB of ROM, 32 KB of EEPROM and
1 KB of RAM. Our prototype of Camille uses 17 KB of memory, including 3.5 KB for the
PCC verifier, 8.5 KB for the native code generator and 5 KB for hardware management. These
values demonstrate that the Camille architecture is suitable for very constrained devices such
as smart cards. We first monitored the binding creation and code generation processes, then
we evaluated the performances of the generated code for a high-level system extension (a smart
card file system) and for a low-level random bit generator.

4.1 Evaluation of the code generation process

Table 1 presents the results we obtained when compiling all the Façade code composing the
kernel. It first shows that almost half of the code generation delay is due to writes in EEPROM,
which are a typical bottleneck on smart cards (dedicated software cache policies are usually
used to circumvent this bottleneck). Thus, the core of the code generation algorithm is fairly
efficient, which can be explained by the fact that the Façade language is close enough to the
hardware to be easily translated into native code. This is illustrated by the figures showing that
an average of only three AVR instructions are needed for each Façade instruction.

Average Deviation

Number of cycles to process a Façade instruction 80727 26926

Number of cycles ignoring writes in persistent memory 37858 4596

Number of AVR instructions per Façade instruction 3.05 1.04

Size of the code compared to Java Card byte code × 1.8 × 0.6

Size of the proof compared to Façade code size 30% 3%

Table 1: Performances of the code generation process.

Table 1 also shows that the Façade code is almost twice as big as Java Card bytecode, which
is clearly a drawback on a memory-constrained platform. However, approximately one-third of
the size of the Façade code is in fact occupied by the proof of its type-correctness, which is
checked dynamically when extensions are loaded in the system.

4.2 Performances of the generated code

We then monitored the performances of a high-level system abstration loaded in Camille.
We chose to implement an ISO7816-4 compliant file system so as to be able to compare its
performances to an implementation in Java Card. Table 2 shows that a complete file system
can be implemented in less than 3 KB on a smart card using Camille. The loading process
is very slow but it is only performed once and does not influence runtime performances in any
way. Our implementation in Camille of this embedded file system is 20 times more efficient
when accessing a byte in EEPROM than a similar implementation in Java Card, thanks to the
optimizations performed by the embedded compiler. Our prototype is roughly as fast as a file
system written directly in C, while ensuring the correctness of the loaded code which is obviously
not the case with the C implementation.



Average Deviation

Size of native code generated 2934 bytes -

Size of typing information 1539 bytes -

Loading time 4.194 s -

Access time to a byte of a file of size less than 2kb 25.9 µs 6.4 µs

Access time to a byte of a file of size greater than 2kb 52.3 µs 30.4 µs

Access time to a byte of a file on a Java Card 587 µs 5,7 µs

Table 2: Measures related to ISO7816-4 file system.

short retroaction(short state,
short f,
char L) {

short bit_retroaction;
char i;
short x;

bit_retroaction = 0;
x = state & f;
for (i = 0; i < L; i ++) {

bit_retroaction += (x >> i) & 1;
}
bit_retroaction &= 1;
state = (state >> 1) ^ (bit_retroaction << (L - 1));
return state;

}

Figure 2: A random bit generator.

Finally, we implemented a random bit generator to illustrate the performances of generated
code for low-level abstractions. This generator is based on the Linear Feedback Shift Registers
algorithm [7], which is commonly used by cryptographic protocols as RSA or DES for instance.
It is a typical example of an abstraction which needs to be very efficient since it is used by
lots of other services in a smart card operating system. We present the implementation of the
generation function in Figure 2.

We implemented the retroaction function in Camille, in Java Card, and directly in C. We
then monitored the performances of the three implementations when generating 1536 random
bits. Table 3 shows that the optimized4 Façade version is 85 times faster than the Java Card
one. The Camille implementation is also a little faster than the C implementation, which is due
to the fact that the smart card C compiler does not carry out as many back-end optimizations
as our code generator does.

Type of code Time in ms for generating 1536 bits

Java Card 26250

Unoptimized Façade code 359

Optimized Façade code 310

C code 331

Table 3: Performance of the LFSR random bit generator.

5 Conclusion and future work

In this paper, we have presented the flexible binding scheme implemented in Camille, a type-
safe component-based exokernel for smart cards. This scheme is based on an embedded compi-
lation mechanism well suited for resource-limited devices thanks to its low footprint and runtime

4These optimizations consist in exploiting the life cycle of variables



performances. The code generation process is generic and can be instantiated to produce ei-
ther efficient native code or compact bytecode. On-the-fly optimizations can also be performed
during generation of the binary code. The embedded compilation scheme is extensible, since
it supports overloading of compilation methods and delegation of binding implementation to
superclasses. Bindings can also be composed to implement complex operations. Access control
can be enforced when loading a new extension by adding verifications when compiling bindings.
Checks can be either static by using complex conditions or static analysis, or dynamic by imple-
menting verification stubs or interceptors. Our experiments have shown that this approach can
be very efficient when using an optimized native code generator and is well-suited for constrained
devices such as smart cards.

We now plan to work on adding a tool to extract selected properties from generated code. For
instance, we plan to extend the embedded compilation mechanism so that it provides support
for computing the Worst Case Execution Time of real-time tasks and helps evaluating the
energy consumption of embedded code, which can be useful for devices functioning with short-
lived batteries. We also plan to implement a code annotation tool to help the register allocation
algorithm. Finally, we are working on extending the compilation scheme to support more generic
properties using a code weaving mechanism inspired by the aspect-oriented paradigm.

References

[1] D. Deville, A. Galland, G. Grimaud, and S. Jean. Smart Card operating systems: Past,
Present and Future. In Proceedings of the 5th NORDU/USENIX Conference, February 2003.

[2] D. R. Engler. The Exokernel Operating System Architecture. PhD thesis, Massachusetts
Institute of Technology, October 1998.

[3] G. Grimaud, J.-L. Lanet, and J.-J. Vandewalle. FAÇADE: A Typed Intermediate Language
Dedicated to Smart Cards. In Software Engineering — ESEC/FSE, number 1687, pages
476–493. Springer-Verlag, 1999.

[4] G. C. Necula. Proof-Carrying Code. In Proceedings of the 24th ACM Symposium on Prin-
ciples of Programming Languages, January 1997.

[5] A. Requet, L. Casset, and G. Grimaud. Application of the B Formal Method to the Proof
of a Type Verification Algorithm. 5th IEEE International Symposium on High Assurance
Systems Engineering, November 2000.

[6] A. Senart, O. Charra, and J.-B. Stefani. Developing dynamically reconfigurable operating
system kernels with the think component architecture. In Proceedings of the workshop on
Engineering Context-aware Object-Oriented Systems and Environments, November 2002.

[7] R.A. Rueppel. Analysis and Design of stream ciphers. Springer-Verlag, 1986.


