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Abstract

This paper studies the circular chromatic number of a class of circular partitionable graphs.
We prove that an infinite family of circular partitionable graphsG hasχc(G) = χ(G). A
consequence of this result is that we obtain an infinite family of graphsG with the rare
property that the deletion of each vertex decreases its circular chromatic number by exactly
1.
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1 Introduction

SupposeG is a graph andk andd, k ≥ 2d, are positive integers. A(k, d)-coloring
of G is a mappingf : V (G) → Zk such that for each edgexy of G, d ≤ |f(x) −
f(y)| ≤ k − d. Thecircular chromatic numberof G is defined as

χc(G) = inf{k/d : G has a(k, d)-coloring}.
1 Supported in part by the National Science Council of ROC under grant NSC91-2115-M-
110-004
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As a (k, 1)-coloring of G is equivalent to ak-coloring of G, we haveχc(G) ≤
χ(G). On the other hand, it is known [11,12] thatχc(G) > χ(G) − 1. Therefore
χ(G) = dχc(G)e. So the parameterχc(G) is a refinement ofχ(G), andχ(G) is an
approximation ofχc(G).

If G is vertexχ−critical (i.e., the deletion of any vertex decreases its chromatic
number), then deleting any vertex fromG decreases its chromatic number by1.
However, for a vertexχc-critical graphG (i.e., the deletion of any vertex decreases
its circular chromatic number), the decrease of the circular chromatic number by
the deletion of one vertex could be any rational number0 < r < 2. Indeed, it seems
very rare that a graphG has the property that the deletion of each vertex decrease its
circular chromatic number by exactly1. The question of characterizing such graphs
was raised in [12]. Currently, complete graphs, the direct sum of vertexχ-critical
graphs and a few isolated example graphs are known to have this property. In this
paper, we study the circular chromatic number of partitionable graphs. We prove
that for an infinite family of partitionable graphsG we haveχc(G) = χ(G). Since
partitionable graphsG have the property for any vertexv, χ(G− v) = ω(G− v) =
χ(G) − 1, which implies thatχc(G − v) = χ(G) − 1, it follows that for these
partitionable graphsG, the deletion of any vertex decreases its circular chromatic
number by exactly1.

Another motivation for the study of the circular chromatic number of partitionable
graphs concerns circular perfect graphs. Given positive integersk andd, k ≥ 2d,
thecircular complete graphKk/d has vertex setZk in which ij is an edge ifd ≤
|i − j| ≤ k − d. A homomorphismfrom a graphG to a graphH is a mapping
f : V (G) → V (H) such thatf(x)f(y) is an edge ofH wheneverxy is an edge of
G. Then ak-coloring of a graphG is equivalent to a homomorphism fromG to Kk

and a(k, d)-coloring ofG is equivalent to a homomorphism fromG to Kk/d. So in
the study of circular chromatic number of graphs, the circular complete graphsKk/d

play the role of complete graphs as in the study of chromatic number of graphs. The
circular clique numberof a graphG is defined as

ωc(G) = sup{k/d : Kk/d admits a homomorphism toG}.

It was shown in [13] thatωc(G) is equal to the maximum of thosek/d for which
Kk/d is an induced subgraph ofG.

A graphG is calledcircular perfect[13] if for every induced subgraphH of G,
χc(H) = ωc(H). Sinceω(H) ≤ ωc(H) ≤ χc(H) ≤ χ(H), every perfect graph
is circular perfect. On the other hand, there are circular perfect graphs which are
not perfect. In particular, odd cycles and the complement of odd cycles are circular
perfect graphs. So the class of circular perfect graphs is strictly larger than the
class of perfect graphs, but it is still a very restrictive class. A sufficient condition
for a graph to be circular perfect is given in [13], and this sufficient condition is
used to prove an analogue of Hajós Theorem for circular chromatic number. We
call a graphG minimal circular imperfect, if G is not circular perfect but every
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proper induced subgraph ofG is circular perfect. As an analogue to the study of
perfect graphs, it would be nice to have an appealing conjecture on the structure
of minimal circular imperfect graphs. Since all the minimal imperfect graphs are
circular perfect, we need to search a larger area for minimal circular imperfect
graphs. The class of partitionable graphs is a natural candidate. By studying the
circular chromatic number of a subclass of circular partitionable graphs, we prove
that all the partitionable graphs in this subclass are circular imperfect. The question
whether they are minimal circular imperfect remains an open question.

2 Circular partitionable graphs and the main result

Supposep, q ≥ 2 are integers. A graphG is a(p, q)-partitionable graphif |V (G)| =
pq+1, and for each vertexv of G, G\{v} admits a partition intop cliques of cardi-
nality q as well as a partition intoq stable sets of cardinalityp. A graph ispartition-
ableif it is a (p, q)-partitionable graph for somep, q ≥ 2. Partitionable graphs were
introduced by Lov́asz [9] and Padberg [10] as a tool in the study of perfect graphs. A
graphG is perfectif for every induced subgraphH of G, we haveχ(H) = ω(H).
Here ω(H) is the clique numberof G, which is the cardinality of a maximum
clique ofG. A graphG is minimal imperfectif G is not perfect, but every proper
induced subgraph ofG is perfect. The Strong Perfect Graph Theorem, which was
conjectured by Berge [2] in 1961, proved by Chudnovsky, Robertson, Seymour and
Thomas [5] in 2002, says that odd cycles of length at least5 and their complements
are the only minimal imperfect graphs. Before the proof of Berge’s conjecture, it
was shown by Lov́asz [9] and Padberg [10] that every minimal imperfect graph is a
partitionable graph. Thus to prove Berge’s conjecture, it suffices to show that none
of the partitionable graph is a counterexample. Although the final proof of Berge’s
conjecture given by Chudnovsky, Robertson, Seymour and Thomas [5] takes a dif-
ferent route, the class of partitionable graphs has been studied thoroughly in the
literature, and this turns out to be an interesting class of graphs. The understanding
of the structure of this class of graphs may be helpful in the study of other graph
theory problems. It is known (cf. [3]) that every(p, q)-partitionable graph has the
following properties:

(1) p is the maximum cardinality of a stable set ofG, andq is the maximum car-
dinality of a clique ofG;

(2) G has exactlyn stable sets of cardinalityp and exactlyn cliques of cardinality
q, wheren is the number of vertices ofG;

(3) For each maximum cliqueC of G, there is a unique maximum stable setS
such thatC ∩ S = ∅; and similarly, for each maximum stable setS there is a
unique maximum cliqueC such thatC ∩ S = ∅;
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(4) Each vertex belongs to exactlyq maximum cliques, and belongs top maxi-
mum stable sets.

In the study of partitionable graphs, some recursive constructions of sub-families
of partitionable graphs are discussed in the literature [6,4]. The class of circular
partitionable graphs was introduced by Chvátal, Graham, Perold and Whitesides
[6].

For two sets of integersX, Y , let X + Y denote the set{x + y : x ∈ X, y ∈ Y }.
If X = {x} is a singleton, we writex + Y instead of{x}+ Y .

Supposemi ≥ 2 (i = 1, 2, · · · , 2r) are integers. Define integersµi (for i =
0, 1, · · · , 2r), setsMi (for i = 1, 2, · · · , 2r), and setsC, S as follows:

µi = m1m2 · · ·mi (µ0 = 1),

Mi = {0, µi−1, 2µi−1, · · · , (mi − 1)µi−1},
C = M1 + M3 + · · ·+ M2r−1,

S = M2 + M4 + · · ·+ M2r.

Let n = m1m2 · · ·m2r + 1. We denote byC[m1, m2, · · · , m2r] the circulant graph
with vertex setZn = {0, 1, · · · , n − 1}, wherexy is an edge if and only ifx 6= y
and(x− y) modulon is equal to the difference of two elements ofC.

Note thatµi >
∑i−1

j=1 max Mj. This implies that|C| = m1m3 · · ·m2r−1 and|S| =
m2m4 · · ·m2r. Let ω = |C| andα = |S|. Thenn = ωα + 1. SupposeX is a subset
of Zn. A circular shiftof X is a set of the formi+X = {i+x (mod n) : x ∈ X}.

Theorem 1 [6] Supposemi ≥ 2 are integers fori = 1, 2, · · · , 2r. ThenG =
C[m1, m2, · · · , m2r] is an (α, ω)-partitionable graph. Moreover, then maximum
cliques ofG are then circular shifts ofC, and then maximum stable sets ofG are
then circular shifts ofS.

As an example, we consider the graphC[2, 2, 2, 2]. Then

µi = 2i, i = 0, 1, 2, 3, 4;

M1 = {0, 1}, M2 = {0, 2}, M3 = {0, 4}, M4 = {0, 8};
C = {0, 1, 4, 5};
S = {0, 2, 8, 10}.

The vertex set ofC[2, 2, 2, 2] is Z17, andij is an edge if|i − j| ∈ {1, 3, 4, 5}. The
graph is depicted in Figure 2.

The following is the main result of this paper.

Theorem 2 Let x1, . . . , xp (p ≥ 2) be integers such thatxi ≥ 2 for every1 ≤ i ≤
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Fig. 1. The circular partitionable graphC[2, 2, 2, 2]

p. Letδ = max xi and letG = C[x1, 2, . . . , xp, 2]. If p = 2 or x1x2 . . . xp ≥ 2p+1δ
thenχc(G) = χ(G).

The proof of Theorem 2 is left to Section 4.

Observe that forG = C[x1, 2, . . . , xp, 2], α = 2p, ω = x1x2 · · ·xp and|V (G)| =
n = 2px1x2 . . . xp + 1. Therefore

χf (G) =
n

α
= ω +

1

2p
< χc(G) = χ(G) = ω + 1.

There are a few papers devoted to the study of the circular chromatic number of
circulant graphs [7,8]. It is known [12] that for any graphG, χf (G) ≤ χc(G) ≤
χ(G). A graphG is calledstar extremalif χf (G) = χc(G). In [7,8], classes of star
extremal circulant graphs are investigated. Theorem 2 provides a class of circulant
graphs of another kind of extremality, i.e., circulant graphs withχc(G) = χ(G).

Corollary 3 SupposeG = C[x1, 2, . . . , xp, 2] satisfies the condition of Theorem 2.
ThenG is circular imperfect.

PROOF. It is known [13] thatω(G) ≤ ωc(G) < ω(G) + 1. As χc(G) = χ(G) =
ω(G) + 1, it follows thatχc(G) > ωc(G). 2

It is unknown if any of the graphsG = C[x1, 2, . . . , xp, 2] are minimal circular
imperfect. A computer search shows thatC[2, 2, 2, 2] is not minimal circular im-
perfect. The subgraph ofC[2, 2, 2, 2] induced by the setX = {2, 3, 4, 5, 6, 9, 11,
12, 13, 14, 16} has circular chromatic number4 and circular clique number3, and
hence is circular imperfect.
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Since the graphsG = C[x1, 2, x2, 2, · · · , xp, 2] are partitionable,χ(G − x) =
ω(G − x) = χc(G − x) = χ(G) − 1 for each vertexx. Therefore we have the
following corollary.

Corollary 4 SupposeG = C[x1, 2, . . . , xp, 2] satisfies the condition of Theorem 2.
Thenχc(G− x) = χc(G)− 1 for each vertexx of G.

In other words, the circulant graphs satisfying the condition of Theorem 2 have
the property that the deletion of each vertex decreases its circular chromatic num-
ber by exactly1. Not many such graphs were known before, and the problem of
characterizing and constructing such graphs was raised in [12].

3 Structural properties of G

In the remainder of this paper,G = C[x1, 2, x2, . . . , xp, 2]. Let ω = x1 . . . xp,
α = 2p, n = αω + 1.

In this section, we shall be interested in elements ofZn only. If a ≡ b (mod n),
thena, b are treated as the same. However, by an abuse of notation, we also use the
natural order of integers in the following sense: Ifa < b, we denote[a, b] the set of
integersa ≤ x ≤ b. Note that it is possible thata, b 6∈ {0, 1, · · · , n− 1}. However,
[a, b] always denote a subset of{0, 1, · · · , n − 1}, by means of taking modulon.
For example,[−1, 1] = {−1, 0, 1} = {n − 1, 0, 1}. For a setA of integers, let
aA = {ax : x ∈ A}, a + A = {a + x : x ∈ A}. Again the multiplications and
additions are modulon.

Let c0 = 1, and fori = 1, . . . , p, let

ci = 2i−1x1x2 . . . xi, and di =
i∑

j=1

cj.

First we derive an explicit expression for the maximum cliques and stable sets of
G. It follows from the definition thatµ0 = 1 and for1 ≤ i ≤ p,

µ2i−1 = 2i−1x1x2 . . . xi = ci, andµ2i = 2ix1x2 . . . xi = 2ci.

Therefore for1 ≤ i ≤ p,

M2i−1 = 2ci−1[0, xi − 1], andM2i = {0, ci}.

So

6



C =
p∑

j=1

M2j−1 =
p∑

j=1

2cj−1[0, xj − 1],

S =
p∑

j=1

M2j =
p∑

j=1

{0, cj}.

By Theorem 1, the maximum cliques ofG are then circular shiftsC + i of C
(i ∈ Zn), and the maximum stable sets ofG are then circular shiftsS + i of S
(i ∈ Zn).

In the following, we consider the intersectionS ∩ (S + i) of two maximum stable
sets ofG.

Lemma 5 For 2 ≤ i ≤ p, ci 6∈ [−2di−1, 2di−1].

PROOF. Sincec2 = 2x1x2 > 2x1 = 2d1, andn − c2 ≥ 4x1x2 + 1 − 2x1x2 >
2x1x2 > 2d1, we conclude thatc2 6∈ [−2d1, 2d1]. Assumei ≥ 3 and ci−1 6∈
[−2di−2, 2di−2]. Sinceci = 2xici−1 andxi ≥ 2, we have

ci ≥ 2ci−1 + 2ci−1 > 2(2di−2) + 2ci−1 > 2di−1.

Furthermore,

n− ci = 2px1x2 · · ·xp + 1− ci > 2ci − ci = ci > 2di−1.

Thereforeci 6∈ [−2di−1, 2di−1]. 2

For i = 1, 2, · · · , p, let

Si =
i∑

j=1

M2j =
i∑

j=1

{0, cj}.

Lemma 6 For everyx in Zn and for every2 ≤ i ≤ p,

Si ∩ (Si + x) = (Si−1 ∩ (Si−1 + x)) ∪ ((Si−1 + ci) ∩ (Si−1 + ci + x))

or
Si ∩ (Si + x) = (Si−1 ∩ (Si−1 + ci + x)) ∪ ((Si−1 + ci) ∩ (Si−1 + x)).

PROOF. By definition,Si = Si−1 ∪ (Si−1 + ci). HenceSi + x = (Si−1 + x) ∪
(Si−1 + ci + x). Therefore

Si ∩ (Si + x) = (Si−1 ∩ (Si−1 + x)) ∪ ((Si−1 + ci) ∩ (Si−1 + ci + x))

∪(Si−1 ∩ (Si−1 + ci + x)) ∪ ((Si−1 + ci) ∩ (Si−1 + x)).
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If Si−1∩(Si−1+x) 6= ∅, thenx ∈ [−di−1, di−1]. By Lemma 5,ci 6∈ [−2di−1, 2di−1].
Thereforeci +x, ci−x 6∈ [−di−1, di−1]. This implies thatSi−1∩(Si−1 +ci +x) = ∅
and(Si−1 + ci) ∩ (Si−1 + x) = ∅. Therefore

Si ∩ (Si + x) = (Si−1 ∩ (Si−1 + x)) ∪ ((Si−1 + ci) ∩ (Si−1 + ci + x)).

If Si−1 ∩ (Si−1 + x) = ∅, then(Si−1 + ci) ∩ (Si−1 + ci + x) = ∅, and hence

Si ∩ (Si + x) = (Si−1 ∩ (Si−1 + ci + x)) ∪ ((Si−1 + ci) ∩ (Si−1 + x)).

2

For1 ≤ j ≤ i ≤ p, let

Bi,j =
∑

t∈{1,2,··· ,i}\{j}
M2t =

∑
t∈{1,2,··· ,i}\{j}

{0, ct}.

ThenSi = Bi,j + {0, cj} = Bi,j ∪ (Bi,j + cj). For convenience, letBj = Bp,j.

Lemma 7 For every1 ≤ i ≤ p and for everyx ∈ Zn, x 6= 0, we have|Si ∩ (Si +
x)| ≤ 2i−1. Moreover, if|Si ∩ (Si + x)| = 2i−1, then there is a unique indexj ≤ i
such thatx = ±cj andSi ∩ (Si + x) = Bi,j or Bi,j + cj, depending onx = −cj or
x = cj. In particular, for anyx ∈ Zn, |S ∩ (S + x)| ≤ 2p−1, and if equality holds
then there is a unique indexj such thatx = ±cj andS ∩ (S + x) = Bj or Bj + cj,
depending on whetherx = −cj or x = cj.

PROOF. We prove this lemma by induction oni. It is obvious that for everyx ∈
Zn, x 6= 0, we have|S1 ∩ (S1 + x)| ≤ 1, and equality holds only ifx = ±c1. Let
i ≥ 2 and suppose the lemma is true fori′ ≤ i− 1.

By Lemma 6,

Si ∩ (Si + x) = (Si−1 ∩ (Si−1 + x)) ∪ ((Si−1 + ci) ∩ (Si−1 + ci + x))

or
Si ∩ (Si + x) = (Si−1 ∩ (Si−1 + ci + x)) ∪ ((Si−1 + ci) ∩ (Si−1 + x))

First we consider the case that

Si ∩ (Si + x) = (Si−1 ∩ (Si−1 + x)) ∪ ((Si−1 + ci) ∩ (Si−1 + ci + x)).

By induction hypothesis,|Si−1 ∩ (Si−1 + x)| ≤ 2i−1 and|((Si−1 + ci) ∩ (Si−1 +
ci + x))| ≤ 2i−1. Therefore

|Si ∩ (Si + x)| ≤ 2i−1 + 2i−1 = 2i.
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Moreover, if|Si ∩ (Si + x)| = 2i, then|Si−1 ∩ (Si−1 + x)| = 2i−1 and hence there
is a unique indexj ≤ i − 1 such thatx = ±cj andSi−1 ∩ (Si−1 + x) = Bi−1,j

or Bi−1,j + cj. ThenSi ∩ (Si + x) = Bi−1,j + {0, ci} = Bi,j or Si ∩ (Si + x) =
Bi−1,j + cj + {0, ci} = Bi,j + cj

Next we assume that

Si ∩ (Si + x) = (Si−1 ∩ (Si−1 + ci + x)) ∪ ((Si−1 + ci) ∩ (Si−1 + x)).

If x 6= ±ci then the same argument as in the previous case works. Assumex = ci.
Then

|Si ∩ (Si + x)| = |Si−1 + ci|+ |Si−1 ∩ (Si−1 + 2ci)|.
Note that ifi ≤ p − 1, then2ci ∈ C. If i = p, then2cp = −1. In any case,2ci

is equal to the difference of two integers ofC. Therefore{0, 2ci} is an edge ofG.
Hence2ci 6∈ Si−1 − Si−1 (asSi−1 is a stable set ofG). This implies that

Si−1 ∩ (Si−1 + 2ci) = ∅.

Hence
|Si ∩ (Si + x)| = |Si−1| = 2i−1,

and
Si ∩ (Si + x) = Bi,i + ci

asBi,i ∩ (Bi,i + 2ci) = ∅ ( Bi,i is a stable set and{0, 2ci} is an edge).

If x = −ci, then the same argument shows that

Si ∩ (Si + x) = Bi,i.

2

4 Proof of Theorem 2

Assume thatχc(G) = k/d, wheregcd(k, d) = 1. Let f be a(k, d)-coloring ofG,
which is viewed as a homomorphism fromG to Kk/d. For i ∈ Zk, let Xi = f−1(i)
be the set of vertices ofG of color i. Let Yi = Xi ∪ Xi+1 ∪ · · · ∪ Xi+d−1. Then
Yi is a stable set. It is known (see Lemma 1.3 of [12]) that for eachi, Xi 6= ∅ and
moreover, for eachi, there is a vertexx ∈ Xi and a vertexy ∈ Xi+d such thatxy is
an edge ofG. We need to prove thatd = 1.

Lemma 8 If χc(G) = k/d andgcd(k, d) = 1, thend ≤ 2.

PROOF. Assume to the contrary thatd ≥ 3. We consider two cases.
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• Case 1:p = 2
Note that in this caseα = 4.
Assume that there is an indexi for which |Xi| ≥ 2. Sinced ≥ 3, Xi ∪Xi+1 ∪

Xi+2 ⊆ Yi andXi−1 ∪ Xi ∪ Xi+1 ⊆ Yi−1. However,|Yi−1|, |Yi| ≤ α = 4, and
|Xi−1 ∪ Xi ∪ Xi+1|, |Xi ∪ Xi+1 ∪ Xi+2| ≥ 4 (as|Xi| ≥ 2, and each|Xj| ≥ 1).
Therefore|Yi−1| = |Yi| = 4, and henceYi−1, Yi are maximum stable sets ofG.
However,|Yi−1 ∩ Yi| = |Xi|+ |Xi+1| ≥ 3 > α/2, contrary to Lemma 7.

Hence, for everyi ∈ Zk, we have|Xi| = 1. In particular,n = k = 4ω + 1.
From k

d
≤ χ = ω + 1 andω > 2, we getd ≥ 4. SinceY0 is a stable set of sized,

we haved = 4. ThusY0 andY1 are two maximum stable sets ofG sharingd− 1
vertices, contrary again to Lemma 7.

This completes the proof of Case 1.
• Case 2:ω ≥ 2p+1δ

If there existsi ∈ Zk such that|Yi|+ |Yi+1|+ |Yi+2| = 3α then|Yi| = |Yi+1| =
|Yi+2| = α. By Claim 7, we have|Yi ∩ Yi+1| ≤ α

2
. Hence|Yi+1 \ Yi| ≥ α

2
. As

Yi+1 \ Yi = Xi+d, we get|Xi+d| ≥ α
2
. As d ≥ 3 andXi+2 6= ∅, we conclude that

|Xi+2 ∪Xi+d| > α
2
. HoweverXi+2 ∪Xi+d ⊆ Yi+1 ∩ Yi+2. SoYi+1 andYi+2 are

two distinct maximum stable sets with|Yi+1 ∩ Yi+2| > α
2
, contrary to Lemma 7.

Thus for everyi ∈ Zk, we have|Yi|+ |Yi+1|+ |Yi+2| < 3α. Since
∑

i∈Zk
|Yi| =

dn, we have
∑

i∈Zk
(|Yi|+ |Yi+1|+ |Yi+2|) = 3dn ≤ (3α− 1)k.

As n = αω + 1 and k
d

< ω + 1, we have

3n = 3(αω + 1) < (3α− 1)(ω + 1).

It follows thatω < 3α− 4. Hence

2p+1δ ≤ ω < 3α− 4,

which is a contradiction, asα = 2p andδ ≥ 2.

2

By Lemma 8, we haved = 1 or 2. If d = 1, we are done. Thus we assumed = 2,
and we shall derive a contradiction. Asω < χc(G) ≤ χ(G) = ω + 1 andd = 2,
we havek = 2ω + 1.

Lemma 9 There exists ani ∈ Zk such thatYi, Yi+1, . . . , Yi+2δ are all of sizeα.

PROOF.

• Case 1:p = 2
If there existsi ∈ Zk such that|Xi| ≥ 3 thenYi andYi−1 are two maximum

stable sets sharing|Xi| > α/2 vertices, contrary to Lemma 7. Thus, for everyi ∈
Zk, we have|Xi| ≤ 2. Since

∑
i∈Zk

|Xi| = n = 4x1x2+1 = 2k−1, it follows that
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there exists a uniquej ∈ Zk, such that|Xj| = 1. ThusYj+1, Yj+2, . . . , Yj+n−2

aren− 2 stable sets of sizeα = 4. Asn− 2 = 4x1x2− 1 > 2δ +1, we are done.
• Case 2:ω ≥ 2p+1δ

Assume to the contrary that for everyi ∈ Zk, there exists one stable set in
Yi, Yi+1, . . . , Yi+2δ of size strictly less thanα, then

k−1∑
i=0

(|Yi|+ |Yi+1|+ · · ·+ |Yi+2δ|) ≤ ((2δ + 1)α− 1)k.

On the other hand, as
∑k−1

i=0 |Yi| = 2n, we have

k∑
i=0

(|Yi|+ |Yi+1|+ · · ·+ |Yi+2δ|) = (2δ + 1)2n.

Therefore
(2δ + 1)2n ≤ ((2δ + 1)α− 1)k.

Sincek = 2ω + 1 andn = ωα + 1, straightforward calculation shows that

4δ + 2 ≤ (2δ + 1)α− 2ω − 1.

As ω ≥ 2p+1δ andα = 2p, easy calculation derives a contradiction.

2

In the remainder of this section, leti be an index such thatYi, Yi+1, . . . , Yi+2δ are
all of sizeα.

Lemma 10 For everyj = i + 1, i + 2, . . . , i + 2δ, we have|Xj| = α
2
.

PROOF. By Lemma 7,|Xj| = |Yj−1 ∩ Yj| ≤ α
2
. As α = |Yj| = |Xj| + |Xj+1|, it

follows that|Xj| = α− |Xj+1| ≥ α
2

if i + 1 ≤ j ≤ i + 2δ − 1. Hence|Xj| = α
2
. If

j = i + 2δ, then sinceα = |Yj−1| = |Xj−1|+ |Xj|, we also have|Xj| = α
2
. 2

Lemma 11 There exists an indext ∈ {1, 2, · · · , p} anda ∈ Zn, such that either
for all j = 1, 2, . . . , 2δ,

Xi+j = Xi + jct = Bt + a + jct, and Yi+j−1 = S + a + (j − 1)ct

or for all j = 1, 2, . . . , 2δ,

Xi+j = Xi − jct = Bt + a− jct, and Yi+j−1 = S + a− (j − 1)ct.

PROOF.
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Let a be the element inZn such thatYi = S + a.

By definition, for any1 ≤ t ≤ p, S = Bt + {0, ct} = Bt ∪ (Bt + ct). By Lemma
10, |Yi ∩ Yi+1| = α

2
. By Lemma 7,Yi+1 = Yi ± ct for some1 ≤ t ≤ p. First we

consider the case thatYi+1 = Yi + ct. SinceYi = S + a = (Bt + a)∪ (Bt + a+ ct),
we have

Xi+1 = (Yi ∩ Yi+1) = (S ∩ (S + ct)) + a = Bt + ct + a.

Moreover,

Xi+2 = (Yi+1 \ Yi) = ((S + ct) \ S) + a = Bt + 2ct + a.

Assume3 ≤ j ≤ 2δ, Xi+j−1 = Bt + a + (j− 1)ct andYi+j−2 = S + a + (j− 2)ct.

AssumeYi+j−1 = S + j′ for somej′ ∈ Zn. Since

Yi+j−2 = S + a + (j − 2)ct

and

Yi+j−1 ∩ Yi+j−2 = Xi+j−1 = Bt + a + (j − 1)ct,

it follows that

S ∩ (S + (j′ − a− (j − 2)ct)) = Bt + ct.

By Lemma 7,j′−a−(j−2)ct = ct. Thus we conclude thatYi+j−1 = S+a+(j−1)ct

andXi+j = Bt + a + jct, asXi+j = Yi+j−1 \Xi+j−1.

If Yi+1 = Yi − ct, then the same argument shows that forj = 1, 2, · · · , 2δ, Xi+j =
Bt + a− jct andYi+j−1 = S + a− (j − 1)ct. 2

Now we derive the final contradiction. Lett be the index given in Lemma 11.
Without loss of generality, we assume that forj = 1, 2, · · · , 2δ, Xi+j = Bt+a+jct.
If t < p, then2xt+1ct = ct+1. ThenXi+2xt+1 = Xi + 2xt+1ct = Bt + a + ct+1. By
definition,ct+1 ∈ Bt. Thusa + ct+1 ∈ Bt + a = Xi. On the other hand,0 ∈ Bt,
and hencea + ct+1 ∈ Xi+2xt+1 . This is a contradiction, as2xt+1 ≤ 2δ < ω < k,
which implies thatXi ∩Xi+2xt+1 = ∅. If t = p, then

2x1ct = (2px1x2 · · ·xp)x1 = (n− 1)x1 = −x1.

ThenXi+2x1 = Xi + 2x1ct = Bt + a − x1. By definition,x1 ∈ Bt. Thusa ∈
Bt + a − x1 = Xi+2x1. On the other hand,0 ∈ Bt, and hencea ∈ Bt + a = Xi.
This is a contradiction, as2x1 < k and henceXi ∩Xi+2x1 = ∅. This completes the
proof of Theorem 2.
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5 Open question

Theorem 2 gives the circular chromatic number of some circular partitionable graphs
such that their stability number is a power of two (these graphs are said to be of type
1 or 2 in [1]).

However, we believe that our result is likely to hold for most of the circular parti-
tionable graphs: e.g., is it true that every graphC[m1, m2, . . . ,m2r] with r ≥ 2 has
its circular chromatic number equal to its chromatic number?
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[2] C. Berge. F̈arbung von graphen, deren sämtliche bzw. deren ungerade kreise starr sind.
Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 10:114, 1961.

[3] R. G. Bland, H. C. Huang, and L. E. Trotter, Jr. Graphical properties related to minimal
imperfection.Discrete Math., 27(1):11–22, 1979.

[4] E. Boros, V. Gurvich, and S. Hougardy. Recursive generation of partitionable graphs.
J. Graph Theory, 41(4):259–285, 2002.

[5] M. Chudnovsky, N. Robertson, Seymour P., and R. Thomas. The strong perfect graph
theorem. preprint, 2002.
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