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Abstract

Graphs with circular symmetry, called webs, are relevant for describing the stable set poly-
topes of two larger graph classes, quasi-line graphs [6,10] and claw-free graphs [5,6]. Pro-
viding a decent linear description of the stable set polytopes of claw-free graphs is a long-
standing problem [7]. However, even the problem of finding all facets of stable set poly-
topes of webs is open. So far, it is only known that stable set polytopes of webs with clique
number< 3 have rank facets only [3,13] while there are examples with clique numbler
having non-rank facets [8,10,9]. The aim of the present paper is to treat the remaining case
with clique number= 4: we provide an infinite sequence of such webs whose stable set
polytopes admit non-rank facets.

Key words: web, rank-perfect graph, stable set polytope, (non-)rank facet

1 Introduction

A natural generalization of odd holes and odd antiholes are graphs with circular
symmetry of their maximum cliques and stable sets, called webs: diifels a
graph with nodes, . . ., n whereij is an edge iff and; differ by at most (modulo
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n) andi # j. These graphs belong to the classes of quasi-line graphs and claw-free
graphs and are, besides line graphs, relevant for describing the stable set polytopes
of those larger graph classes [5,6,10]. (The line graph of a gkahobtained by
taking the edges off as nodes and connecting two nodes iff the corresponding
edges off are incident. A graph is quasi-line (resp. claw-free) if the neighborhood
of any node can be partitioned into two cliques (resp. does not contain any stable
set of size 3).) All facets of the stable set polytope of line graphs are known from
matching theory [4]. In contrary, providing all facets of the stable set polytopes
of claw-free graphs is a long-standing problem [7] but we are even still far from
having a complete description for the stable set polytopes of webs (and, therefore,
of quasi-line and claw-free graphs, too).

In particular, as shown by Giles & Trotter [6], the stable set polytopes of claw-free
graphs contain facets with a much more complex structure than those defining the
matching polytope. Oriolo [10] discussed which of them occur in quasi-linegraphs.
In particular, these non-rank facets rely on certain combinations of joined webs.

Several further authors studied the stable set polytopes of webs. Obviously, webs
with cliqgue number 2 are either even or odd holes (their stable set polytopes are
known due to [1,11]). Dahl [3] studied webs with clique number 3 and showed that
their stable set polytopes admit rank facets only. On the other hand, Kind [8] found
(by means of the PORTA softwat¢ examples of webs with clique number 4

whose stable set polytopes havatrank facets. Oriolo [10] and Liebling et al. [9]
presented further examples of such webs. It is natural to ask whether the stable set
polytopes of webs with clique number4 admit rank facets only.

The aim of the present paper is to answer that question by providing an infinite
sequence of webs with clique number4 whose stable set polytopes haven
rank facets.

2 Resultson Stable Set Polytopes

Thestable set polytop8TAB(G) of GG is defined as the convex hull of the incidence
vectors of all stable sets of the graph= (V, E) (a setV’ C V is a stable set if
the nodes i/’ are mutually non-adjacent). A linear inequalityz < b is said to
bevalid for STAB(G) if it holds for all z € STAB(G). We call a stable sef of G
aroot of a”z < b if its incidence vector® satisfiess” y° = b. A valid inequality
for STAB(G) is afacetif and only if it has|V| roots with affinely independent
incidence vectors. (Note that the incidence vectors of the roat§:0 b have to
belinearly independent it > 0.)

3 By PORTA it is possible to generate all facets of the convex hull of a given set of integer
points, see http://www.zib.de



The aim is to find a systemz < b of valid inequalities s.t. STARY) = {z € Rl :

Az < b} holds. Such a system is unknown for the most graphs and it is, therefore,
of interest to study certain linear relaxations of STAB and to investigate for
which graphs= these relaxations coincide with STAB).

One relaxation of STABZ) is thefractional stable set polytop@STAB(G) given
by all “trivial” facets, thenonnegativity constraints

for all nodes of G and by theclique constraints

Z r <1 1)

i€Q
for all cligues@ C G (asetlV’ C Visacligue if the nodes ifv” are mutually adja-
cent). Obviously, a clique and a stable set have at most one node in common. There-
fore, QSTABG) contains all incidence vectors of stable set&@ind STABG) C
QSTAB(G) holds for all graphs:. The two polytopes coincide precisely for perfect
graphs [1,11].

A graph G is calledperfectif, for each (node-induced) subgragi C G, the
chromatic numbex (G’) equals the clique numberG’). That is, for allG’ C G,

as many stable sets cover all nodesfas a maximum clique of’ has nodes
(maximum cliques resp. maximum stable sets contain a maximal number of nodes).

In particular, for all imperfect graph& follows STAB(G) C QSTAB(G) and,
therefore, further constraints are needed to describe their stable set polytopes. A
natural way to generalize clique constraints is to investigat& constraints

Yoz < a(@) (2)

1eG’

associated wittarbitrary (node-)induced subgrapli® C G wherea(G’) denotes
the stability number of+’, i.e., the cardinality of a maximum stable setGh(note
thata(G’) = 1 holds iff G’ is a clique). For convenience, we often write (2) in the
form z(G') < o(G).

Let RSTAB(G) denote therank polytopeof G given by all nonnegativity con-
straints (0) and all rank constraints (2). A gra@his calledrank-perfect[14] if
STAB(G) coincides with RSTABG).

By construction, every perfect graph is rank-perfect. Some further graphs are rank-
perfect by definitionnear-perfec{12] ( resp.t-perfect[1], h-perfect[7]) graphs,

where rank constraints associated with cliques and the graph itself (resp. edges and
odd cycles, cliques and odd cycles) are allowed. Moreover, the result of Edmonds
and Pulleyblank [4] implies that line graphs are rank-perfect as well (see [15] for a
list with more examples).
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Figure 1

Recall that a webV’* is a graph with nodes, . . ., » whereij is an edge if and;
differ by at mostk (i.e., if |i — j| < k mod n) andi # j. We assumé& > 1 and
n > 2(k + 1) in the sequel in order to exclude the degenerated cases}iena
stable set or a cliquéV! is a hole andV,; !, an odd antihole fok > 2. All webs
W on nine nodes are depicted in Figure 1. It is easy to seeMi&}’) = £ + 1
anda(WF) = | 2 | holds. Note that webs are also called circulant gragh§2].

k+1
Furthermore, similar graphd’(n, k) were introduced in [13].

So far, the following is known about stable set polytopes of webs. The Wébs
are holes, hence they are perfect it even and near-perfectifis odd (recall that
we suppose > 2(k + 1)). Dahl [3] showed that all webd’? with cligue number
3 are rank-perfect. But there are several webs with clique numbéknown to
benotrank-perfect [8,10,9], e.gWy,, Wos, W, Wi, W, W3,; these results are
summarized in Table 1.

Table 1: Known results on rank-perfectness of webs

All webs rank-perfect? Yes Yes ? No

Infinitely many not rank-perfect webs? No No ? ?

A conjecture due to Ben Rebea (see [10]) claims that the stable set polytopes of
guasi-line graphs admit only one type of facets besides nonnegativity constraints
(0) and clique constraints (1), so-called clique family inequalities:et (V, F)

be a graph/F be a family of (at least three inclusion-wise) maximal cliqueg:of

p < |F| be an integer, and define two sets as follows:

I(Fp)={ieV:{QeF icQ} >p}
OF,p)={ieV:{QeF :icQ}=p—1}

Theclique family inequality 7, p)

b-r Y et 1) Y m<pn) W‘J ®

i€I(F,p) i€O(F,p) p

with » = || mod p andr > 0 is valid for the stable set polytope eferygraph by



Oriolo [10]. Since webs are quasi-line graphs in particular, the stable set polytopes
of webs should admit, according to Ben Rebea’s conjecture, facets coming from
cliques and clique family inequalities only.

In order to answer the question whether the webs with cligue numbdrare
rank-perfect or not, we introduce clique family inequalities associated with cer-
tain subwebs and prove the following: the clique family inequality associated with
W3 < W3 induces a non-rank facet fTAB(W3) if I > 11 and2 = [ mod 3
(Theorem 6).

3 Non-Rank Facets of STAB(W?)

Consider a welhV’*. We say that a clique family inequalityr, p) of STAB(IW?F) is
associatedvith a proper subwebl’s, ¢ Wk if 7 = {Q, : i € W)} is chosen as
clique family,p = £’ + 1, and@; = {i,...,i + k} denotes the maximum clique of
WPk starting in node. In order to explore the special structure of such inequalities,
we need the following fact from Trotter [13].

Observation 1 [13] W% is an induced subweb &F* if and only if there is a subset
V'={ir, ..., in} SV(WE) stV NQ;,| =K + 1foreveryl <j <n.

We now prove the following.

Lemma?2 Let W% c W be any proper induced subweb. The clique family in-
equality(F, p) of STABIVF) associated withV¥' is

(K'+1-r) Z z; + (K —r) Z xig(k’—i—l—r)a(Wf,/) 4)
i€I(F,p) i€0(F,p)

withp = k' 4+ 1,7 = n’ mod (k' + 1), r > 0; we havelW C I(F,p) and the
union of I (F, p) andO(F, p) covers all nodes of’%.

PROOF. Let W be a proper subweb ¢#* and chooser = {Q; : i € WV},

p = k' + 1. Obviously |F| = |[WF¥| = »/ follows. LetV' = {iy,... iy} be
the node set ofV’% in W¥. Observation 1 implies tha®;, = {i;,...,i; + k}
contains the nodes, . . ., i;,, from V’. Obviously, the node; ;. belongs exactly
to the (k' + 1) cliquesQ;,, . .. , @i, from F. Since all indices are taken modulo
n, every node in¥* is covered preciselyk’ + 1) times by F andp = &' + 1
yields, thereforelV'*, C I(F,p). Furthermore|F| = n’ andp = w(W¥) implies
L%j = a(WFk). Hence the clique family inequality given By, p) is (4) which
finishes the proof. O



Let us turn to the clique family inequality associated with;, c W3, i.e.n is
divisible by 3 (for somé > 3 by n > 2(k + 1)). Observation 1 easily yields that
every third node ofV; does not belong to the subw&ls; and thatiVy = I(F, 3)
holds if we chooseF = {Q; : i € W3}, see Figure 2.

Fig. 2. The subwelV} ¢ W3,

Furthermore, the nodes iy — W32 = O(F, 3) induce the holéV},. Thus, the
clique family inequality(F, 3)

(3=r)a(W3) + (2—=r) a(Wy) < (3—7) a(W3)

associated withV3 C T3 is anonrank constraint if- = 1 holds. The aim of this
section is to prove thatF, 3) is a non-rank facet of STABU;) whenever > 11
and2 = [ mod 3 (note:2 = [ mod 3 impliesr = 1 = 2] mod 3).

For that, we have to preseditroots of (F, 3) whose incidence vectors are linearly
independent. (Recall that a root @F, 3) is a stable set ofi’;, satisfying(F, 3) at
equality.)

It follows from [13] that a wedV* produces the full rank facet(IVF) < a(WF)

iff (k+ 1)) n. ThusW3 is facet-producing i = [ mod 3 and the maximum stable
sets of IV} yield already?2/ roots of (F,3) whose incidence vectors are linearly
independent.

LetV = V(W3) andV’' = V(W3). We need a sef of further! roots of (F, 3)
which have a non-empty intersection with — V', called mixed roots and are
independent, in order to prove thak, 3) is a facet of STAB(S).

We show that there exists a sebf [ mixed roots of( 7, 3) whenever > 11. Due
to 2 = [ mod 3, we setl = 2 + 3!’ and obtainV’| = 3l = 6 + 9/'. Thus,V can be
partitioned into 2 block®, D, with 3 nodes each aridblocksB;, ..., By with 9
nodes each s.t. every block ends with a nodg in V’ (this is possible since every
third node ofl” belongstd/ — V' sayi € V' if 3fiandi € V — V" if 3|:). Figure 3
shows a blockD; and a blockB; (where circles represent nodeslirand squares
represent nodes il — V’). For the studied mixed roots ¢§, 3) we choose the
black filled nodes in Figure 3:
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Fig. 3. A block D; and a blockB;

Lemma 3 The setS containing the 3rd node of the blocks,, D, as well as the
4th and 8th node of any block; is a root of (F,3) with |S N V’| = 2I" and

|ISN(V —=V")| =2foreveryordering/ = Dy, By, ..., By, Da, Biyi1, - .., By of

the blocks s.tD;, D, are not neighbored.

PROOF. Consider a seb' constructed that way. Since every block ends with a
node inV/ — V' by definition and every third node &f isin V' — V/, we have that
the last node oD, and the 3rd, 6th, and 9th node Bf belong tol” — V" while all
other nodes are if¥’. Thus, the two last nodes iR, and D, are the two studied
nodes inS N (V' — V') and the 4th and 8th node 18, for 1 < j < I’ are the studied
2" nodes inS NV’ (see Figure 3).

S is a stable set provided the two blocks and D, are not neighbored: Obviously,
there is no edge between the 4th and 8th node of any Whckhus, we only have

to discuss what happens between two consecutive blocks. Since the first 3 nodes
of every blockB; do not belong taS, there is no problem with having any block
before B;, i.e., By B; or D;B;. For the remaining cas8;D;, notice that the last

node ofB; and the first two nodes dP; do not belong te5 and there cannot be an
edge between two nodes 6fin that case, too.

This shows that is a stable set satisfying NV’'| = 2" and|S N (V — V’)| = 2.
Due toa(W3) = Lm%gl/)j = 2l' 4+ 1, the setS is finally a root of(F,3). O

Lemma 3 implies that there exist mixed rodtsof (F,3) with |S| = 2 + 21" if
I" > 2. The next step is to show that there &seich roots if’ > 3 (resp.l > 11).

In the sequel, we denote ¥ ,, the stable set constructed as in Lemma 3 when
Dy ={i—2,i—1,i}andV = Dy, By,..., By, Ds, By, ..., By. If there are
more thanLgJ blocks betweerD; andD,, there are less tha{rizij blocks between
D, andD;. Hence it suffices to considet < L%J.

By construction,S; ,,, contains a second node frovh— V’, namely, the third node
i+9m-+3 of block D,. If 2|l andm = £, then(i+9m+3)+9m+3 = i +9I'+6 =
i(modn) and, therefore$; ,,, = S;;9m+3.m follows.

We are supposed to construtistinct mixed roots.sS; ,, of (F,3) with 2 + 2l
nodes, hence we choose orderings= Dy, By, ..., By, Do, Byi1, ..., By with
1 <m < £ and obtain easily:



Lemma4 If I’ > 3, then the stable setS; ,, for eachi € V — V' obtained from
any orderingV = Di, By,..., By, Do, Bypia,..., By with 1 < m < L yield
|V — V'| = L roots of (F, 3) with 2 + 2’ nodes each.

Consequently, we can always choose a s8t odots of (F, 3) if I’ > 3resp.l > 11.

If Sis a set of distinct mixed roots, denote by the square matrix containing the
incidence vectors of the/ maximum stable sets &7 and thel mixed roots inS.

As can be arranged s.t. the fidtand the last columns correspond to the nodes
in W3 andW},, respectively, and the firgf rows contain the incidence vectors of
the maximum stable sets &3 where the last rows contain the incidence vectors
of the! mixed roots inS. (Note that the nodes corresponding to the lasilumns

of As are3, 6, ...,3l.) ThenAs has the block structure

A 0
11
< l21 < 122

where the2l x 2]-matrix A;; is invertible (recall:1V is facet-producing by [13] in
the considered case with= 2/ mod 3 resp.2 = [ mod 3).

It is left to find a setS of [ distinct mixed roots s.td4, is an invertiblel x [-matrix
(then As is invertible due to its block structure).

Lemmab Foreveryl > 11, there is a se§ of I mixed roots of 7, 3) containing 2
nodes from/ — V' s.t. thel x [-submatrixA,, of As is invertible.

PROOF. Every rootsS; ,, of (F,3) corresponds to a row if¥,; | Ay,) of As having
precisely two 1-entries in the columns belongingig (by |S;, N (V —V’)| =2
foralli € V —V’). Lemma 4 ensures that no such roots coincidedf m < % for
allieV-V".

The idea of finding cases wheh, is invertible goes as follows: Lefs; ; for 1 <

j <l — 4 be the first — 4 roots inS with S3;; N (V — V') = {34,3(j + 4)}.
Choose as the remaining 4 rootsSrthe stable set§s,, fori — 10 < j <1 -7
with Ss;0 N (V — V') = {35,3(j + 7)}. Then take their incidence vectogs:* for

1 < j <1—4asthe first — 4 rows andy®*2 for [ — 10 < j < [ — 7 as the last
4 rows of (Ay1|Asz). By construction Ay, is thel x [-matrix in Figure 4 (1-entries
are shown only, the columincorresponds to the nodg).

Aso has only 1-entries on the main diagonal (coming from the first nodes-ri”’
of S3;, for1 < j < I — 4 and from the second nodes nh — V' of Ss;, for
[ —10 < j <[ —T7). The only non-zero entries ofy, below the main diagonal
come from the first nodes if — V' of S3;, for i — 10 < j < [ — 7. Hence,Ay,
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Fig. 4. Thel x I-matrix Asy
has the form
Aps
0 |A%,
where both4), and A%, are invertible due to the following reasons:

A22 =

Al is an(l — 11) x (I — 11)-matrix having 1-entries on the main diagonal and
0-entries below the main diagonal by construction. Hefiggis clearly invertible.

Al is an11 x 11-matrix which has obviously the circular 1's property. In other
words, A}, is equivalent to the matrixl(C;) containing the incidence vectors of
the maximum stable sets of the odd antin@le as rows. Sincel(C',) is invertible
due to Padberg [11], the matrit), is invertible, too. (Note that = 11 implies
Agy = A3y.)

This completes the proof that, is invertible for every > 11 if we choose the set

S of [ roots of(F, 3) as constructed above.O

Finally, we have shown that, for evefy> 11 with 2 = [ mod 3, there are3l roots
of (F, 3) whose incidence vectors are linearly independent:



Theorem 6 For any W3 C W3 with 2 = [ mod 3 and/ > 11, the clique family
inequality

20(Wy) + lz(W}) < 2a(Ws)
associated with?}, is a non-rank facet of STAB(3).

This gives us an infinite sequence of not rank-perfect Wi&lswith clique num-

ber 4, namelyv3,, W, W2, W, ... and answers the question whether the webs
W3 with cligue numbet are rank-perfect negatively. Thus, we can update Table 1
as follows:

Table 2: Updated results on rank-perfectness of webs
w=2 w=3 w=4 w>5

All webs rank-perfect? Yes Yes No No

Infinitely many not rank-perfect webs? No No Yes ?

4 Concluding Remarks

It is open whether there exist, for eagh> 5, infinitely many not rank-perfect
webs, see Table 2. We beliefe that this is the case.

Assuming Ben Rebea’s Conjecture as true, we conjecture further that all non-rank
facets of STABWWF) are clique family inequalitie&F, p)

K+1-7) > mi+H—r) Y o <(E+1-r)a(Wh)
ieI(F,p) i€O0(F,p)

associated with certain subwelbg, c W*. All non-rank facets would have, there-
fore, coefficients at modt — 1 andk — 2 (sincek’ < k follows by W» ¢ W* and
(k'+1—r) < k' byr > 0). This would imply that the stable set polytopes of webs
W3 could have non-rank facets with coefficients 2 and 1 only.
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