Computation of Homology Groups and Generators

Abstract : Topological invariants are extremely useful in many applications related to digital imaging and geometric modelling, and homology is a classical one. We present an algorithm that computes the whole homology of an object of arbitrary dimension: Betti numbers, torsion coefficients and generators. Results on classical shapes in algebraic topology are presented and discussed.
Type de document :
Communication dans un congrès
Discrete Geometry for Computer Imagery, Apr 2005, Poitiers, France. 3429, pp.195--205, 2005, Lecture Notes in Computer Science
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00308012
Contributeur : Samuel Peltier <>
Soumis le : mardi 29 juillet 2008 - 16:23:04
Dernière modification le : mercredi 2 décembre 2009 - 11:00:48

Identifiants

  • HAL Id : hal-00308012, version 1

Collections

Citation

Samuel Peltier, Sylvie Alayrangues, Laurent Fuchs, Jacques-Olivier Lachaud. Computation of Homology Groups and Generators. Discrete Geometry for Computer Imagery, Apr 2005, Poitiers, France. 3429, pp.195--205, 2005, Lecture Notes in Computer Science. 〈hal-00308012〉

Partager

Métriques

Consultations de la notice

158