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Abstract

This paper studies the circular chromatic number of a class of circular partitionable graphs.
We prove that an infinite family of circular partitionable graghi$iasx.(G) = x(G). A
consequence of this result is that we obtain an infinite family of graphgth the rare
property that the deletion of each vertex decreases its circular chromatic number by exactly
1.
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1 Introduction

Suppos€- is a graph and andd, k£ > 2d, are positive integers. Ak, d)-coloring
of G is a mappingf : V(G) — Z, such that for each edgey of G, d < |f(z) —
f(y)| < k — d. Thecircular chromatic numbeof G is defined as

X.(G) = inf{k/d : G has a(k, d)-coloring}.

1 Supported in part by the National Science Council of ROC under grant NSC91-2115-M-
110-004
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As a(k,1)-coloring of G is equivalent to &-coloring of G, we havey.(G) <

X(G). On the other hand, it is known [11,12] that(G) > x(G) — 1. Therefore
X(G) = [x.(G)]. So the parametey.(G) is a refinement ok (G), andx(G) is an
approximation ofy.(G).

If G is vertexy—critical (i.e., the deletion of any vertex decreases its chromatic
number), then deleting any vertex frofh decreases its chromatic number hy
However, for a vertex .-critical graphG (i.e., the deletion of any vertex decreases
its circular chromatic number), the decrease of the circular chromatic number by
the deletion of one vertex could be any rational nuntberr < 2. Indeed, it seems
very rare that a grap@ has the property that the deletion of each vertex decrease its
circular chromatic number by exactly The question of characterizing such graphs
was raised in [12]. Currently, complete graphs, the direct sum of vgrextical
graphs and a few isolated example graphs are known to have this property. In this
paper, we study the circular chromatic number of partitionable graphs. We prove
that for an infinite family of partitionable graplis we havey.(G) = x(G). Since
partitionable graph& have the property for any vertex x (G —v) = w(G —v) =

X(G) — 1, which implies thaty.(G — v) = x(G) — 1, it follows that for these
partitionable graphs;, the deletion of any vertex decreases its circular chromatic
number by exactly.

Another motivation for the study of the circular chromatic number of partitionable
graphs concerns circular perfect graphs. Given positive intégargld, k£ > 2d,

the circular complete graphk, ,; has vertex seZ, in whichij is an edge ifd <

li — j| < k — d. A homomorphisnfrom a graphG to a graphH is a mapping
f:V(G) — V(H) such thatf (z) f(y) is an edge off wheneverry is an edge of

GG. Then ak-coloring of a graplt= is equivalent to a homomorphism froghto K,

and a(k, d)-coloring of G is equivalent to a homomorphism frofto K. So in

the study of circular chromatic number of graphs, the circular complete gfaphs

play the role of complete graphs as in the study of chromatic number of graphs. The
circular clique numbepof a graphG is defined as

we(G) = sup{k/d : K}/ admits a homomorphism 1G}.

It was shown in [13] thaw.(G) is equal to the maximum of those'd for which
K}/q 1s an induced subgraph of.

A graph is calledcircular perfect[13] if for every induced subgrapKi of G,

Xe(H) = w.(H). Sincew(H) < w.(H) < x.(H) < x(H), every perfect graph

is circular perfect. On the other hand, there are circular perfect graphs which are
not perfect. In particular, odd cycles and the complement of odd cycles are circular
perfect graphs. So the class of circular perfect graphs is strictly larger than the
class of perfect graphs, but it is still a very restrictive class. A sufficient condition
for a graph to be circular perfect is given in [13], and this sufficient condition is
used to prove an analogue of i@ajTheorem for circular chromatic number. We
call a graphGG minimal circular imperfectif G is not circular perfect but every



proper induced subgraph 6f is circular perfect. As an analogue to the study of
perfect graphs, it would be nice to have an appealing conjecture on the structure
of minimal circular imperfect graphs. Since all the minimal imperfect graphs are
circular perfect, we need to search a larger area for minimal circular imperfect
graphs. The class of partitionable graphs is a natural candidate. By studying the
circular chromatic number of a subclass of circular partitionable graphs, we prove
that all the partitionable graphs in this subclass are circular imperfect. The question
whether they are minimal circular imperfect remains an open question.

2 Circular partitionable graphs and the main result

Suppose, ¢ > 2 are integers. A grapfi is a(p, q)-partitionable graphf |V (G)| =

pg+1, and for each vertex of G, G\ {v} admits a partition inte cliques of cardi-

nality ¢ as well as a partition intg stable sets of cardinality. A graph ispartition-

ableif itis a (p, ¢)-partitionable graph for some ¢ > 2. Partitionable graphs were
introduced by Loasz [9] and Padberg [10] as a tool in the study of perfect graphs. A
graphG is perfectif for every induced subgrapH of G, we havex(H) = w(H).

Here w(H) is the clique numberof GG, which is the cardinality of a maximum
cligue of G. A graphG is minimal imperfecif G is not perfect, but every proper
induced subgraph af is perfect. The Strong Perfect Graph Theorem, which was
conjectured by Berge [2] in 1961, proved by Chudnovsky, Robertson, Seymour and
Thomas [5] in 2002, says that odd cycles of length at |eastd their complements

are the only minimal imperfect graphs. Before the proof of Berge’s conjecture, it
was shown by Lo&sz [9] and Padberg [10] that every minimal imperfect graph is a
partitionable graph. Thus to prove Berge’s conjecture, it suffices to show that none
of the partitionable graph is a counterexample. Although the final proof of Berge’s
conjecture given by Chudnovsky, Robertson, Seymour and Thomas [5] takes a dif-
ferent route, the class of partitionable graphs has been studied thoroughly in the
literature, and this turns out to be an interesting class of graphs. The understanding
of the structure of this class of graphs may be helpful in the study of other graph
theory problems. It is known (cf. [3]) that eve(y, q)-partitionable graph has the
following properties:

(1) pis the maximum cardinality of a stable set@fandgq is the maximum car-
dinality of a clique ofG;

(2) G has exactly: stable sets of cardinalifyand exactly. cliques of cardinality
q, wheren is the number of vertices af;

(3) For each maximum cliqué’ of G, there is a unique maximum stable set
such thatC N S = ); and similarly, for each maximum stable sgthere is a
unique maximum cliqgu€ such thatC N S = 0;



(4) Each vertex belongs to exactlymaximum cliques, and belongs tomaxi-
mum stable sets.

In the study of partitionable graphs, some recursive constructions of sub-families
of partitionable graphs are discussed in the literature [6,4]. The class of circular
partitionable graphs was introduced by @tal, Graham, Perold and Whitesides

[6].

For two sets of integer, Y, let X + Y denote the sefr +y : x € X, y € Y}.
If X = {z} is a singleton, we write + Y instead of{x} + Y.

Supposem; > 2 (i = 1,2,---,2r) are integers. Define integers (for i =
0,1,---,2r), setsM; (fori =1,2,--- ,2r), and setg’, S as follows:

i =mamy - -m; (po = 1),

M; =10, pti—1, 231, -+, (my — 1)1 },
C=M;+ M3+ -+ My,
S=My+ My+ -+ Ms,.

Letn = myms - - - my, + 1. We denote by [my, ms, - - - , ms,| the circulant graph
with vertex setZ,, = {0,1,--- ,n — 1}, wherexy is an edge if and only it # y
and(xz — y) modulon is equal to the difference of two elements(of

Note thatu,; > Z;';ll max M;. This implies thatC'| = myms - - - mo,—; and|S| =
mamy - - - ma,. Letw = |C| anda = |S|. Thenn = wa + 1. SUpposeX is a subset
of Z,,. A circular shiftof X is a set of the formi+ X = {i+z (mod n) : z € X}.

Theorem 1 [6] Supposem,; > 2 are integers fori = 1,2,--- ,2r. ThenG =

Clmy, ma, - -+ ,my,] is an («a,w)-partitionable graph. Moreover, the maximum
cliques ofG are then circular shifts ofC', and then maximum stable sets 6f are

then circular shifts ofS.

As an example, we consider the grapf2, 2, 2, 2|. Then
lui:2i7 1= 071727?)’4;
Ml = {07 1}a M2 = {07 2}7 M3 = {074}7 M4 = {078}7

C={0,1,4,5};
5={0,2,8,10}.

The vertex set of’[2, 2,2, 2] is Z,7, andij is an edge ifi — j| € {1,3,4,5}. The
graph is depicted in Figure 2.

The following is the main result of this paper.

Theorem 2 Letzy,...,z, (p > 2) be integers such that; > 2 for everyl < i <



Fig. 1. The circular partitionable gragh(2, 2, 2, 2]

p. Letd = maxz; and letG = Clz1,2,...,2,,2]. fp=20rzzy...2, > 201§
theny.(G) = (G).

The proof of Theorem 2 is left to Section 4.

Observe that fot7 = C[21,2,...,2,,2], @« = 2P, w = z125--- 2, ANA|V(G)| =
n = 2Px125 ..., + 1. Therefore

n 1
W(6) == =w+ o < xel6) = X(G) =w+ 1.
There are a few papers devoted to the study of the circular chromatic number of
circulant graphs [7,8]. It is known [12] that for any graph x;(G) < x.(G) <

x(G). A graphdG is calledstar extremalf x;(G) = x.(G). In [7,8], classes of star
extremal circulant graphs are investigated. Theorem 2 provides a class of circulant
graphs of another kind of extremality, i.e., circulant graphs wittGG) = x(G).

Corollary 3 Supposé&r = C|zy,2, ..., x,, 2] satisfies the condition of Theorem 2.
ThenG is circular imperfect.

PROOF. Itis known [13] thatw(G) < w.(G) < w(G) + 1. As x.(G) = x(G) =
w(G) + 1, it follows thaty.(G) > w.(G). O

It is unknown if any of the graph& = Cf[z,2,...,z,,2] are minimal circular
imperfect. A computer search shows tlige, 2, 2, 2] is not minimal circular im-
perfect. The subgraph @f[2, 2,2, 2] induced by the seX = {2,3,4,5,6,9,11,

12,13, 14,16} has circular chromatic numberand circular cligue numbe¥, and
hence is circular imperfect.



Since the graph&’ = C[z1,2,29,2,--- ,x,,2] are partitionabley(G — z) =
w(G — ) = x.(G — z) = x(G) — 1 for each vertexc. Therefore we have the
following corollary.

Corollary 4 Supposé&r = C|zy,2, ..., z,, 2] satisfies the condition of Theorem 2.
Theny.(G — z) = x.(G) — 1 for each vertex: of G.

In other words, the circulant graphs satisfying the condition of Theorem 2 have
the property that the deletion of each vertex decreases its circular chromatic num-
ber by exactlyl. Not many such graphs were known before, and the problem of
characterizing and constructing such graphs was raised in [12].

3 Structural properties of G

In the remainder of this pape; = Clz1,2,29,...,1,,2]. Letw = z1...1,,
a=2Pn=aw+ 1.

In this section, we shall be interested in element&pbonly. If « = b (mod n),

thena, b are treated as the same. However, by an abuse of notation, we also use the
natural order of integers in the following sensex i b, we denotéa, b the set of
integersa < = < b. Note that it is possible that b ¢ {0,1,--- ,n — 1}. However,

la, b] always denote a subset 66,1, --- ,n — 1}, by means of taking modulo.

For example[—1,1] = {-1,0,1} = {n — 1,0, 1}. For a setA of integers, let

aA ={ax :z € A},a+ A = {a+ 2z : 2 € A}. Again the multiplications and
additions are module.

Letco =1,andfori =1,...,p, let

7
Cc; = 21_11'11172 R TR and dz = Z Cj-
=1

First we derive an explicit expression for the maximum cliques and stable sets of
G. It follows from the definition that,y, = 1 and forl < i < p,

Hoi—1 = Qi_llL‘leQ Xy =G, and,ugi = 2i$1$2 .. X = 2¢.
Therefore forl < i < p,
Mgi_l = 261_1[0,:@ — ].], andMgi = {O, Ci}.

So



P p
C:ZMijl = 220]',1[0,1']‘ — 1],
7=1

Jj=1

M=

p
S=> My => {0,¢}.
j=1

=1

<
Il

By Theorem 1, the maximum cliques 6f are then circular shiftsC' + i of C
(: € Z,), and the maximum stable sets@fare then circular shiftsS + i of S
(i € Z,).

In the following, we consider the intersectiéin (S + i) of two maximum stable
sets ofG.

Lemma5 For 2 § ) S P, C; ¢ [_Qdifla 2d’i*l]-

PROOF. Sincecy = 22129 > 221 = 2dy, andn — ¢y > 4z129 + 1 — 22129 >
2xyx9 > 2d;, we conclude that, ¢ [—2d;,2d;]. Assume: > 3 andc¢;; &
[—2d;_2,2d;_5]. Sincec; = 2x;¢;_; andx; > 2, we have

C; > 201+ 2¢;_1 > 2(2d1_2) 4+ 2¢,_1 > 2d;_1.
Furthermore,
n—ci:2px1x2---xp—|—1_ci > 20, — ¢ = ¢ > 2d;_q.

Thereforer; & [—2d;_1,2d;_41]. O

Fori=1,2,---,p,let

)

Si = i:MQj = Z{O,Cj}.

=1 =1

Lemma 6 For everyz in Z, and for eveny2 < i < p,

SiN(Si+x)=(Si21 N (Sic1 +2) U((Si—1 +¢) N (Si-1 + ¢+ x))
or
Si N (SZ + .T) = (Si—l N (Si—l + ¢ + .T)) U ((Si—l + Ci) N (Si—l + I’))

PROOF. By definition, S; = S;_; U (S;_; + ¢;). HenceS; + x = (S;_; + =) U
(Si—1 + ¢; + =). Therefore

SiN(Si+x)=(Sic1N(Si—1 +2)) U ((Si—1 +¢) N (Siz1 + ¢ + )
U(Si_l N (Si—l +c + IL‘)) U ((Sz‘—l + Ci) N (Si—l + (L’))



If Si_1ﬂ<5i_1 +SL’) # Q), thenz ¢ [_di—h di—l]- By Lemma 5¢; g [—2di_1, Qdi_l].
Thereforec; +x, c;—x & [—d;_1,d;_1]. Thisimplies thatS;_;N(S;_+c;+z) =0
and(S;_1 +¢;) N (S;-1 +x) = . Therefore

SiN(S;+x)=(Sic1N(Siz1 +2)) U ((Sic1 + ) N (Siz1 + ¢ + 2)).

If 51;1 N (Si,1 + 1}) = (Z), then(Si,1 -+ Ci) N (Sifl “+c; + $) = @, and hence

a

Forl <j<i<np,let

B;j; = Z My = Z {0, ¢}

t€{172""’i}\{j} tG{l,Q,---,i}\{j}

ThenS; = B, j +{0,¢;} = B;; U (B;; + ¢;). For convenience, |l&B; = B, ;.
Lemma 7 For everyl <i < p and for everyr € Z,,, = # 0, we haveS; N (S; +
z)| < 2071, Moreover, if|S; N (S; + x)| = 271, then there is a unique indgx< i
such thatr = +¢; andS; N (S; +z) = B, ; or B; ; + ¢;, depending o = —c¢; or
x = ¢;. In particular, for anyx € Z,, |S N (S + z)| < 2¢~1, and if equality holds

then there is a unique indexsuch thatr = £¢; and.S N (S +z) = B; or B; + ¢;,
depending on whether= —c; or z = c;.

PROOF. We prove this lemma by induction anlt is obvious that for every: €
Z,, x # 0, we havelS; N (S; + x)| < 1, and equality holds only if = +¢;. Let
1 > 2 and suppose the lemma is true foK 7 — 1.

By Lemma 6,

SiN(Si+x)=(S_1N(Sic1+2)) U ((Sic1 +¢) N (Siz1 + ¢ +x))
or
SiN(Si+x)=(S-1N(Sic1+¢+2)U((Sic1 +¢)N(Siz1 +2))

First we consider the case that

By induction hypothesig,S; 1 N (S;_1 + z)| < 27 and |((Si—1 + ¢;) N (Si_1 +
c; +2))| < 2771 Therefore

1S, N (S; + )| <271 42071 =2,



Moreover, if|S; N (S; + z)| = 2%, then|S;_; N (S;_1 + z)| = 2°~! and hence there
is a unique indey < ¢ — 1 such thatr = +¢; andS;,_1 N (S;-1 + ) = Bi_1;
or Bi—l,j + ¢;. ThenSi N (Sz + .I') = Bi—l,j + {0, Ci} = Bi7j orsS; N (Sz + ZL’) =
Bi—l,j + Cj + {07 Ci} = Bi,j + Cj

Next we assume that
SiN(Si+z)=(Si1N(Sic1+ ¢ +2) U((Siz1 +¢) N (Siz1 + x)).

If x # +¢; then the same argument as in the previous case works. Assame.
Then

|Sl N (Sz -+ ZE)‘ = |Si—1 + Ci| + |SZ‘_1 N (Sz‘—l + QCi)|.
Note that ifc < p — 1, then2¢; € C. If © = p, then2¢, = —1. In any caselc;

is equal to the difference of two integers@f Therefore{0, 2¢;} is an edge of5.
Hence2c; € S; 1 — S;_1 (asS;_1 is a stable set afy). This implies that

Si—l N (Si—l + 202) == @

Hence
1S; N (S; + )| = |S;_1| =271,
and
SiN(S;+x) =B +¢
asB;; N (B;; +2¢;) = 0 ( B;, is astable set anf), 2¢;} is an edge).

If x = —¢;, then the same argument shows that

4  Proof of Theorem 2

Assume thak.(G) = k/d, whereged(k,d) = 1. Let f be a(k, d)-coloring of G,
which is viewed as a homomorphism fraghto K, 4. Fori € Zy, let X; = f~1(i)
be the set of vertices df of colori. LetY; = X; U X;,1 U---U X;,4 1. Then
Y; is a stable set. It is known (see Lemma 1.3 of [12]) that for each # () and
moreover, for each there is a vertex € X; and a vertey € X, , such thatry is
an edge of7. We need to prove that= 1.

Lemma 8 If x.(G) = k/d andged(k,d) = 1, thend < 2.

PROOF. Assume to the contrary thdt> 3. We consider two cases.



e Caselp=2

Note that in this case = 4.

Assume that there is an indéxor which | X;| > 2. Sinced > 3, X; U X;.; U
Xiyo C Y;and X, ; U X; U X,y C Y,y However,|Y; 4|, |Y;| < a = 4, and
| Xis1 UX; U X, | Xs U X UXipe| >4 (as|X;| > 2, and eachX;| > 1).
Therefore|Y; 1| = |Y;| = 4, and hencé&’;_;,Y; are maximum stable sets 6f
However,|Y; 1 NY;| = | X;| + | X;11] > 3 > a/2, contrary to Lemma 7.

Hence, for every € Z;, we have|lX;| = 1. In particular,n = k£ = 4w + 1.
Fromg <y =w+ landw > 2, we getd > 4. SinceY is a stable set of sizé
we haved = 4. ThusY; andY; are two maximum stable sets @fsharingd — 1
vertices, contrary again to Lemma 7.

This completes the proof of Case 1.

e Case 2:w > 2rtl§

If there exists € Z; such thatY;| + Y| +|Yii2| = 3athen|Y;| = |V =
Yit2| = a. By Claim 7, we haveY; NY;,,| < §. Hence|Y;; \ ;| > §. As
Vi \ Y = Xipq, we get| X, 4] > §. Asd > 3 and X, , # (), we conclude that
| Xip2 U Xipq| > §. HoweverX; o U Xi 4 C Yiy1 N Y. SOY;y, andY;,, are
two distinct maximum stable sets with; ; N Y; o] > 5, contrary to Lemma 7.

Thus for everyi € Z;,, we haveY;| +|Yi 1|+ |Yii2| < 3a. Since) .7, |Yi| =
dn, we havey,.; (Y| + [Yiq| + [Yige|) = 3dn < (3a — 1)k.

Asn =oaw+ 1and? < w + 1, we have

3n=3(aw+1) < Ba—1)(w+1).
It follows thatw < 3a — 4. Hence
2P < w < 3a — 4,
which is a contradiction, as = 2P andd > 2.

|

By Lemma 8, we havd = 1 or 2. If d = 1, we are done. Thus we assume- 2,
and we shall derive a contradiction. As< x.(G) < x(G) = w + 1 andd = 2,
we havek = 2w + 1.

Lemma 9 There exists am € Z, such thaty;, Y., ..., Y, o5 are all of sizen.

PROOF.

e Caselp=2
If there exists: € Z, such that X;| > 3 thenY; andY;_; are two maximum
stable sets sharind;| > a/2 vertices, contrary to Lemma 7. Thus, for every
Zy, we havg X;| < 2.Sincey;c;, |Xi| = n = 4z122+1 = 2k—1, it follows that

10



there exists a uniqug € Z, such thatX;| = 1. ThusY,.1,Yj10,..., Yiin o
aren — 2 stable sets of size = 4. Asn —2 = 4z,2o — 1 > 25 + 1, we are done.
e Case 2:w > 2rt1§
Assume to the contrary that for eveirye Z,, there exists one stable set in
Y;, Yii1, ..., Yiios Of size strictly less than, then

k—1
STV 4 [Yiga| + - 4 [Yigos]) < ((26 + D — 1)k.
=0

On the other hand, 88%~ |Y;| = 2n, we have

k
STV + [Yiga| + -+ + [Yigas|) = (20 + 1)2n.

=0

Therefore
(20 +1)2n < ((26 + D — 1)k.
Sincek = 2w + 1 andn = wa + 1, straightforward calculation shows that

4042 < (25 +1)a—2w— 1.
Asw > 2Pt1§ anda = 27, easy calculation derives a contradiction.

|

In the remainder of this section, lebe an index such that, Y;.,..., Y. s are
all of sizea.

Lemma 10 Foreveryj =i+ 1,i +2,...,4 + 25, we havg X;| = §.
PROOF. By Lemma 7,|X;| = |Y;_1 NY;| < §. Asa = V)| = | Xj| + | X4, it

follows that|X;| = a — [X;41| > 2if i +1 < j <i+20 — 1. Hence|X;| = 2. If

J =1+ 20,thensincex = |Y;_| = |X;_1| + |X}|, we also haveX;| = 5. O

Lemma 11 There exists an indexe {1,2,--- ,p} anda € Z,, such that either
forall j =1,2,...,26,

Xiyj=Xi+jo=Bi+a+je,and Y 1 =S+a+(j—1)e
orforall j =1,2,...,2/,

Xiyj=Xi—ja=Bi+a—je,and Yy ;1 =S+a—(j—1)c.
PROOF.

11



Let a be the element iZ,, such that; = S + a.

By definition, foranyl <t <p, S = B;+{0,¢} = B, U (B, + ¢). By Lemma
10,Y; NYi| = §. By Lemma 7.Y;,, = Y; £ ¢, for somel <t < p. First we
consider the case thit,; = Y; +¢,. SinceY; = S+a = (B;+a)U (B +a+ ¢),
we have

Ximm=,NnY ) =NS+a)+a=B+c +a.
Moreover,
Xipz = (Y1 \Yy) = (S + )\ §) +a =B +2¢ +a.
Assume3 < j <2, X, ;1 =Bi+a+(j—1)andY ;o = S+a+(j—2)c.
AssumeY;,;_; = S + j' for somej’ € Z,. Since
Yivja=8+a+(J —2)c
and

Yirj1NYijo=Xiyj1=Bi+a+(j— 1),

it follows that
Sm(S+<]l—a—(j—2)Ct)) :Bt+ct-

By Lemma 7' —a—(j—2)c; = ¢;. Thus we conclude that, ;_; = S+a+(j—1)c;
andX,,; = By +a+ jci, asXiy; = YVigjo1 \ Xigj—1.

If Vi1 =Y, — ¢, then the same argument shows thatjfer 1,2, --- 20, X;;; =
Bi+a—jegandY ;1 =S+a—(j—1)¢. O

Now we derive the final contradiction. Letbe the index given in Lemma 11.
Without loss of generality, we assume thatfot 1,2, - -- .20, X;1; = Bi+a+jc.

If t <p,then2z, ¢, = ciq0. ThenXi ., = Xi + 22410, = By + a+ ¢41. By
definition,c;,; € B;. Thusa + ¢;11 € B; + a = X;. On the other hand) € B,
and hencer + c,y1 € Xii9.,,,. This is a contradiction, a&r,, < 20 < w < k,
which implies thatX; N X, »,,., = 0. If t = p, then

201 = (2Pmq2e - xp)2 = (N — D)oy = —a4.
Then X, 9,, = X; + 2x1¢, = B; + a — z1. By definition,z; € B,. Thusa €
Bi 4+ a — 1 = X;12.,. On the other hand) € B;, and hence € B, + a = X;.

This is a contradiction, a&r; < k and henceX; N X, 2., = (. This completes the
proof of Theorem 2.
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5 Open question

Theorem 2 gives the circular chromatic number of some circular partitionable graphs
such that their stability number is a power of two (these graphs are said to be of type
1or2in[1]).

However, we believe that our result is likely to hold for most of the circular parti-
tionable graphs: e.g., is it true that every grédpm,, mao, ..., mo,] with r > 2 has
its circular chromatic number equal to its chromatic number?
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