# No-Hole L(p,0)-Labelling of Cycles, Grids and Hypercubes

Abstract : In this paper, we address a particular case of the general problem of $\lambda$ labellings, concerning frequency assignment for telecommunication networks. In this model, stations within a given radius $r$ must use frequencies that differ at least by a value $p$, while stations that are within a larger radius $r'>r$ must use frequencies that differ by at least another value $q$. The aim is to minimize the span of frequencies used in the network. This can be modelled by a graph labelling problem, called the $L(p,q)$ labelling, where one wants to label vertices of the graph $G$ modelling the network by integers in the range $[0;M]$, while minimizing the value of $M$. $M$ is then called the $\lambda$ number of $G$, and is denoted by $\lambda_q^p (G)$. Another parameter that sometimes needs to be optimized is the fact that all the possible frequencies (i.e., all the possible values in the span) are used. In this paper, we focus on this problem. More precisely, we want that: (1) all the frequencies are used and (2) condition~(1) being satisfied, the span must be minimum. We call this the {\em no-hole} $L(p,q)$ labelling problem for $G$. Let $[0;M']$ be this new span and call the $\nu$ number of $G$ the value $M'$, and denote it by $\nu^p_q(G)$. In this paper, we study a special case of no-hole $L(p,q)$ labelling, namely where $q=0$. We also focus on some specific topologies: cycles, hypercubes, 2-dimensional grids and 2-dimensional tori. For each of the mentioned topologies cited above, we give bounds on the $\nu_0^p$ number and show optimality in some cases. The paper is concluded by giving new results concerning the (general, i.e. not necessarily no-hole) $L(p,q)$ labelling of hypercubes.
Type de document :
Communication dans un congrès
Springer-Verlag. 11th International Colloquium on Structural Information & Communication Complexity (SIROCCO 2004), Jun 2004, Smolenice, Slovakia. Ratislav Kralovic and Ondrej Sykora, Lecture Notes in Computer Science (LNCS) (3104), pp.138-148, 2004, 3104 of Lecture Note
Domaine :

https://hal.archives-ouvertes.fr/hal-00307789
Contributeur : Guillaume Fertin <>
Soumis le : mardi 15 septembre 2009 - 10:17:40
Dernière modification le : mardi 17 juillet 2018 - 17:30:01
Document(s) archivé(s) le : samedi 26 novembre 2016 - 01:01:21

### Fichier

Lp0Sirocco04.pdf
Fichiers produits par l'(les) auteur(s)

### Identifiants

• HAL Id : hal-00307789, version 1

### Citation

Guillaume Fertin, André Raspaud, Ondrej Sykora. No-Hole L(p,0)-Labelling of Cycles, Grids and Hypercubes. Springer-Verlag. 11th International Colloquium on Structural Information & Communication Complexity (SIROCCO 2004), Jun 2004, Smolenice, Slovakia. Ratislav Kralovic and Ondrej Sykora, Lecture Notes in Computer Science (LNCS) (3104), pp.138-148, 2004, 3104 of Lecture Note. 〈hal-00307789〉

### Métriques

Consultations de la notice

## 488

Téléchargements de fichiers