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ABSTRACT

In this paper we propose a complete computational system for
Auditory Scene Analysis. This time-frequency system localizes,
separates, and spatializes an arbitrary number of audio sources
given only binaural signals. The localization is based on recent
research frameworks, where interaural level and time differences
are combined to derive a confident direction of arrival (azimuth)
at each frequency bin. Here, the power-weighted histogram con-
structed in the azimuth space is modeled as a Gaussian Mixture
Model, whose parameter structure is revealed through a weighted
Expectation Maximization. Afterwards, a bank of Gaussian spa-
tial filters is configured automatically to extract the sources with
significant energy accordingly to a posterior probability. In this
frequency-domain framework, we also inverse a geometrical and
physical head model to derive an algorithm that simulates a source
as originating from any azimuth angle.

1. INTRODUCTION

In many applications, it may be desirable to manipulate the indi-
vidual sound sources that can be heard in a mix. It remains a great
challenge to separate the sources in our case where we only have
two sensors (human ears) and apply no restriction on the number
of sources. In this case, called degenerated, most of the techniques
for source separation, based on matrix inversion, just fail.

Another approach tries to mimic the human auditory system,
based on perception and psychoacoustics: Computational Audi-
tory Scene Analysis techniques (CASA). A recent source separa-
tion approach called Degenerate Unmixing and Estimation Tech-

nique (DUET) was proposed by Rickard et al. [1]. This technique
relies on binaural cues – the interaural differences in time (ITD)
and amplitude (ILD) – which play an important role in the human
localization system, since they are both related to the azimuth of
the source. However, DUET is mainly restricted to low frequen-
cies, since the phase becomes ambiguous above 1500 Hz. Viste
and Evangelista [2] get rid of this ambiguity by minimizing the
distance between the ILD and ITD based azimuth estimates, thus
obtaining an enhanced azimuth estimate for each time-frequency
bin. The power of each bin is then accumulated in an histogram,
where we can read the energy as a function of the azimuth.

Furthermore, in order to separate sources, Rickard et al. at-
tribute exclusively the energy of a bin to one source. In contrast,
Avendano proposes in [3] an adaptive spatial Gaussian mapping to
achieve the source separation. However, in his approach there is
no true azimuth but only an inter-channel amplitude panning coef-
ficient for each source. Moreover, the inter-channel time / phase is
not considered.

Here we introduce a Gaussian Mixture Model (GMM) of the
azimuthal histogram, and use a Maximum Likelihood (ML) ap-
proach based on a modified Expectation Maximization (EM) [4]

to learn the GMM structure (mix order, weight, azimuthal location
and deviation of each source) from the power-weighted histogram.
A similar reformulation of EM was proposed in [5] in the case of
spectral density functions.

The GMM parameters setup automatically a demixing stage
(Figure 1) where bins belonging to each source are statistically
selected and the energy of each bin is assigned according to a pos-
terior probability. In contrast to others, we consider the exclusive
energy assignment as too destructive.

This paper is organized as follows. In Section 2, we describe
the binaural model, the localization approach, and we also detail
the time-frequency algorithm proposed to map a source signal to
a pair of binaural signals with the expected Direction Of Arrival
(DOA). Section 3 introduces a GMM of the energy-weighted his-
togram and explains the parameters learning with an EM approach.
In the same section, we present the probabilistic demixing algo-
rithm. Finally, experiments and results are described in Section 4.

.

.

.

.

.

.

.

.

S
O
U
R
C
E

D
E
M
IX
IN
G

L
O
C
A
L
IZ
A
T
IO
N

E
X
P
E
C
T
A
T
IO
N

S
O
U
R
C
E

M
A
X
IM
IZ
A
T
IO
N

.

πK , µK , σK

θ1

θK sK(t)

s1(t)

w(t)

h(θ)

STFT

xL(t)

xR(t)

XL(t, f)

XR(t, f)

π1, µ1, σ1

Figure 1: Overview of the proposed CASA-EM system.

2. SINGLE SOURCE

2.1. Model

A (vibrating) sound source radiates spherical acoustic waves, that
propagate to the ears through an energy transmission between air
particles of the surrounding environment. In this paper, we con-
sider the sound sources as punctual and omni-directional.

In a polar coordinate system (see Figure 2), the source point
is localized given its (ρ, θ, φ) coordinates, where ρ is the distance
between the source and the head center (O), θ is the azimuth angle,
and φ the elevation angle.

In the present work, the sources are approximately in the same
horizontal plane as the ears (φ = 0). This is the case in many
musical situations, where both the listener and instrumentalists are
standing on the (same) ground. Also, we focus on the DOA and
thus neglect the distance between the source and the listener. More
precisely, we are in a situation where the instrumentalists are a few
meters from the listener. We consider that this distance is small
enough to neglect the (frequency-selective) attenuation by the air,
though large enough for the acoustic wave to be regarded as planar
when reaching the ears. As a consequence, our source localization
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Figure 2: A source s positioned in the horizontal plane at azimuth

θ, propagating acoustic waves to the head.

/ separation / respatialization system will depend on the azimuth
angle θ only.

Moreover, we consider that we are in outdoors condition. We
consider neither any room nor any obstacle. In this free-field case,
only the head, the torso, and the outer-ear geometry modify the
sound activity content by reflections and shadowing effect.

The source s will reach the left (L) and right (R) ears through
different acoustic paths, characterizable with a pair of Head-Related
Impulse Responses (HRIR). For a source s located at the azimuth
θ, the left (xL) and right (xR) signals are given by:

xL = s ∗ HRIRL(θ) (1)

xR = s ∗ HRIRR(θ) (2)

where ∗ is the convolution among time-domain signals, the HRIR
being impulse responses of filters. The HRIRs depend on the mor-
phology of the head of the listener, are different for each ear, and
are functions of the location of the source as well as its frequency.

In fact, each HRIR can be regarded as a filter, and defined
in the time domain by its impulse response for each azimuth θ.
The CIPIC database [6] contains this information for several lis-
teners and different directions of arrival. In our experiments, to be
listener-independent, we consider the mean HRIR (MHRIR), that
is, for a given position θ, the average (in the time domain) of the
HRIRs for this position among the several listeners.

In the case of s being a pure sinusoid, the convolution in pre-
ceding equations is replaced by a simple multiplication in the spec-
tral domain. A sound source positioned to the left will reach the
left ear sooner than the right one, in the same manner the left level
should be higher due to head-shadowing.

More precisely, between the two ears, the amplitude ratio is
approximately 10∆a and the phase difference is approximatively
∆φ, where ∆a and ∆φ are given by:

∆a = ILD(θ, f)/20 (3)

∆φ = ITD(θ, f) · 2πf (4)

where the difference in amplitude or interaural level difference
(ILD, expressed in decibels – dB) and difference in arrival time
or interaural time difference (ITD, expressed in seconds) are the
principal spatial cues for the human auditory system localization.
Since we restrict our preliminary study to the simple free-field
case, the inter-channel coherence [7] will not be considered.

These binaural cues can be related to physical parameters such
as the celerity of sound c and the head radius r. From the analysis
of the CIPIC database, Viste [2] extends the Woodworth’s formula
[8] for the ITD and derives a sinusoidal model for the ILD:

ILD(θ, f) = αf sin(θ) (5)

ITD(θ, f) = βfr (sin(θ) + θ) /c (6)

where αf and βf are frequency-dependent scaling factors (see
[2]), that encapsulate the head / ears morphology. In our exper-
iments, we use the mean of individual scaling factors over the 45
subjects of the CIPIC database. For each subject, we measure the
interaural cues from the HRIR and derive the individual scaling
factors that best match the model – in the least-square sense – for
all azimuths.

In the case of a complex sound, we can decompose it as a sum
of sinusoids. We perform a time-frequency decomposition using
the Short-Time Fourier Transform (STFT):

X(t, f) =

Z

∞

−∞

x(t + τ)w(τ)e−j2πfτdτ (7)

where x is the temporal signal, w some windowing function, and
X is the (short-term) spectrum of x.

In our practical experiments, we use sounds sampled at 44100
Hz. We then perform discrete Fourier transforms of size N =
2048 using the Fast Fourier Transform (FFT) algorithm. For w, we
use the periodic Hann window. The hop size between two consec-
utive windows is H = N/2 (50% overlap). For each spectrum, we
use the zero phase technique: In order to cancel the linear phase of
the analysis window, we swap the two halves of the sample buffer
prior to any FFT (and after any Inverse FFT).

Then each point of the time-frequency plane can be regarded
as the contribution of a single sinusoid, and the ∆a and ∆φ coef-
ficients can in turn be used, as functions of frequency. In fact, we
should have the following relation between the spectra measured
at the left and right ears:

XR(t, f) = XL(t, f) · 10∆aej∆φ (8)

2.2. Localization

In Auditory Scene Analysis, the ILD and the ITD are the most im-
portant cues for source localization. Lord Rayleigh (1907) men-
tioned in his Duplex Theory that the ILD are more prominent at
high frequencies whereas the ITD are crucial at low frequencies.
In fact, the human auditory system is well adapted to the natu-
ral environment. Indeed, high frequencies are more sensitive to
frequency-selective amplitude attenuation (by the air or the head
shadowing), but the associated signals exhibit phase ambiguities.
In contrast, low frequencies are not ambiguous, but are less sensi-
tive to amplitude attenuation.

Given the short-time spectra of the left and right channels, we
can estimate the ILD and ITD for each time-frequency bin with:

ILD(t, f) = 20log10

˛

˛

˛

˛

XR(t, f)

XL(t, f)

˛

˛

˛

˛

(9)

ITDp(t, f) =
1

2πf

„

∠
XR(t, f)

XL(t, f)
+ 2πp

«

(10)

The coefficient p outlooks that the phase is determined up to a
modulo 2π factor. In fact, the phase becomes ambiguous beyond
1500 Hz, according to the Duplex Theory.

Obtaining an estimation of the azimuth based on the ILD in-
formation is just a matter of inverting Equation (5):

θL(t, f) = arcsin

„

ILD(t, f)

αf

«

(11)

Similarly, using the ITD information, to obtain an estimation of
the azimuth candidate for each p, we invert Equation (6) by com-
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puting:

θT,p(t, f) = Π

„

c · ITDp(t, f)

r · βf

«

with

Π(x) = 0.50018 x + 0.009897 x3 + 0.00093 x5 + O(x5) (12)

Π(x) is an order-5 polynomial approximation of the inverse of the
sin(θ) + θ function. The θL(t, f) estimates are more dispersed,
but not ambiguous at any frequency, so they are exploited to find
the right modulo coefficient p that unwraps the phase. Then the
θT,p(t, f) that is nearest to θL(t, f) is validated as the final θ esti-
mation, since it exhibits a smaller deviation:

θ(t, f) = θT,m(t, f) with m = argminp |θL(t, f)− θT,p(t, f)|
(13)

In theory, in the case of a single source all frequencies should
give the same azimuth, exactly corresponding to the source posi-
tion θ. However, in practice, the presence of noise and estimation
errors make things a little more complicated. In fact, as a first
approximation, we will consider that the energy of the source is
spread following a Gaussian distribution centered at the theoretical
value θ. Although the Gaussian nature of the distribution is ques-
tionable and should be verified in the near future, we are comforted
by the well-known Central Limit Theorem as well as preliminary
experiments. In this context, the ideal case is a Gaussian of mean
θ and variance 0.

2.3. Spatialization

In order to spatialize a sound source s to an expected position θ
(see Figure 3), we first transform its (mono) signal into the time-
frequency domain using a windowed FFT. Then the pair of left and
right spectra is computed. A first approximation is to set XL = S
(the spectrum of s), and to compute XR from XL using Equation
(8). This trivially respects the interaural cues, but one of the ears
plays a specific role then. Another solution is to divide the spatial
cues equally, using the Equations (3), (4), (5), (6), and the follow-
ing equations:

XL(t, f) = X(t, f) · 10−∆a/2e−j∆φ/2 (14)

XR(t, f) = X(t, f) · 10+∆a/2e+j∆φ/2 (15)

where X is the spectrum reaching both ears when the source is
played from position θ = 0. More precisely, X = S · HRTF(0),
where HRTF – Head-Related Transfer Function – is the spectral
equivalent of the HRIR (S, the spectrum of the source itself, being
directly perceived by the left or right ear if θ is −π/2 or π/2,
respectively). Nevertheless, as a first approximation, we will take
X = S, thus the interaural cues will be respected, as well as the
symmetric role of the ears.

Finally, the signals xL and xR are computed from their spec-
tra XL and XR using the Inverse FFT, and sent to the left and
right ears via headphones. In practice, we use the periodic Hann
window with an overlap factor of 25%.

3. SOURCE SEPARATION

3.1. WDO Assumption

To achieve degenerated separation of a arbitrary number of sources
given binaural mixtures, we consider any pair of sources (sk(t), sl(t))
as Windowed-Disjoint Orthogonal (WDO). This means that their
short-time spectra do not superpose. This ideal case is given by:

∀k 6= l, Sk(t, f) · Sl(t, f) = 0 (k, l = 1, · · · , K) (16)

OVERLAP−ADD

SPATIAL

CUES

FFT

SPATIALIZATION

IFFT +

xL(t) xR(t)

θ

x(t)

w(t)

X(t, f)

XR(t, f)XL(t, f)

ILD(θ, f)

ITD(θ, f)

Figure 3: Spatialization of a source x to an azimuth θ.

where K is the number of sources in the mix. This condition is
rarely satisfied in music signals, at least exactly. However, experi-
ments carried out in [1] verify that speech signals are approxima-
tively WDO.

3.2. Histogram Building

We define a discrete axis for the azimuth values with resolution
∆θ . Every computed θ(t, f) is compared to its nearest discrete
neighbor multiple of ∆θ , in order to define a binary mask:

Mθ(t, f) =



1 if |θ(t, f)− θ| ≤ ∆θ/2
0 otherwise (17)

At each time t, we then cumulate the power of the source in an
histogram:

h(θ) =
X

f

|Mθ(t, f)XL(t, f)XR(t, f)| (18)

Note that, from Equations (14) and (15), the energy we cu-
mulate is XLXR = X2, which would be roughly the energy of
the source if it were played at θ = 0 (monophonic case where
xL = xR). This makes the histogram unbiased: Rotating the
source is equivalent to a shift of the θ axis of the histogram, but
then its energy remains unchanged.

3.3. Gaussian Mixture Model

Since the sources are not exactly WDO, for each source we obtain
a distribution around the true value. As mentioned in Section 2,
we choose to approximate the energy accumulation distribution
around each point with a Gaussian distribution. In the case of K
sources, we then introduce a model of K Gaussians (K-GMM,
order-K Gaussian mixture model):

PK(θ|Γ) =

K
X

k=1

πk φk(θ|µk, σk) with πk ≥ 0 and
K
X

k=1

πk = 1

(19)
where Γ is a multiset of K triples (πk, µk, σ2

k) that denotes all the
parameters of the model; πk, µk, and σ2

k indicate respectively the
weight, the mean, and the variance of the k-th Gaussian compo-
nent described mathematically by:

φk(θ|µk, σk) =
1

p

2πσ2
k

exp

„

−
(θ − µk)2

2σ2
k

«

(20)
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We are interested in estimating the architecture of the K-GMM,
that is the number of sources K and the set of parameters Γ, to be
able to setup the separation filtering.

3.3.1. First Estimation

In the histogram, we observe local maxima which number pro-
vides an estimation of the number of sources in the mixture. The
abscissa of the k-th local maximum reveals the location θk of the
k-th source. Generally, a finer tuning of the histogram allows a
visual separability of very close-lying sources. But we will de-
tect other local maxima around the true maxima. So, we propose
to smooth the histogram using a binomial operator B to fuse the
encountered peaks:

B(n) =
1

2D−1
`

D−1
n

´ n = 0, · · · , D − 1 (21)

where D is the dimension of the operator. We recommend to
use an odd order bigger than three. The smoothed histogram h̃
is constructed by convolution of the current histogram h with the
smoothing kernel B.

The interferences between sources bring corrupted cues, from
which the cumulated energy indicates a source at a position that
does not match that of any existing source. When the sources do
not coincide, usually the heights of the undesired peaks are very
low. Thus, we apply a threshold, such that only the peaks above
are considered as real sources. The floor of the threshold is set
relatively to a noise level estimate in the histogram.

Informal experiments show that the estimated source number
and location are rather good. This gives the model order K and
a first estimation of the means of the Gaussians (µk in Γ). This
estimation can be refined and completed – with the variances σ2

k

and the weights πk – for example by the EM algorithm.

3.3.2. Expectation Maximization

Each source in the mix is characterized with a Gaussian represen-
tation in the histogram. To discriminate the sources, the weight,
mean, and variance of each source are essential for our spatial
Gaussian filtering algorithm.

Expectation Maximization (EM) is a popular approach to esti-
mate parameters in mixture densities given a data set x. The idea
is to complete the observed data x with a unobserved variable y to
form the complete data (x, y), where y indicates the index of the
Gaussian component from which x has been drawn. Here, the role
of x is played by the azimuth θ, taking values in the set of all dis-
crete azimuths covered by the histogram. We associate θ with its
intensity function h̃(θ) (the smoothed histogram). The role of y is
played by k ∈ {1, · · · , K}, the index of the Gaussian component
θ should belong to.

The EM algorithm proceeds iteratively, at each iteration the
optimal parameters that increase locally the log-likelihood of the
mixture are computed. In other words, we increase the difference
in log-likelihood between the current with parameters Γ and the
next with parameters Γ′. This log-form difference, noted Q(Γ′, Γ),
can be expressed as:

Q(Γ′, Γ) =
X

θ

h̃(θ)
`

L(θ|Γ′)− L(θ|Γ)
´

with

L(θ|Γ) = log (PK(θ|Γ)) (22)

We can then reformulate L(θ|Γ) like this:

L(θ|Γ) = log

 

X

k

PK(θ, k|Γ)

!

with

PK(θ, k|Γ) = πk φk(θ|µk, σk) (23)

The concavity of the log function allows to lower bound the Q(Γ′, Γ)
function using the Jensen’s inequality. We can then write:

Q(Γ′, Γ) ≥
X

θ

X

k

h̃(θ)PK(k|θ, Γ) log

„

PK(θ, k|Γ′)

PK(θ, k|Γ)

«

(24)

where PK(k|θ, Γ) is the posterior probability, the degree to which
we trust that the data was generated by the Gaussian component k
given the data; it is estimable with the Bayes rule:

PK(k|θ, Γ) =
PK(θ, k|Γ)

PK(θ|Γ)
(25)

The new parameters are then estimated by maximizing the lower
bound with respect to Γ:

Γ′ = argmaxγ

X

θ

X

k

h̃(θ)PK(k|θ, Γ) log (PK(θ, k|γ)) (26)

Increasing this lower bound results automatically in an increase
of the log-likelihood, and is mathematically easier. Finally, the
maximization of Equation (26) provides the following update re-
lations (to be applied in sequence, because they modify – update –
the current value with side-effects, thus the updated value must be
considered in the subsequent relations):

πk ←

P

θ h̃(θ) PK(k|θ, Γ)
P

θ h̃(θ)
(27)

µk ←

P

θ h̃(θ) θ PK(k|θ, Γ)
P

θ h̃(θ) PK(k|θ, Γ)
(28)

σ2
k ←

P

θ h̃(θ) (θ − µk)2 PK(k|θ, Γ)
P

θ h̃(θ) PK(k|θ, Γ)
(29)

The performance of the EM depends of the initial parameters. The
first estimation parameter should help to get around likelihood lo-
cal maxima trap. Our EM procedure operates as follows:

1. Initialization step
• initialize K with the order of the first estimation
• initialize the weights equally, the means according to the
first estimation, and the variances with the data variance
(for the initial Gaussians to cover the whole set of data):

πk = 1/K, µk = θk, and σ2
k = var(θ)

• set a convergence threshold ǫ

2. Expectation step
• compute PK(k|θ, Γ) with Equation (25)

3. Maximization step
• compute Γ′ from Γ with Equations (27), (28), and (29)
• if PK(θ|Γ′)− PK(θ|Γ) > ǫ
then Γ← Γ′ and go back to the Expectation step
else stop (the EM algorithm has converged).
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3.4. Source Filtering Algorithm

In order to recover each source k, we select and regroup the time-
frequency bins belonging to the same azimuth θ. We use the pa-
rameters issued from the EM-component number k, and the energy
of the mixture channels is allocated to the (left and right) source
channels according to the posterior probability. More precisely,
we define the following mask for each source:

Mk(t, f) = PK(k|θ(t, f), Γ) (30)

if 10 log10 |φk(θ(t, f)|µk, σk)| > LdB, and 0 otherwise. This
mask limits the fact that the tail of a Gaussian distribution stretchs
out to infinity. Below the threshold LdB (expressed in dB, and set
to -20 in our experiments), we assume that a source of interest does
not contribute anymore. For each source k, the pair of short-term
spectra can be reconstructed according to:

SL(t, f) = Mk(t, f) ·XL(t, f) (31)

SR(t, f) = Mk(t, f) ·XR(t, f) (32)

The time-domain version of each source k is finally obtained
through an inverse Fourier transform and an overlap-add procedure
(as described in Section 2).

4. SIMULATION RESULTS

We have implemented, using MATLAB, two source separation /
localization systems: DUET and the method proposed in Section
(3), as well as two source spatialization techniques: MHRIR based
on Equations (1) and (2) and the method we proposed in Section 2,
called SSPA (see Figure 3).

4.1. Spatialization Results

To verify the effectiveness of the SSPA and MHRIR spatialization
systems, we spatialized speech and music sources, then we con-
ducted listening tests. Since determining the absolute location of a
source could be a hard task for a listener, we preferred to conduct
tests on relative locations. One (mono) source was spatialized to
two different locations to create two (stereo) sounds – each sound
consisting of a pair of binaural signals. During the audition, lis-
teners had to tell if the second sound was at the left, right, or same
position in comparison to the first sound. In a first round, we con-
sidered only couples of sounds produced with the SSPA system
(parameterized with a sliding Hann window of length 2048 sam-
ples and a 25% overlap). The analysis of the results indicates no
ambiguity between left and right. However, sources distant from
less than 5◦ were often judged as coming from the same location.
For comparison purposes, we also attended cross hearing experi-
ments. The disposition was similar to the previous one, but here
one of the source was spatialized using the MHRIR method. First
observation, the MHRIR sources clang more naturally. The SSPA
signals have more treble than the MHRIR signals. It is also likely
that the SSPA still misses some characteristics of the perception.
Another point, the MHRIR lateralized the source more accurately
to the expected location. For example, a speaker voice spatial-
ized to −80◦ with the MHRIR was perceived more to the left
than with the SSPA procedure. However, the HRIRs are known
for only some discrete position (25 azimuths in the case of the
CIPIC database), and interpolating them for the other positions is
not trivial. SSPA does not suffer from this limitation. Enhancing
the quality of SSPA is one of our research directions.

source theory 1st est. EM-est.

xylophone −55◦ −42◦ −48◦

horn −20◦ −13◦ −15◦

kazoo 30◦ 29◦ 25◦

electric guitar 65◦ 64◦ 61◦

Table 1: Locations of four sources estimated with the local maxima

search, and with Expectation Maximization.
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Figure 4: Spectrograms of the sources of Table 1, from top to bot-

tom: xylophone, horn, kazoo, and electric guitar.
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Figure 5: Localization of four sources: histogram (solid line) and

smoothed histogram (dashed line).
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Figure 6: GMM for the histogram of the four-source mix.

4.2. Localization Results

Source localization is a decisive task for source separation based
on spatial filtering. First, we created binaural signals with MHRIR,
then the individually-created signals are mixed into a single binau-
ral signal. In Figure 6, we show an example for the localization of
four instruments in a binaural mixture with the proposed localiza-
tion method: xylophone at−55◦, horn at−20◦, kazoo at 30◦, and
electric guitar at 65◦. We note that the procedure performs well
for music signals. However, we can hardly compare these results
with the output of the DUET method, which relies on the interau-
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ral cues but ignore the azimuth. In the smoothed histogram version
of the relative noisy histogram (Figure 5), many unwelcome peaks
have been dropped, while the correct sources were enhanced. In
the two-dimensional histogram (ILD and ITD) obtained with the
DUET method, we observed a stockpile of peaks with substantial
energy. More precisely, DUET is unable to handle the phase am-
biguity (appearing above 1500 Hz) for our test signals sampled at
44100 Hz, with broadband content (Figure 4).

We then proceed to the localization using a direct local max-
ima search in the smoothed histogram (see Table (1)). It appeared
that a size of 65 was sufficient for the histogram. To build this his-
togram, we used FFTs of 2048 samples with an overlap of 50%.
The mix order was accurately identified (4 sources). The kazoo
and the electric guitar were precisely localized, only an error of
1◦ is observable. As a matter of fact, the kazoo has constantly
high power and a wide-band spectrum, so its peak is predictably
high. But because their spectrograms overlap (see Figure (4)), the
sources underly interferences that corrupt the cues. However, we
still get an histogram that conveys an outgoing material to seg-
regate the sources. In a next step, we modeled the histogram as
a GMM. The normalized estimated Gaussian components are de-
picted in Figure 6. The individual peaks are incorporated inside
a Gaussian distribution. This emphasizes our motivation that a
Gaussian mixture is objective for separation purposes. The loca-
tion estimates of EM are exposed in Table (1), and do not really
enhance the first estimation of the Gaussian means. However, the
EM algorithm gives us the widths of the Gaussian distributions.
Moreover, in the near future we plan to enhance these results by
applying the EM algorithm on the raw azimuth estimates θ(t, f)
instead of the data stored in the smoothed histogram. Indeed, the
operations consisting in setting the histogram size, building this
histogram, then smoothing it, are well-suited for a direct local
maxima search in the histogram, but these operations may alter
the data themselves.

4.3. Separation Results

We carried out subjective investigations on the time-domain sig-
nals and spectrograms. And we also judged the similarity of the
sources based on hearing test.
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Figure 7: Waveforms of the demixtures (on the right, originals be-

ing on the left): xylophone (−55◦) (top) and horn (30◦) (bottom).

To separate the sources, a spatial filtering identifies and clus-
ters bins attached to the same source. Many methods, like DUET,
separate the signals by assigning each of the time-frequency bins
to one of the sources exclusively. We assume that several sources
can share the power of a bin, and we attribute the energy accord-
ing to a membership ratio – a posterior probability. The histogram

learning with EM provides a set of parameters for each Gaussian
distribution. The parameters are then used to parameterize auto-
matically a set of spatial Gaussian filters. A result of demixing is
depicted in Figure (7) for a two-instrument mixture: xylophone at
−55◦ and horn at −20◦; their original spectrograms are shown in
Figure 4. In the time domain, the xylophone rhythm is respected,
its signal looks amplified and its shape is preserved. Perceptively,
the demixed xylophone is very similar to the original one. Also,
for the horn, we must tolerate some interference effects, and the
spectrograms are partly damaged. A portion of energy was ab-
sorbed by an unwanted source generated from interferences. We
also conducted tests on speech samples. The reconstruction qual-
ity was good. The quality was much better than for long-distance
telephone lines. Several listening examples for the spatialization
and the separation systems are available online1.

5. CONCLUSIONS AND FUTURE WORK

The performance tests show that our system reaches promising re-
sults for speech and music signals. In our future works we will
extend the localization to moving sources, but we await undesir-
able phase effects in the re-synthesis. In the case of FFT bins
shared by several sources, the source separation is an interesting
challenge. We also plan to study the brightness of spectra to judge
the closeness of a source. Currently, the overall system is being
implemented in a real-time environment for many applications and
further investigations as part of the InSpect/ReSpect projects at the
SCRIME/LaBRI research centers in Bordeaux.
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