On the Circular Chromatic Number of Circular Partitionable Graphs

Arnaud Pêcher 1, 2 Xuding Zhu 3
2 Realopt - Reformulations based algorithms for Combinatorial Optimization
LaBRI - Laboratoire Bordelais de Recherche en Informatique, IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest
Abstract : This paper studies the circular chromatic number of a class of circular partitionable graphs. We prove that an infinite family of circular partitionable graphs Ghas Xc (G) = X (G). A consequence of this result is that we obtain an infinite family of graphs G with the rare property that the deletion of each vertex decreases its circular chromatic number by exactly 1
Document type :
Journal articles
Complete list of metadatas

Cited literature [13 references]  Display  Hide  Download

Contributor : Arnaud Pêcher <>
Submitted on : Wednesday, July 30, 2008 - 10:04:25 AM
Last modification on : Thursday, August 29, 2019 - 4:50:06 PM
Long-term archiving on : Saturday, November 26, 2016 - 12:46:29 AM


Files produced by the author(s)


  • HAL Id : hal-00307764, version 1


Arnaud Pêcher, Xuding Zhu. On the Circular Chromatic Number of Circular Partitionable Graphs. Journal of Graph Theory, Wiley, 2006, 52, pp.294--306. ⟨hal-00307764⟩



Record views


Files downloads