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ABSTRACT

In this paper, we introduce a new partial tracking method suit-
able for the sinusoidal modeling of mixtures of instrumental sounds
with pseudo-stationary frequencies. This method, based on the lin-
ear prediction of the frequency evolutions of the partials, enables
us to track these partials more accurately at the analysis stage, even
in complex sound mixtures. This allows our spectral model to bet-
ter handle polyphonic sounds.

1. INTRODUCTION

Spectral sound models provide general representations for many
applications such as compression, content extraction and transfor-
mation. Most of these models, such as additive synthesis, are based
on the Fourier analysis which has proven to be accurate under the
condition of local stationarity.

Since the Fourier analysis delivers a short-time spectral repre-
sentation of the analyzed sound, we consider maxima in the mag-
nitude spectrum (so-called peaks) to be the instantaneous represen-
tation of partials. We have then to link peaks of successive frames
to recover the continuous evolution of the partials.

After a brief introduction in Section 2 to the model used in
this paper, we present the partial tracking algorithm introduced by
McAulay and Quatieri in [1] and few extensions proposed to im-
prove the synthesis quality in Section 3. Section 4 is dedicated to
the presentation of the linear prediction (LP) model, where three
methods for the estimation of the LP coefficients are compared.
Given this model, we propose a new tracking method in Section 5
which takes advantage of the past evolutions of the partials to pre-
dict their optimal future evolution. We discuss the choice of the
method used to estimate the LP coefficients (using both synthetic
and natural sounds), then we give an overview of the algorithm
strategy in Section 6.

2. SINUSOIDAL MODELING

Additive synthesis is the original spectrum modeling technique. It
is rooted in Fourier’s theorem, which states that any periodic func-
tion can be modeled as a sum of sinusoids at various amplitudes
and harmonic frequencies. For stationary pseudo-periodic sounds,
these amplitudes and frequencies continuously evolve slowly with
time, controlling a set of pseudo-sinusoidal oscillators commonly
called partials. Moreover, we assume that these evolutions are pre-
dictable since sudden changes in the evolutions of the partials will
generate noisy “clicks”. The audio signal s can be calculated from
the additive parameters using Equations 1 and 2, where P is the
number of partials and the functions fp, ap, and @p are the in-
stantaneous frequency, amplitude, and phase of the p-th partial,
respectively. The P pairs (fp,ap) are the parameters of the addi-
tive model and represent points in the frequency-amplitude plane
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at time t. This representation is used in many analysis / synthesis
programs such as Lemur [2], SMS [3], or InSpect [4].

p

SO = ap(t) cos(@p(t)) &)
—1
P t

@) = %O+2n fpwdu 2

3. MC AULAY AND QUATIERI ALGORITHM

The first partial tracking algorithm was introduced in [1] by Mc-
Aulay and Quatieri in the field of the sinusoidal modeling of the
voice. In this section we present the basic algorithm, proposed
extensions, and its limitations.

3.1. Basic Algorithm

This algorithm follows a short-term analysis, where short-time
spectra are extracted from the sound at different time frames. The
algorithm is based on the assumption that partials composing a
voiced signal have stationary frequency evolutions. It is then pro-
posed to consider frequency differences between spectral peaks of
immediately successive frames to form partials. A maximal fre-
quency difference threshold A between successive peaks of a par-
tial is set:

[ fp(k+1) — fp(k)| < A ®)

where fy(k) is the frequency of the p-th partial at frame k.

The algorithm is processed iteratively frame by frame and by
increasing frequency (partials having peaks with low frequencies
are linked first). Suppose that all peaks of frames having indices
below k are processed. For a peak p!‘ of index i within frame k, we

look for an unlinked peak p‘f*l so that the frequency difference
between those peaks is minimal. If the frequency difference is
greater than A¢, the current partial is labeled “dead”. If not, p'j‘+l
is reserved.

If this peak cannot be better linked with the next peak p}‘H,
the partial having peak p}‘ definitively links peak p'j‘”. If not, the
current partial looks for another candidate in the next frame. If no
alternative can be found, the partial is also labeled “dead”. After

all reachable peaks of frame k + 1 are linked, unlinked peaks of
frame k + 1 give rise to new partials.

3.2. Extensions

It was proposed to add to each partial at the beginning and at the
end of the track a zero-amplitude peak (frequency and phase be-
ing extrapolated) to improve re-synthesis quality. It is particularly
suitable for the modeling of voice signals but can lead to “pre-
echo” artifacts in the case of non stationary signal in the modeling
of musical signals.
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Figure 1: One step of the McAulay-Quatieri algorithm. White
peaks cannot be candidate, whereas black peaks can. Peaks with
circles are ““heads™ of partials.

In the original algorithm, partials are processed in increasing
frequency. Since partials of great amplitude are more perceptively
important, it was proposed to process them first to avoid disconti-
nuities leading to noisy “clicks” that can be heard at the synthesis
stage.

For various reasons such as decreasing amplitude, strong mod-
ulations or DFT bin corruption, a peak selection process can re-
move erroneous peaks [5], but is not able to recover the underlying
spectral information. It leads to a lack of peaks. To overcome this
analysis drawback, it is proposed in [3] to add a “zombie” state to
the partials, so that if a partial cannot link to any peak in a frame,
it can still look for its next peak in a limited number of frames. Ifa
peak can be found, the missing parameters of “zombie” peaks are
then interpolated.

3.3. Limitations

These extensions (allowing better re-synthesis quality for given an-
alyzed signal types) are mainly algorithmic improvements. Indeed,
the basis of the algorithm (the fact that the frequency and am-
plitude trajectories are considered as constant) is left untouched.
However, for the frequency, this assertion is rarely verified since
for many musical instruments including singing voice, vibrato or
portamento are commonplace; and for the amplitude, the varia-
tions are so strong that it is nearly never verified.

Furthermore, in the “zombie” extension, since the partial fre-
quency is considered as constant — stationary — from one frame to
another, the repeated use of the “zombie” state often makes the
trajectory of the partial to diverge from the real — non stationary —
one.

We aim at taking into account this non-stationary evolution by
considering that the parameters of the partials are no more close to
the past value but close to a linear combination of past values.

4. LINEAR PREDICTION

In the linear prediction (LP) model, also known as the autoregres-
sive (AR) model, the current sample x(n) is approximated by a lin-
ear combination of past samples of the input signal. We are then
looking for a vector a of d coefficients, d being the order of the LP
model. Provided that the a vector is estimated, the predicted value
X is computed simply by FIR filtering of the p past samples with
the coefficients using Equation 4:

p

X(n) = _;ai x(n—i) (4)

The main challenge in linear prediction modeling is to use a method
for the estimation of the coefficients that suits specific needs. Three

methods used to estimate the a vector and their specific require-
ments and capabilities are presented. The autocorrelation and co-
variance methods are detailed in [6]. The autocorrelation and Burg
methods are presented on both theoretical and computational points
of view in [7].

4.1. Autocorrelation Method

The autocorrelation method minimizes the forward prediction er-
ror power on an infinite support, that is:

el = 5 3 ) —X()? ©)

where %(n) is the estimate computed with Equation 4. Since the
signal is finite, samples of the x(n) process which are not observed
are then set to zero and observed samples are windowed in order
to minimize the discontinuity at the boundaries. Finding the coef-

ficients by minimizing e leads us to solve a very regular system
of normal equations — a Toeplitz matrix — efficiently solved by the
Levinson-Durbin algorithm.

4.2. Covariance Method

On contrary, the covariance method assumes finite support for the
minimization of the forward prediction error power:

P
el = ﬁ 5 ) 5P ®)

where X(n) is the estimate computed with Equation 4. Since no
zeroing of the data is necessary, this method is a good candidate for
coefficients estimation of process having few observed samples.
Unfortunately the method can lead to filters that are not minimal
phase (the estimated poles are not guaranteed to lie within the unit
circle, i.e notall a; < 1).

4.3. Burg Method

Let eli (n) and eE(n) respectively denote the forward and backward
prediction errors for a given order k:

e (n) =x(n) +_§a(i>x(n —i) ()
eP(n) :x(nk)+ia(i)x(n+k+i) ®)

The Burg method minimizes the average of the forward and
backward error power on a finite support in a recursive manner.
That is, to obtain a(k) we minimize:

& = %(qﬁ +ef) ©)
where
T NX: ef (n)? (10)
e 2 (1)
and

a(i) = {akfl(i) + I’kakflr(kkf;ri)i f:orki =1,2,... k- 1} 12)
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where ry is called the reflection coefficient. By substituting Equa-
tion 12 in Equations 10 and 11, we find a recursive expression for
the forward and backward errors:

eﬁ (n) = eﬁfl(n) +red (n—1) (13)
ey =ep 1(n—1)+rief 4(n) (14)

where ;
eo(n) =ep(n) =x(n) (15)

To find ry, we differentiate the k™" prediction error power with re-
spect to ry and by setting the derivative to zero, we obtain:

1 .f
e = 7zzw:klekfl(n)eﬁfl(nfl)
- 1, .f
SN Lel L2+ el y(n—1)2

(16)

The Burg method combines advantages of both previous meth-
ods. As the autocorrelation method, the Burg method is minimal
phase (Vi,a; < 1). And as the covariance method, the Burg method
estimates the a; on a finite support.

The following algorithm computes the vector a of linear pre-
diction coefficients using the Burg method, at the order d:

ef — x
eb «—x
a<—1
formfromOtod—1do
efp — ef without its first element
ebp < eb without its last element
k — —2ebp-efp/(ebp - ebp +efp - efp)
ef «—efp+k ebp
eb «—ebp+kefp
a (a[O]aa[lL" : 7a[m}7o)+k(oaa[m]aa[mil}7' o 7a[0})
end for

5. PREDICTION OF THE EVOLUTION OF PARTIALS

As shown in [8, 9] by Kauppinen et &, linear prediction can be
successfully used to extrapolate audio signals. We show here that
it can also be used for predicting the evolutions of the partials in
time, which are time signals too — with a much lower sampling
frequency though.

The methodology used in order to estimate the next frequency
value leads to an enhanced tracking algorithm.

5.1. Prediction Algorithm

To obtain an estimation of the future evolution of a partial, we use
samples of its past evolution. The number of samples considered
is in the [1,Ns] range, where N is the maximal number of samples
to be considered. When the number of samples is too small with
respect to the model order — at the beginning of the partial — we
use the following reflection algorithm.

Considering a vector x of size N, the left reflected values are:
X(—1i) = 2x(0) —x(i) and symmetrically the right reflected values
are: X(N +i) = 2x(N) —x(i). This method conserves both zero and
first order continuities.

An estimation method is then applied on those samples to find
out LP coefficients. These coefficients are then used with Equation
4 to obtain the predicted frequency of the next peak.

5.2. LP Coefficients Estimation Method

In Section 4, we introduced three methods to estimate the LP coef-
ficients. To choose the method that best suits our needs, we com-
pare the three methods on their ability to predict synthetic signal
close to natural signals.

Before computing the LP coefficients using the autocorrela-
tion method, the signal was zero-centered by subtracting its mean.
We can see in Figure 2 that the autocorrelation method performs
badly on short data tracks. Since the parameters of the partials
are sampled at a very low frequency, it seems unacceptable to use
this method. The covariance method performs better but can be
unstable in the presence of bursting noise (see Figure 2 at frame
32). This instability can lead to erroneous links in the presence of
noise. The Burg method seems to be a good compromise in terms
of reactivity and resistance to noise.

5.3. LP Parameters

The model order and the number of samples used to estimate the
LP coefficients are of great importance for the quality of the pre-
diction. We choose parameter range values by both theoretical and
experimental considerations.

Our experimental tests were processed on the known evolu-
tions of frequencies of already-tracked partials of different kinds,
of pseudo-stationary monophonic signals such as a saxophone, a
guitar, and different singing voices. We considered the mean pre-
diction error and the maximal error.

For frequency evolutions, since we want to model exponen-
tialy increasing or decreasing evolutions (portamento) and sinu-
soidal evolutions (vibrato), the order of the LP model should not
be below 2. Experimental testing showed that a model order in the
[2,8] range is convenient.

The number of samples used has to be large enough to be able
to extract the signal periodicity, and short enough not to be too
constrained by the past evolution. The short-term analysis module
uses a sliding time / frequency transform with a hop size of 512
samples on sound signals sampled at CD quality (44.1 kHz). This
means that the frequency and amplitude trajectories are sampled at
~ 86 Hz. Since we want to handle natural vibrato with a frequency
about 4 Hz, we need at least 20 samples to get the period of the
vibrato. Experimental testing showed that for most cases a number
of samples in the [4,32] range is convenient.

5.4. Prediction Results

In Tables 1 and 2, we present experimental test results of the LP
predictor with several orders and numbers of samples on already-
tracked partials of natural sounds: a saxophone and a singing voice
(one harmonic of each sound is plotted on Figure 3 and 4). Addi-
tionally, we compare it with several simple predictors, the constant
predictor, used in the extended McAulay-Quatieri algorithm, the
linear predictor and the reflection one, respectively defined as:

e Constant predictor: X(n+k) = x(n),
o Linear predictor: X(n+k) = x(n) 4+ (x(n) —x(n—1)) -k,
o Reflection predictor: X(n+k) = 2x(n) —x(n—k)

where k is the distance in frames between the last observation and
the predicted value. The mean and the maximum (in parentheses
on Tables 1 and 2) of the prediction error are considered. Predic-
tion errors are computed for several simple predictors presented
above (left part) and the LP predictor (right part) for different val-
ues of k. Concerning the part dedicated to the LP predictor, the
model order grows from left to right, and for each values of k the
number of samples considered is [4,8,16,32].

The LP model is efficient for constant, sinusoidal and expo-
nentially increasing or decreasing processes. Concerning constant
evolutions (frequency evolution of partials of a piano tone), the
constant predictor is sufficient. Concerning sinusoidal evolutions
— vibrato in the time/frequency plane — (see Figure 1), providing
that the number of samples is sufficient to get the vibrato period,
the LP predictor shows great results both in mean and maximal er-
rors especially when k is increasing. For exponentially increasing
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Figure 2: On the left, the extrapolation at different times of one value in the future with a maximum of 12 previous samples and a 4-order
predictor using three linear prediction methods: correlation (x), covariance (o), and Burg (¢). The original (solid line) is a periodic signal
with one sample — in the middle — displaced by a multiplication by a factor 1.01 (for clarity sake, some diverging covariance samples are
not plotted). On the right, the evolutions of the associated prediction errors are displayed.

or decreasing evolutions — portamento in the time/frequency plane
— (see Figure 2), the mean error of the LP predictor is good com-
paring to simple predictors, but the maximum error is comparable,
mainly due to the unpredictability of a non-stationary transition
(see Figure 4 at frame 85).

6. ENHANCED TRACKING ALGORITHM

The algorithm has a general structure that can be divided in two
steps: scheduling and reservation. The scheduling process consists
in sorting the partials in decreasing overall amplitude. The over-
all amplitude of a partial is defined as the sum of the amplitudes
of all the peaks included in the partial. Given a linear prediction
modeling of the past evolution of the partial in the time / frequency
plane, we are able to predict the next frequency value that leads to
the smoothest frequency evolution for each partial. The reserva-
tion step consists in choosing the peak in the next frame that has
the frequency nearest to the predicted one, and reserving it if the
absolute difference between the frequency of the selected peak and
the predicted frequency is below a given threshold. This rejection
threshold is similar as As (see Equation 3) used in the McAulay-
Quatieri algorithm, but it can be set to a much smaller value. This
allows us to better avoid the selection of erroneous peak candi-
dates, thus increasing the robustness of the partial tracking algo-
rithm with polyphonic sounds.

For each partials, those two steps are processed until all reach-
able peaks of next frame are linked. Unlinked peaks of frame k+ 1
then give rise to new partials, and for partials in the “zombie” state
we add an extrapolated “zombie” peak with the amplitude and fre-
quency values predicted from the past evolutions. The “zombie”
state can be used only for a limited number of consecutive frames
(set to 4 in our algorithm). Beyond this limit, the partial is labeled
“dead”.

7. CONCLUSION AND FUTURE WORK

In this paper, we have considered the non-stationarity of the pa-
rameters of a sinusoidal model and we have taken advantage of
linear prediction in order to forecast the evolutions of the partials
in both frequency and amplitude, thus leading to an enhanced par-
tial tracking algorithm. These considerations greatly improve the
accuracy of spectral modeling.

Of course, the results presented here are still preliminary. Al-
though we have only presented the results for the evolutions in fre-

quency, the same method works also very well for the evolutions
in amplitude. A comparison with other partial tracking algorithms
such as [10] for example has to be done in the near future.
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k: Constant Linear Reflection order: 2 4 6 8
0.35(0.9) | 0.16 (0.8) | 0.16 (0.8) || 0.20 (0.8) -O -(- -()
1 -() -() -() 0.17 (0.6) | 0.17 (0.6) | 0.18 (0.7) -()
- () -(4) -() 0.16 (0.6) | 0.14 (0.6) | 0.14 (0.6) | 0.14 (0.6)
-() -() -() 0.16 (0.7) | 0.13(0.6) | 0.13(0.7) | 0.12 (0.6)
0.69 (1.8) | 0.42(1.4) | 051 (1.6) || 0.48 (1.4) - -(- -()
2 -() -() -() 0.43 (1.3) | 0.42 (1.3) | 0.45(1.6) -(-
-() -() -() 0.41 (1.3) | 0.35(1.3) | 0.34 (1.4) | 0.34 (1.3)
-() -() -() 0.41(1.3) | 0.32(1.2) | 0.29 (1.1) | 0.28 (1.1)
1.01(25) | 0.76 (2.4) | 1.00 (3.1) || 0.85(2.3) - -(- -()
3 -() -() -() 0.75 (2.3) | 0.77 (2.3) | 0.80 (2.7) -()
() -() -() 0.72 (2.2) | 0.62 (2.0) | 0.57 (2.2) | 0.57 (2.1)
() -() -() 0.71 (2.1) | 052 (1.7) | 0.46 (1.7) | 0.43 (1.4)
131 (31) | 1.18(3.7) | 1.63 (4.6) || 1.29 (3.5) - - (- - ()
4 -() -() -() 1.13(3.5) | 1.18(3.6) | 1.20 (4.1) -(-
-() -() -() 1.09 (3.5) | 0.92(3.3) | 0.83(3.1) | 0.81 (3.0)
-() -() -() 1.06 (3.3) | 0.77 (2.5) | 0.65(2.3) | 0.58 (1.9)

Table 1: The mean and (maximal) prediction errors for different predictors on the frequency evolution of partials of Saxophone Vibrato.
Prediction errors are computed for several simple predictors (left part) and the LP predictor (right part) for different values of k (the
distance in frame indices between the last observation and the predicted value). Concerning the part dedicated to the LP predictor, the
model order grows from left to right, and for each values of k the number of samples considered is in [4,8,16,32]. The prediction errors
of the LP predictor are lower than those of the best simple predictor. The improvement is getting more and more significant when k is
increasing.

Constant Linear Reflection order: 2 4 6 8
2.69(26.3) | 1.16 (10.6) | 1.16 (10.6) || 1.39(10.1) - (- -0
-(-) -(-) -() 1.22 (10.0) | 0.97 (12.2) | 1.09 (11.5) -()
-() -() -() 1.19 (9.8) 0.86 (12.4) | 0.89 (11.4) | 0.92 (11.3)
- (- - (- -() 1.17 (9.6) | 0.83(12.4) | 0.84 (11.1) | 0.86 (11.2)
5.32(44.9) | 3.19(30.6) | 3.99 (36.8) 3.66 (29.8) -0() -() -()
-(-) -(-) -() 3.24(28.7) | 2.67(35.1) | 2.98 (33.1) -()
- () - () -() 3.17 (27.7) | 2.35(35.2) | 2.35(33.3) | 2.43(33.9)
-() -() -0 3.12(26.7) | 2.24 (34.4) | 2.24 (32.5) | 2.26 (33.0)
781(61.2) | 6.01(56.8) | 8.06(56.8) || 6.61(55.2) - (- -0
- () - () -() 5.88(53.0) | 4.96 (62.2) | 5.39 (61.3) - (-
-() -() -() 5.76 (51.0) | 4.33(61.8) | 4.21 (60.8) | 4.32 (61.6)
-(-) -() -() 5.68 (49.1) | 4.10(59.2) | 4.00 (57.9) | 3.99 (58.9)
10.17 (74.9) | 9.45 (845) | 12.76 (72.7) || 10.02 (81.6) e O -
-() -() -() 8.91(78.0) | 7.60(88.6) | 8.18 (86.1) -()
- () - () -() 8.77 (74.9) | 6.64 (86.8) | 6.40 (85.1) | 6.51 (85.5)
- () - () -() 8.67 (71.9) | 6.29 (81.5) | 6.07 (79.6) | 6.00 (80.3)

Table 2: The mean and (maximal) prediction errors for different predictors on the frequency evolution of partials of Singing Voice.
Prediction errors are computed for several simple predictors (left part) and the LP predictor (right part) for different values of k (the
distance in frame indices between the last observation and the predicted value). Concerning the part dedicated to the LP predictor, the
model order grows from left to right, and for each values of k the number of samples considered is in [4,8,16,32]. The mean prediction
error of the LP predictor is lower than those of the best simple predictor, and the improvement is getting more and more significant when k
is increasing. The maximum error remains comparable, mainly due to the unpredictability of a non-stationary transition (see Figure 4 at
frame 85).
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Figure 3: Evolutions of different predictors: constant (top), linear
(middle), LP (bottom) for Saxophone Vibrato. The order of the
LP predictor is 6 and the number of past samples used to compute
the coefficients is 20. The frequency evolutions of the partials are
drawn with lines and the end of the partial is represented by a cir-
cle. The predicted frequencies, plotted with crosses, are computed
using the last observed values. To show the ability of the predic-
tor to extrapolate at a longer term (in case of missing peaks), the
predicted values are plotted even after the death of the partial.
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Figure 4: Evolutions in time of different predictors: constant (top),
linear (middle), LP (bottom) for Singing Voice. The order of the
LP predictor is 6 and the number of past samples used to compute
the coefficients is 20.
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