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Abstract. In this paper, we address a particular case of the general
problem of A labellings, concerning frequency assignment for telecommu-
nication networks. In this model, stations within a given radius r must
use frequencies that differ at least by a value p, while stations that are
within a larger radius ' > r must use frequencies that differ by at least
another value ¢q. The aim is to minimize the span of frequencies used in
the network. This can be modelled by a graph labelling problem, called
the L(p,q) labelling, where one wants to label vertices of the graph G
modelling the network by integers in the range [0; M], while minimizing
the value of M. M is then called the A number of G, and is denoted by
AL(G).

Another parameter that sometimes needs to be optimized is the fact that
all the possible frequencies (i.e., all the possible values in the span) are
used. In this paper, we focus on this problem. More precisely, we want
that: (1) all the frequencies are used and (2) condition (1) being satis-
fied, the span must be minimum. We call this the no-hole L(p, q) labelling
problem for G. Let [0; M'] be this new span and call the v number of G
the value M', and denote it by v2(G).

In this paper, we study a special case of no-hole L(p, q) labelling, namely
where ¢ = 0. We also focus on some specific topologies: cycles, hyper-
cubes, 2-dimensional grids and 2-dimensional tori. For each of the men-
tioned topologies cited above, we give bounds on the v number and show
optimality in some cases. The paper is concluded by giving new results
concerning the (general, i.e. not necessarily no-hole) L(p, q) labelling of
hypercubes.

* This work was done while the two first authors were visiting the University of Lough-
borough, and was supported in part by the EPSRC grant GR/R37395/01 and by
VEGA grant No. 2/3164/23.



1 Introduction

In this paper, we study the frequency assignment problem, that arises in wireless
communication systems. We are interested here in minimizing the number of
frequencies used in the framework where radio transmitters that are geographi-
cally close may interfere if they are assigned close frequencies. This problem has
originally been introduced in [12] and later developed in [9], where it has been
shown to be equivalent to a graph labelling problem, in which the nodes repre-
sent the transmitters, and any edge joins two transmitters that are sufficiently
close to potentially interfere. The aim here is to label the nodes of the graph in
such a way that:

— any two neighbours (transmitters that are very close) are assigned labels
(frequencies) that differ by a parameter at least p ;

— any two vertices at distance 2 (transmitters that are close) are assigned labels
(frequencies) that differ by a parameter at least q ;

— the greatest value for the labels is minimized.

It has been proved that under this model, we could assume the labels to
be integers, starting at 0 [8]. In that case, the minimum range of frequen-
cies that is necessary to assign to the vertices of a graph G is denoted A} (@),
and the problem itself is usually called the L(p,q) labelling problem. The fre-
quency assignment problem has been studied in many different specific topolo-
gies [8, 14,17, 1, 3, 5, 13, 2, 15, 16]. The case p = 2 and g = 1 is the most widely
studied (see for instance [6, 11, 10, 4]). Some variants of the model also exist,
such as the following generalization where one gives k constraints on the k first
distances (any two vertices at distance 1 < ¢ < k in G must be assigned labels
differing by at least d;). One of the issues also considered in the frequency assign-
ment problem is the no-hole labelling, where one wants to use all the frequencies
in the span. More precisely, we want that: (1) all the frequencies are used and
(2) condition (1) being satisfied, the span must be minimum. Let [0; M'] be the
span of frequencies that we obtain. We then call the v number of G the value
M', and we denote it by v2(G). We note that depending on the values of p, ¢
and on the considered graph G, a no-hole labelling might not exist. In that case,
we let v2(G) = oo. Hence, we clearly have v?(G) > M(G) for any p, ¢ and G.

In this paper, we study a special case of no-hole L(p,q) labelling, namely
where ¢ = 0. We also focus on some specific topologies: cycles, d-dimensional
hypercubes, 2-dimensional grids and 2-dimensional tori. For each of the men-
tioned topologies cited above, we give bounds on the v§ number for any value of
p>1andd > 1, and show optimality in some cases. We conclude the paper with
new results concerning the (general, i.e. not necessarily no-hole) L(p, q) labelling
of the d-dimensional hypercube, Hy.

2 No-Hole L(p,0) labellings

Proposition 1 (General graphs). For any p > 1 and any connected graph G,
if a no-hole labelling of G exists, then:



— v (G) > 2p—1if G is bipartite.
— v5(G) > 2p if G is not bipartite.

Proof. In any graph such that a no-hole L(p,0) labelling exists, there must, by
definition, exist at least one vertex of label 0. Let u be this vertex. Then all the
neighbours of u must be labelled at least p. Since the labelling is no-hole, all the
labels in the range [0; p] must be used. This is true, in particular, for label p—1.
Let v be a vertex whose label is p — 1. Then v has all its neighbours labelled at
least 2p — 1.

Now, let G be non bipartite, and suppose that v§(G) < 2p—1. G has at least
one odd cycle. Consider the vertices on this cycle, and let ¢ > 0 be the minimum
label among them, assigned to vertex v. If 4 > p, then the neighbours of v, not
being of minimum label, must be assigned a label at least 2p, a contradiction.
Hence, i € [0;p — 1]. In that case, the two neighbours of v on the cycle, say w;
and wy, are assigned labels at least p + 4, that is in the range [p;2p — 1]. But
the neighbours of w; and ws on the cycle must be assigned labels in the range
[0;p — 1], etc. If we repeat this argument, we see that, when we will close the
cycle, since it is odd, we will end up with a vertex z whose two neighbours, say
z and y, are such that x is assigned a label in the range [0;p — 1], while y is
assigned a label in the range [p; 2p—1]. As ¥ (G) < 2p—1, there is no possibility
to label z in an L(p, 0) fashion, a contradiction.

Observation 1 For any graph G of order n that admits a no-hole labelling,
n>vh(G)+1

Proof. Suppose a no-hole labelling for G exists. In order to be able to assign the
vertices of G all labels in the range [0; v} (G)], we must have n > v§(G) + 1.

Proposition 2 (Cycles). For any p > 1 and any graph G:

— v5(Cy) = 2p for any oddn > 2p+1
— vh(C,) =2p—1 for any even n > 2p + 2

Proof. First, suppose that n is even. According to Proposition 1, we know that, if
ano-hole L(p, 0) labelling for C,, exists, then v (C},) > 2p—1. By Observation 1,
we must have n > 2p. However, let v be the vertex which is assigned label p.
In that case, both its neighbours must be assigned label 0, because only labels
in the range [0;2p — 1] are allowed, and the gap between two neighbours is at
least p. Hence, n > 2p + 1; but since n is even, we have n > 2p + 2. Suppose
the vertices of (), are numbered clockwise from 1 to n. We give the following
labelling function ¢ on C, : (a) for any vertex v numbered 2i+1 (0 <7 < p—1),
c¢(v) =p+i; (b) for any vertex v numbered 2i (1 < < p), ¢(v) =i—1; (c) for
any vertex v numbered 2i+1,4 > p, ¢(v) = 2p—1; (d) for any vertex v numbered
2i (i >p+1), ¢(v) =0 (cf. for instance Figure 1 (right), where n = 2p + 2).

Now, we show that this assignment is an L(p,0) no-hole labelling of C,, for
any even n > 2p + 2. First, consider any two neighbouring vertices j and j + 1,
1<j<2p—1.1f jis even j = 2i, then ¢(j) =i — 1, while ¢(j + 1) = p + 1,



thus the gap of at least p is satisfied. If j is odd j = 2i + 1, then ¢(j) = p+14,
while ¢(j + 1) = 4, which also satisfies the L(p,0) condition. Now consider two
neighbours j and j+ 1, with 2p+1 < j < n—1. If j is even, then ¢(j) = 0 while
¢(j+1) =2p—1, and if j is odd, then ¢(j) = 2p — 1 while ¢(j + 1) = 0. There
still remain two cases to consider: (1) Vertices 1 and n and (2) vertices 2p and
2p + 1. However, in case (1) we have ¢(1) = p and ¢(n) = 0 , while in case (2)
we have ¢(2p) =p—1and ¢(2p+1) =2p—1.

Consequently, the L(p,0) condition is satisfied. There is no hole as from the
definition of the labelling, one can see that all labels are used on vertices 0 to
2p: odd vertices 2i + 1, 0 < ¢ < p — 1 have labels from p to 2p — 1, while even
vertices 2i, 1 < i < p are assigned labels from 0 to p — 1.

Odd cycle Even cycle

Fig. 1. L(p,0) no-hole labelling in cycles

Suppose that n is odd. By Proposition 1, we know that, if a no-hole L(p,0)
labelling for C), exists, then v§(C,) > 2p. Now, clearly, if n < 2p—1, then there
is not enough vertices to use all the labels. Thus, we must have n > 2p+ 1 in
order that the no-hole labelling exists. Assume that n > 2p+ 1, and the vertices
of C, are numbered clockwise from 1 to n. We define the following labelling
function ¢ to C),: (a) for any vertex v numbered 2i+1 (0 < ¢ < p), c(v) =p—i;
(b) for any vertex v numbered 2i (1 < i < p), e¢(v) =2p—i+1; (c) for any
vertex v numbered 2i+1, i > p+1, ¢(v) = 0 ; (d) for any vertex v numbered 2i
(i >p+1), c(v) =p (cf. for instance Figure 1 (left), where n = 2p + 1).

The labelling is an L(p,0) no-hole labelling of C,,, for any odd n > 2p + 1.
First, consider any two neighbouring vertices j and j+1,1 < j < 2p. If j is even
j = 2i, then ¢(j) = 2p—i+ 1, while ¢(j + 1) = p — 4, thus the gap of at least p is
satisfied. If j is odd j = 2i + 1, then ¢(j) = p — 4, while ¢(j + 1) = 2p — ¢, which
also fulfills the L(p,0) condition. Now consider two neighbours j and j + 1, with
2p+2 < j<n-—11If j is even, then ¢(j) = p while ¢(j + 1) = 0, and if j is
odd, then ¢(j) = 0 while ¢(j +1) = p. Now there remains some cases to consider:
(1)j=2p+1landj+1=2p+2and (2) j =n and j+1 = 0 (that is, we



“close” the cycle). But in both cases, we have ¢(j) = 0 and ¢(j + 1) = p. Thus,
altogether, the L(p,0) condition is satisfied. Now, by definition of the labelling,
we can see that all the labels are used on vertices 0 to 2p: vertices of the form
2i +1, 0 < i < p are assigned labels from 0 to p, while vertices of the form 2i,
1 < i < p are assigned labels from p + 1 to 2p.

Proposition 3 (Hypercubes). For any d—dimensional hypercube Hg such
that d > 222, v (Hy) = 2p — 1.

Sketch of Proof: By Proposition 1, v§(Hy) > 2p — 1. We will first show that
vE(Hq) < 2p — 1 (thus, proving the equality) for any d > 2p — 1 ; then, we will
show that this result can be extended to any d > ”Zﬂ. Suppose d > 2p — 1. The
fact that v} (Hy) < 2p — 1 is proved by homomorphism into the following graph
G: (a) the nodes of G, are the integers between 0 and 2p—1 and (b) there is an
edge between u and v in G}, iff [u —v| > p. Clearly, G}, represents the constraints
on the L(p,0) labelling, in the sense that any edge (u,v) of G}, indicate that
labels v and v can be assigned to neighboring nodes in Hy. We want to find an
homomorphism # from Hy to G, i.e. we want to find a mapping from V(Hg)
to V(G"), where every node v has an image h(v) such that any edge (u,v) in Hy
corresponds to an edge (h(u), h(v)) in GJ,. If we can do this, then we can find a
labelling (more precisely, c(v) = h(v) for any node v) that satisfies the L(p,0)
constraints. Furthermore as this labelling has to be no-hole, we also need that
every node of G;, is an image of at least one node of Hy. Let us partition the
nodes of H; into d+1 sets: for any 0 < i < d, the set S; corresponds to the nodes
having 7 bits equal to 0 in its binary coordinates. By definition of the hypercube,
for every 0 < i < d, S; is a stable set. In other words, all edges appear between
different S;s. More precisely, all the edges of Hy appear between an S; and an
Si+1- Let us define the homomorphism so that all nodes belonging to the same
S; have the same image by #H. Let h; be the image by H of all the nodes of
S;. Then, for any 1 < ¢ < d — 1, h; must be connected in G;, to both h;;1 and
h;_1. Moreover, hg must be connected to h;, and hg_; must be connected to hg.
Hence, this induces a path starting at ho, and ending at hq, with edges (hi, hit1)
for any 0 <i < d — 1. But we also want this labelling to be no-hole, hence this
path must be hamiltonian. In other words, if we are able to find a hamiltonian
path in G}, then there exists a homomorphism of Hy into G},. Clearly, since we
have d + 1 sets S;, and since each one has a unique image in G;, we must have
d+1>2p,thatisd > 2p — 1.
Finally we need to show that G;, contains a hamiltonian path ; it is as follows:
p,0,p+1,1, ... ¢ p+i,i+1, p+i+1,...,p—2,2p—2,p—1,2p—1 (cf. Figure 2(left)).
Let v; be any node of set S;, 0 < j < d. If j = 2i, we set h(vy;) = p+i for every
0<i<p-—1landifj=2i+1, we set h(vait1) = i for every 0 < i < p— 1.
Finally, for any j > 2p, if j is of the form 2p + 2i, we set h(v;) = 2p — 1, and if
J is of the form 2p + 2i + 1, we set h(v;) = 0.

We can show that the above result can be extended for any d > p + 1. This
is obtained using the same kind of argument (that is, homomorphism into G},),
but with a better mapping of the nodes (cf. Figure 2(right)).
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Fig. 2. (left) Homomorphism of Hy into Gy, with d = 7 and p = 3 ; (right) Another

homomorphism of Hg into Gj,, where nodes are represented by squares

The same goes to extending the result for any d > ”Qﬂ, hence proving the
proposition. Here again, the proof technique is the same as for the two previous
cases. Roughly speaking, we consider Hy as 4 copies of Hy_5, connected between
them by 2 perfect matchings. O

Observation 2 For any p > 2, if v (Hq) =2p— 1, then p <2%71 —d + 1.

Proof. Suppose that a no-hole L(p,0) labelling of Hy exists, with v§(Hy) =
2p — 1. Since Hy has 2¢ vertices, we must have 2¢ > 2p. Since p > 2, labels
0,p — 1,p and 2p — 1 are pairwise distinct. Moreover, by definition, there must
exist a vertex labelled p, whose d neighbours must then be labelled 0. The same
goes for any vertex labelled p — 1, whose d neighbours must then be labelled
2p—1. Hence, those four pairwise different labels are present on at least 2(d+1)
vertices, leaving 2p — 4 labels to be present on at most 2¢ — 2(d + 1) vertices.
Thus, we must have 2p — 4 < 2¢ — 2(d + 1), which gives the result.

Proposition 4. If v](Hy,) = 2p—1 for a given dimension do, then vl (Hg) =
2p — 1 for any d' > dj.

Proof. Consider Hg,, for which we have a no-hole L(p, 0) labelling with v} (Hg,) =
2p — 1. We will show here a way to obtain a no-hole L(p,0) labelling of Hy, 11
from the labelling of H,,. We recall that Hg,11 is obtained from two copies of
H,, joined by a perfect matching. Now consider a copy of Hg,, having a no-hole
L(p,0) labelling with v§(Hg,) = 2p — 1: necessarily, there must exist a vertex in
H,,, say =, whose label is p. Wlog (since hypercubes are vertex transitive), let
the binary coordinates of z be as follows: z = (0,0...0). Since v§(Hy,) = 2p—1,



all the neighbours of z must be labelled 0. Moreover, all the neighbours of 2 have
exactly one bit equal to 1. By the same argument, we can see that all the vertices
having 2 bits equal to 1 must be labelled in the range [p; 2p — 1], while all the
vertices having 3 bits equal to 1 must be labelled in the range [0;p — 1]. More
generally, all the vertices having an even (resp. odd) number of bits equal to 1 are
labelled in the range [p; 2p — 1] (resp. [0; p—1]). Now, take a second copy of Hy,,
and label each vertex having an even (resp. odd) number of bits equal to 1 with
label 0 (resp. 2p — 1). This labelling is an L(p,0) labelling, but it is not no-hole.
If we connect the corresponding vertices in both copies of Hy,, the labelling we
obtain remains L(p, 0) (vertices labelled in the range [p; 2p — 1] (resp. [0;p — 1])
in the first copy are connected to vertices labelled 0 (resp. 2p — 1) in the second
copy). Moreover, since it is no-hole in the first copy of Hy,, it remains no-hole
in Hd0+1.

Proposition 5 (2-Dimensional grids P, x P,;). For any p andn >m > 1
we have: v§ (P, x Py) = 2p—1, where

1. n-m—m+12>2pifn is even and m is odd,
2. n-m —m > 2p otherwise.

Sketch of Proof: Fill in the P, x P, grid (i.e. n rows and m columns) in
the chessboard mode. Like in the chessboard where we have white and black
alternating squares, we have in the “white” squares the labels from the range
[p; 2p—1] and in the “black” squares the labels [0; p—1]. Without loss of generality
assume that the left upper square is white. Take the following labelling: put p
in the left upper corner and subsequently put in the white squares from left to
right and row by row the upper range labels: p+ 1,p + 2,...,2p — 1. In the last
row put in all white squares 2p — 1. Further put 0 into all “black” squares of
the first row of the grid. Starting with the left most square in the second row of
the grid, we subsequently put into the “black” squares lower range labels from
[0; p — 1]. The labelling is no-hole L(p,0) and 2p = m(n —1) + 1 if m is odd and
n is even. Otherwise 2p = m(n — 1). m|

Below is an example of 2-dimensional grids G(5,6) and G(5,5).

Proposition 6 (Consequence of Proposition 5). For anyp,q >0 andd > 4
we have: V§(Hy) = 2p — 1 when

1. (|d/2] +1)[d/2] +2 > 2p if d is odd,
2. (d/2+ 1) —d/2 > 2p if d is even.

Proof. Proof follows by combining Propositions 3 and 5.

Remark 1. Similar results to Propositions 5 and 6 can be obtained for the 3 and
higher dimensional grids. The results will appear in the full version of this work.
Below is an example of a no-hole labelling of a 3-dimensional grid (see Figure 4).

By direct application of Proposition 1, we get the following result for the
2-dimensional toroidal meshes.



Fig. 3. No-hole L(p,0) labelling in 2D grids G(n,m): (left) m = 5,n = 6,p = 13;
(right) m =n=5,p=10

24|10 (25| 1 0|28| 1|34 |30|4 38|10 6 (41|14 |47
0(26|1 |31 |29|2 |35|7 5391146 |42|15|47|20

2712 (32| 7 3136|844 (40|12 (47|18 16 |47 | 21|47
3 |33| 8 |43 37| 9 |45 |17 13147119 |47| |47|22|47|23

Fig. 4. A L(24,0) no-hole labelling in Py x Py x Py with v¢* = 47. Each of the 4 blocks
represents a 2-Dimensional subgrid P4 x Py, in which each square represents a node

Proposition 7 (Tori). For anyp > 1 and n,m > 3:

— V5(Cp x Cry) > 2p—1 if n and m are both even
— V5 (Cp x Cy) > 2p otherwise

7
0
6
1

a|lo|d~|O
O |lo | O
~N | N N W

Fig. 5. L(p,0) no-hole labelling in 2D-tori; an example for Csy x C4 where p = 4

3 L(p,q) Labellings of Hypercubes

We conclude this paper by giving new results concerning the (general, i.e. not
necessarily no-hole) L(p, q) labelling of Hy. Some results on this topic have been



given in [7]. However, it is possible to improve them. This is the purpose of
Proposition 8 below.

Proposition 8. For any p,q,> 0 and d > 1:

1. }\g(Hd) =p
2. (d—-1)g < X)(Ha) < (2d - 3)q
3. MB(Hg) < 2p+ (2d—2)g — 1.

Proof. (1) For any d > 1, H; has at least two vertices. Consider a vertex v
of Hy that is assigned label 0 in a L(p,0) labelling of Hy. Such a vertex must
exist, otherwise every label could be decreased by at least 1, leading to a better
solution. v has at least one neighbour w, whose label must then be greater than
or equal to p. Hence, v} (Hy) > p. We can show that v (Hy) < p by noticing
that Hy is bipartite. Thus, if all the vertices of the first (resp. second) partition
of Hy are labelled 0 (resp. p), the labelling we obtain is L(p, 0).

(2) Take any vertex u of Hy. It has d neighbors, all of them lying at distance
2 from each other. Hence, those d vertices must be assigned labels that differ by
at least ¢. Since labels can begin at 0, it follows that the greatest label is greater
than or equal to (d — 1)g, showing that /\? (Hq) > (d — 1)g. The upper bound
is obtained by the following labelling: suppose each node v = (x1,x2...xq) is
defined by its (binary) coordinates in each of the d dimensions of Hy ; for any ver-
tex v = (x1, %2 ... 2zq) of Gy, we define ¢(v) = ( Z;i kqzy) mod (2d — 2)q. Since
p = 0, we only need to consider two vertices u and v lying at distance 2 in Gy,
thus differing on two coordinates, say z; and z;, 1 <14 # j < d. We will consider
two cases here: (a) j = d and (b) j # d. In case (a), we have |c(u) — c(v)| = ig
mod (2d — 2)q, and since 1 < i < d — 1, |e(u) — ¢(v)| > ¢. In case (b), we either
have |c(u) — e¢(v)| = (i + j)g mod (2d — 2)q or |c(u) — ¢(v)| = (j — i)g mod
(2d—2)g,but since 1 <i<d-2andi+1<j<d-1, |c(u) —c)| > g

(3) Suppose each node v = (1,2 . .. x4) is defined by its (binary) coordinates
in each of the d dimensions of H;. Every node v = (21, %2 . .. z4) is then assigned
label ¢(v) = ¢ (p + (i — 1)g)z; mod (2p + (2d — 2)q). Take two neighbors
w and v in Hg, which thus differ on exactly one coordinate, say in x;. Thus
|e(v) —¢(u)| = p+(j —1)g mod (2p+(2d—2)q), that is |¢(v) — c(u)| = p+(j —1)g.
Since 1 < j < d, we have that |c(v) —c(u)| > p. Now consider two nodes differing
on two coordinates 7 and j, where, wlog, i < j (since we are in H,, necessarily
i # j). We have two cases here: (a) z; = z; or (b) ; # z;. In case (a), we obtain
that |c(v) — c(u)] = 2p + (i + j — 2)q, which is clearly greater than or equal to
g. In case (b), |c(v) — c(u)| = (j — 7)g, which is also greater than or equal to g
since j # .

Remark 2.

— Concerning the L(0, ¢) labelling of Hg, we can show that A)(Hs) = X)(Hy) =
3q ;



— We note that Proposition 8(3), when applied to the case p = 2 and ¢ = 1,
gives AP(H;) < 2d + 1, a value which coincides with the lower bound proved
in [8].

4 Conclusion

In this paper, we have mainly considered the no-hole L(p,0) labelling in differ-
ent topologies, such as cycles, hypercubes and 2-dimensional tori. We also gave
some bounds for the (not necessarily no-hole) L(p,q) labelling of hypercubes,
that improve the ones from [7].

Concerning no-hole L(p,0) labellings, we have mainly based our study on the
cases for which there exists a no-hole L(p, 0) labelling having the minimum num-
ber of labels (that is, minimum as stated in Proposition 1). Indeed, depending
on the respective values of n (number of nodes of the considered network) and
p, such a no-hole L(p,0) labelling might not exist. Also, as remarked above,
our work concerning 2-dimensional grids can be extended to any d-dimensional
grids, d > 3 (this will appear in the full version of this work). We also note that a
natural extension of this work is to study the no-hole L(p, ¢) labelling of graphs,
for any p, q.
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