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Abstract

Graphs with circular symmetry, called webs, are relevant for describing the stable set poly-
topes of two larger graph classes, quasi-line graphs [6,10] and claw-free graphs [5,6]. Pro-
viding a decent linear description of the stable set polytopes of claw-free graphs is a long-
standing problem [7]. However, even the problem of finding all facets of stable set poly-
topes of webs is open. So far, it is only known that stable set polytopes of webs with clique
number≤ 3 have rank facets only [3,13] while there are examples with clique number> 4

having non-rank facets [8,10,9]. The aim of the present paper is to treat the remaining case
with clique number= 4: we provide an infinite sequence of such webs whose stable set
polytopes admit non-rank facets.

Key words: web, rank-perfect graph, stable set polytope, (non-)rank facet

1 Introduction

A natural generalization of odd holes and odd antiholes are graphs with circular
symmetry of their maximum cliques and stable sets, called webs: a webW k

n is a
graph with nodes1, . . . , n whereij is an edge iffi andj differ by at mostk (modulo
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n) andi 6= j. These graphs belong to the classes of quasi-line graphs and claw-free
graphs and are, besides line graphs, relevant for describing the stable set polytopes
of those larger graph classes [5,6,10]. (The line graph of a graphH is obtained by
taking the edges ofH as nodes and connecting two nodes iff the corresponding
edges ofH are incident. A graph is quasi-line (resp. claw-free) if the neighborhood
of any node can be partitioned into two cliques (resp. does not contain any stable
set of size 3).) All facets of the stable set polytope of line graphs are known from
matching theory [4]. In contrary, providing all facets of the stable set polytopes
of claw-free graphs is a long-standing problem [7] but we are even still far from
having a complete description for the stable set polytopes of webs (and, therefore,
of quasi-line and claw-free graphs, too).

In particular, as shown by Giles & Trotter [6], the stable set polytopes of claw-free
graphs contain facets with a much more complex structure than those defining the
matching polytope. Oriolo [10] discussed which of them occur in quasi-linegraphs.
In particular, these non-rank facets rely on certain combinations of joined webs.

Several further authors studied the stable set polytopes of webs. Obviously, webs
with clique number 2 are either even or odd holes (their stable set polytopes are
known due to [1,11]). Dahl [3] studied webs with clique number 3 and showed that
their stable set polytopes admit rank facets only. On the other hand, Kind [8] found
(by means of the PORTA software3 ) examples of webs with clique number> 4
whose stable set polytopes havenon-rank facets. Oriolo [10] and Liebling et al. [9]
presented further examples of such webs. It is natural to ask whether the stable set
polytopes of webs with clique number= 4 admit rank facets only.

The aim of the present paper is to answer that question by providing an infinite
sequence of webs with clique number= 4 whose stable set polytopes havenon-
rank facets.

2 Results on Stable Set Polytopes

Thestable set polytopeSTAB(G) of G is defined as the convex hull of the incidence
vectors of all stable sets of the graphG = (V,E) (a setV ′ ⊆ V is a stable set if
the nodes inV ′ are mutually non-adjacent). A linear inequalityaT x ≤ b is said to
bevalid for STAB(G) if it holds for all x ∈ STAB(G). We call a stable setS of G

a root of aT x ≤ b if its incidence vectorχS satisfiesaT χS = b. A valid inequality
for STAB(G) is a facet if and only if it has|V | roots with affinely independent
incidence vectors. (Note that the incidence vectors of the roots ofaT x ≤ b have to
be linearly independent ifb > 0.)

3 By PORTA it is possible to generate all facets of the convex hull of a given set of integer
points, see http://www.zib.de
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The aim is to find a systemAx ≤ b of valid inequalities s.t. STAB(G) = {x ∈ R
|G|
+ :

Ax ≤ b} holds. Such a system is unknown for the most graphs and it is, therefore,
of interest to study certain linear relaxations of STAB(G) and to investigate for
which graphsG these relaxations coincide with STAB(G).

One relaxation of STAB(G) is thefractional stable set polytopeQSTAB(G) given
by all “trivial” facets, thenonnegativity constraints

xi ≥ 0 (0)

for all nodesi of G and by theclique constraints
∑

i∈Q

xi ≤ 1 (1)

for all cliquesQ ⊆ G (a setV ′ ⊆ V is a clique if the nodes inV ′ are mutually adja-
cent). Obviously, a clique and a stable set have at most one node in common. There-
fore, QSTAB(G) contains all incidence vectors of stable sets ofG and STAB(G) ⊆
QSTAB(G) holds for all graphsG. The two polytopes coincide precisely for perfect
graphs [1,11].

A graph G is calledperfect if, for each (node-induced) subgraphG′ ⊆ G, the
chromatic numberχ(G′) equals the clique numberω(G′). That is, for allG′ ⊆ G,
as many stable sets cover all nodes ofG′ as a maximum clique ofG′ has nodes
(maximum cliques resp. maximum stable sets contain a maximal number of nodes).

In particular, for all imperfect graphsG follows STAB(G) ⊂ QSTAB(G) and,
therefore, further constraints are needed to describe their stable set polytopes. A
natural way to generalize clique constraints is to investigaterank constraints

∑

i∈G′

xi ≤ α(G′) (2)

associated witharbitrary (node-)induced subgraphsG′ ⊆ G whereα(G′) denotes
the stability number ofG′, i.e., the cardinality of a maximum stable set inG′ (note
thatα(G′) = 1 holds iff G′ is a clique). For convenience, we often write (2) in the
form x(G′) ≤ α(G′).

Let RSTAB(G) denote therank polytopeof G given by all nonnegativity con-
straints (0) and all rank constraints (2). A graphG is calledrank-perfect[14] if
STAB(G) coincides with RSTAB(G).

By construction, every perfect graph is rank-perfect. Some further graphs are rank-
perfect by definition:near-perfect[12] ( resp.t-perfect[1], h-perfect[7]) graphs,
where rank constraints associated with cliques and the graph itself (resp. edges and
odd cycles, cliques and odd cycles) are allowed. Moreover, the result of Edmonds
and Pulleyblank [4] implies that line graphs are rank-perfect as well (see [15] for a
list with more examples).
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Recall that a webW k
n is a graph with nodes1, . . . , n whereij is an edge ifi andj

differ by at mostk (i.e., if |i − j| ≤ k mod n) andi 6= j. We assumek ≥ 1 and
n ≥ 2(k + 1) in the sequel in order to exclude the degenerated cases whenW k

n is a
stable set or a clique.W 1

n is a hole andW k−1
2k+1 an odd antihole fork ≥ 2. All webs

W k
9 on nine nodes are depicted in Figure 1. It is easy to see thatω(W k

n ) = k + 1
andα(W k

n ) = ⌊ n
k+1

⌋ holds. Note that webs are also called circulant graphsCk
n [2].

Furthermore, similar graphsW (n, k) were introduced in [13].

So far, the following is known about stable set polytopes of webs. The websW 1
n

are holes, hence they are perfect ifn is even and near-perfect ifn is odd (recall that
we supposen ≥ 2(k + 1)). Dahl [3] showed that all websW 2

n with clique number
3 are rank-perfect. But there are several webs with clique number> 4 known to
benot rank-perfect [8,10,9], e.g.,W 4

31, W 5
25, W 6

29, W 7
33, W 8

28, W 9
31; these results are

summarized in Table 1.

Table 1: Known results on rank-perfectness of webs

ω = 2 ω = 3 ω = 4 ω ≥ 5

All webs rank-perfect? Yes Yes ? No

Infinitely many not rank-perfect webs? No No ? ?

A conjecture due to Ben Rebea (see [10]) claims that the stable set polytopes of
quasi-line graphs admit only one type of facets besides nonnegativity constraints
(0) and clique constraints (1), so-called clique family inequalities: LetG = (V, E)
be a graph,F be a family of (at least three inclusion-wise) maximal cliques ofG,
p ≤ |F| be an integer, and define two sets as follows:

I(F , p) = {i ∈ V : |{Q ∈ F : i ∈ Q}| ≥ p}

O(F , p) = {i ∈ V : |{Q ∈ F : i ∈ Q}| = p − 1}

Theclique family inequality(F , p)

(p − r)
∑

i∈I(F ,p)

xi + (p − r − 1)
∑

i∈O(F ,p)

xi ≤ (p − r)

⌊

|F|

p

⌋

(3)

with r = |F| mod p andr > 0 is valid for the stable set polytope ofeverygraph by
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Oriolo [10]. Since webs are quasi-line graphs in particular, the stable set polytopes
of webs should admit, according to Ben Rebea’s conjecture, facets coming from
cliques and clique family inequalities only.

In order to answer the question whether the webs with clique number= 4 are
rank-perfect or not, we introduce clique family inequalities associated with cer-
tain subwebs and prove the following: the clique family inequality associated with
W 2

2l ⊂ W 3
3l induces a non-rank facet ofSTAB(W 3

3l) if l ≥ 11 and2 = l mod 3
(Theorem 6).

3 Non-Rank Facets of STAB(W 3

n)

Consider a webW k
n . We say that a clique family inequality(F , p) of STAB(W k

n ) is
associatedwith a proper subwebW k′

n′ ⊂ W k
n if F = {Qi : i ∈ W k′

n′ } is chosen as
clique family,p = k′ + 1, andQi = {i, . . . , i + k} denotes the maximum clique of
W k

n starting in nodei. In order to explore the special structure of such inequalities,
we need the following fact from Trotter [13].

Observation 1 [13] W k′

n′ is an induced subweb ofW k
n if and only if there is a subset

V ′ = {i1, . . . , in′} ⊆ V (W k
n ) s.t. |V ′ ∩ Qij | = k′ + 1 for every1 ≤ j ≤ n′.

We now prove the following.

Lemma 2 Let W k′

n′ ⊂ W k
n be any proper induced subweb. The clique family in-

equality(F , p) of STAB(W k
n ) associated withW k′

n′ is

(k′ + 1 − r)
∑

i∈I(F ,p)

xi + (k′ − r)
∑

i∈O(F ,p)

xi ≤ (k′ + 1 − r) α(W k′

n′ ) (4)

with p = k′ + 1, r = n′ mod (k′ + 1), r > 0; we haveW k′

n′ ⊆ I(F , p) and the
union ofI(F , p) andO(F , p) covers all nodes ofW k

n .

PROOF. Let W k′

n′ be a proper subweb ofW k
n and chooseF = {Qi : i ∈ W k′

n′ },
p = k′ + 1. Obviously |F| = |W k′

n′ | = n′ follows. Let V ′ = {i1, . . . , in′} be
the node set ofW k′

n′ in W k
n . Observation 1 implies thatQij = {ij, . . . , ij + k}

contains the nodesij, . . . , ij+k′ from V ′. Obviously, the nodeij+k′ belongs exactly
to the(k′ + 1) cliquesQij , . . . , Qij+k′

from F . Since all indices are taken modulo

n, every node inW k′

n′ is covered precisely(k′ + 1) times byF andp = k′ + 1
yields, therefore,W k′

n′ ⊆ I(F , p). Furthermore,|F| = n′ andp = ω(W k′

n′ ) implies
⌊ |F|

p
⌋ = α(W k′

n′ ). Hence the clique family inequality given by(F , p) is (4) which
finishes the proof. ✷
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Let us turn to the clique family inequality associated withW 2
2l ⊂ W 3

3l, i.e. n is
divisible by 3 (for somel ≥ 3 by n ≥ 2(k + 1)). Observation 1 easily yields that
every third node ofW 3

3l does not belong to the subwebW 2
2l and thatW 2

2l = I(F , 3)
holds if we chooseF = {Qi : i ∈ W 2

2l}, see Figure 2.

Fig. 2. The subwebW 2
2l ⊂ W 3

3l

Furthermore, the nodes inW 3
3l − W 2

2l = O(F , 3) induce the holeW 1
1l. Thus, the

clique family inequality(F , 3)

(3−r) x(W 2
2l) + (2−r) x(W 1

1l) ≤ (3−r) α(W 2
2l)

associated withW 2
2l ⊂ W 3

3l is anon-rank constraint ifr = 1 holds. The aim of this
section is to prove that(F , 3) is a non-rank facet of STAB(W 3

3l) wheneverl ≥ 11
and2 = l mod 3 (note:2 = l mod 3 impliesr = 1 = 2l mod 3).

For that, we have to present3l roots of(F , 3) whose incidence vectors are linearly
independent. (Recall that a root of(F , 3) is a stable set ofW 3

3l satisfying(F , 3) at
equality.)

It follows from [13] that a webW k
n produces the full rank facetx(W k

n ) ≤ α(W k
n )

iff (k +1)6 | n. ThusW 2
2l is facet-producing if2 = l mod 3 and the maximum stable

sets ofW 2
2l yield already2l roots of (F , 3) whose incidence vectors are linearly

independent.

Let V = V (W 3
3l) andV ′ = V (W 2

2l). We need a setS of further l roots of(F , 3)
which have a non-empty intersection withV − V ′, calledmixed roots, and are
independent, in order to prove that(F , 3) is a facet of STAB(W 3

3l).

We show that there exists a setS of l mixed roots of(F , 3) wheneverl ≥ 11. Due
to 2 = l mod 3, we setl = 2 + 3l′ and obtain|V | = 3l = 6 + 9l′. Thus,V can be
partitioned into 2 blocksD1, D2 with 3 nodes each andl′ blocksB1, . . . , Bl′ with 9
nodes each s.t. every block ends with a node inV − V ′ (this is possible since every
third node ofV belongs toV −V ′ sayi ∈ V ′ if 36 | i andi ∈ V −V ′ if 3|i). Figure 3
shows a blockDi and a blockBj (where circles represent nodes inV ′ and squares
represent nodes inV − V ′). For the studied mixed roots of(F , 3) we choose the
black filled nodes in Figure 3:
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iD Bj

Fig. 3. A blockDi and a blockBj

Lemma 3 The setS containing the 3rd node of the blocksD1, D2 as well as the
4th and 8th node of any blockBj is a root of (F , 3) with |S ∩ V ′| = 2l′ and
|S ∩ (V − V ′)| = 2 for every orderingV = D1, B1, . . . , Bm, D2, Bm+1, . . . , Bl′ of
the blocks s.t.D1, D2 are not neighbored.

PROOF. Consider a setS constructed that way. Since every block ends with a
node inV − V ′ by definition and every third node ofV is in V − V ′, we have that
the last node ofDi and the 3rd, 6th, and 9th node ofBj belong toV − V ′ while all
other nodes are inV ′. Thus, the two last nodes inD1 andD2 are the two studied
nodes inS ∩ (V −V ′) and the 4th and 8th node inBj for 1 ≤ j ≤ l′ are the studied
2l′ nodes inS ∩ V ′ (see Figure 3).

S is a stable set provided the two blocksD1 andD2 are not neighbored: Obviously,
there is no edge between the 4th and 8th node of any blockBj. Thus, we only have
to discuss what happens between two consecutive blocks. Since the first 3 nodes
of every blockBj do not belong toS, there is no problem with having any block
beforeBj, i.e., BkBj or DiBj. For the remaining caseBjDi, notice that the last
node ofBj and the first two nodes ofDi do not belong toS and there cannot be an
edge between two nodes ofS in that case, too.

This shows thatS is a stable set satisfying|S ∩ V ′| = 2l′ and|S ∩ (V − V ′)| = 2.
Due toα(W 2

2l) = ⌊2(2+3l′)
3

⌋ = 2l′ + 1, the setS is finally a root of(F , 3). ✷

Lemma 3 implies that there exist mixed rootsS of (F , 3) with |S| = 2 + 2l′ if
l′ ≥ 2. The next step is to show that there arel such roots ifl′ ≥ 3 (resp.l ≥ 11).

In the sequel, we denote bySi,m the stable set constructed as in Lemma 3 when
D1 = {i − 2, i − 1, i} andV = D1, B1, . . . , Bm, D2, Bm+1, . . . , Bl′. If there are
more than⌊ l′

2
⌋ blocks betweenD1 andD2, there are less than⌊ l′

2
⌋ blocks between

D2 andD1. Hence it suffices to considerm ≤ ⌊ l′

2
⌋.

By construction,Si,m contains a second node fromV − V ′, namely, the third node
i+9m+3 of blockD2. If 2|l′ andm = l′

2
, then(i+9m+3)+9m+3 = i+9l′+6 =

i(modn) and, therefore,Si,m = Si+9m+3,m follows.

We are supposed to constructdistinct mixed rootsSi,m of (F , 3) with 2 + 2l′

nodes, hence we choose orderingsV = D1, B1, . . . , Bm, D2, Bm+1, . . . , Bl′ with
1 ≤ m < l′

2
and obtain easily:
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Lemma 4 If l′ ≥ 3, then the stable setsSi,m for eachi ∈ V − V ′ obtained from
any orderingV = D1, B1, . . . , Bm, D2, Bm+1, . . . , Bl′ with 1 ≤ m < l′

2
yield

|V − V ′| = l roots of(F , 3) with 2 + 2l′ nodes each.

Consequently, we can always choose a set of3l roots of (F , 3) if l′ ≥ 3 resp.l ≥ 11.

If S is a set ofl distinct mixed roots, denote byAS the square matrix containing the
incidence vectors of the2l maximum stable sets ofW 2

2l and thel mixed roots inS.
AS can be arranged s.t. the first2l and the lastl columns correspond to the nodes
in W 2

2l andW 1
1l, respectively, and the first2l rows contain the incidence vectors of

the maximum stable sets ofW 2
2l where the last rows contain the incidence vectors

of the l mixed roots inS. (Note that the nodes corresponding to the lastl columns
of AS are3, 6, . . . , 3l.) ThenAS has the block structure

AS =







A11 0

A21 A22







where the2l×2l-matrixA11 is invertible (recall:W 2
2l is facet-producing by [13] in

the considered case with1 = 2l mod 3 resp.2 = l mod 3).

It is left to find a setS of l distinct mixed roots s.t.A22 is an invertiblel×l-matrix
(thenAS is invertible due to its block structure).

Lemma 5 For everyl ≥ 11, there is a setS of l mixed roots of(F , 3) containing 2
nodes fromV − V ′ s.t. thel×l-submatrixA22 of AS is invertible.

PROOF. Every rootSi,m of (F , 3) corresponds to a row in(A21|A22) of AS having
precisely two 1-entries in the columns belonging toA22 (by |Si,m ∩ (V − V ′)| = 2
for all i ∈ V −V ′). Lemma 4 ensures that no such roots coincide if1 ≤ m < l′

2
for

all i ∈ V − V ′.

The idea of finding cases whenA22 is invertible goes as follows: LetS3j,1 for 1 ≤
j ≤ l − 4 be the firstl − 4 roots inS with S3j,1 ∩ (V − V ′) = {3j, 3(j + 4)}.
Choose as the remaining 4 roots inS the stable setsS3j,2 for l − 10 ≤ j ≤ l − 7
with S3j,2 ∩ (V −V ′) = {3j, 3(j + 7)}. Then take their incidence vectorsχS3j,1 for
1 ≤ j ≤ l − 4 as the firstl − 4 rows andχS3j,2 for l − 10 ≤ j ≤ l − 7 as the last
4 rows of(A21|A22). By construction,A22 is thel×l-matrix in Figure 4 (1-entries
are shown only, the columni corresponds to the node3i).

A22 has only 1-entries on the main diagonal (coming from the first nodes inV −V ′

of S3j,1 for 1 ≤ j ≤ l − 4 and from the second nodes inV − V ′ of S3j,2 for
l − 10 ≤ j ≤ l − 7). The only non-zero entries ofA22 below the main diagonal
come from the first nodes inV − V ′ of S3j,2 for l − 10 ≤ j ≤ l − 7. Hence,A22

8



1 . . . 5 . . . l−11 l−10 l−9 l−8 l−7 l−6 l−5 l−4 l−3 l−2 l−1 l

1 1 1

...
... ...

...
... ...

l−11 1 1

l−10 1 1

l−9 1 1

l−8 1 1

l−7 1 1

l−6 1 1

l−5 1 1

l−4 1 1

l−3 1 1

l−2 1 1

l−1 1 1

l 1 1

Fig. 4. Thel×l-matrixA22

has the form

A22 =







A′
22

0 A′′
22







where bothA′
22 andA′′

22 are invertible due to the following reasons:

A′
22 is an (l − 11)× (l − 11)-matrix having 1-entries on the main diagonal and

0-entries below the main diagonal by construction. HenceA′
22 is clearly invertible.

A′′
22 is an11×11-matrix which has obviously the circular 1’s property. In other

words,A′′
22 is equivalent to the matrixA(C11) containing the incidence vectors of

the maximum stable sets of the odd antiholeC11 as rows. SinceA(C11) is invertible
due to Padberg [11], the matrixA′′

22 is invertible, too. (Note thatl = 11 implies
A22 = A′′

22.)

This completes the proof thatA22 is invertible for everyl ≥ 11 if we choose the set
S of l roots of(F , 3) as constructed above.✷

Finally, we have shown that, for everyl ≥ 11 with 2 = l mod 3, there are3l roots
of (F , 3) whose incidence vectors are linearly independent:
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Theorem 6 For anyW 2
2l ⊂ W 3

3l with 2 = l mod 3 and l ≥ 11, the clique family
inequality

2x(W 2
2l) + 1x(W 1

1l) ≤ 2α(W 2
2l)

associated withW 2
2l is a non-rank facet of STAB(W 3

3l).

This gives us an infinite sequence of not rank-perfect websW 3
3l with clique num-

ber 4, namelyW 3
33, W 3

42, W 3
51, W 3

60, ... and answers the question whether the webs
W 3

n with clique number4 are rank-perfect negatively. Thus, we can update Table 1
as follows:

Table 2: Updated results on rank-perfectness of webs

ω = 2 ω = 3 ω = 4 ω ≥ 5

All webs rank-perfect? Yes Yes No No

Infinitely many not rank-perfect webs? No No Yes ?

4 Concluding Remarks

It is open whether there exist, for eachω ≥ 5, infinitely many not rank-perfect
webs, see Table 2. We beliefe that this is the case.

Assuming Ben Rebea’s Conjecture as true, we conjecture further that all non-rank
facets of STAB(W k

n ) are clique family inequalities(F , p)

(k′ + 1 − r)
∑

i∈I(F ,p)

xi + (k′ − r)
∑

i∈O(F ,p)

xi ≤ (k′ + 1 − r) α(W k′

n′ )

associated with certain subwebsW k′

n′ ⊂ W k
n . All non-rank facets would have, there-

fore, coefficients at mostk − 1 andk − 2 (sincek′ < k follows byW k′

n′ ⊂ W k
n and

(k′ +1− r) ≤ k′ by r > 0). This would imply that the stable set polytopes of webs
W 3

n could have non-rank facets with coefficients 2 and 1 only.
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