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LaBRI, Université Bordeaux 1,
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Abstract

A homomorphism from an oriented graph G to an
oriented graph H is an arc-preserving mapping ϕ

from V (G) to V (H), that is ϕ(x)ϕ(y) is an arc
in H whenever xy is an arc in G. The oriented
chromatic number of G is the minimum order of
an oriented graph H such that G has a homomor-
phism to H . The oriented chromatic index of G is
the minimum order of an oriented graph H such
that the line-digraph of G has a homomorphism
to H .

In this paper, we determine for every k ≥ 3 the
oriented chromatic number and the oriented chro-
matic index of the class of oriented outerplanar
graphs with girth at least k.

Keywords: Outerplanar graph, girth, oriented
chromatic number, oriented chromatic index.
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1 Introduction

In this paper, we consider oriented graphs,
that is digraphs without opposite arcs. For
an oriented graph G, we denote by V (G) its
set of vertices, by A(G) its set of arcs, and

∗Part of this work has been supported by the Eu-
ropean training network COMBSTRU.

†E-mail: {pinlou,sopena}@labri.fr

by uv an arc from vertex u to vertex v. The
number of vertices of G is the order of G.

The girth of a graph G is the size of a small-
est cycle in G. We denote by Og the class
of oriented outerplanar graphs with girth at
least g.

An oriented k-vertex-coloring of an oriented
graph G is a mapping ϕ from V (G) to a set of
k colors such that (i) ϕ(u) 6= ϕ(v) whenever
uv ∈ A(G) and (ii) ϕ(v) 6= ϕ(x) whenever
uv, xy ∈ A(G) and ϕ(u) = ϕ(y). Note that
these two conditions ensure that any two ver-
tices linked by a directed path of length one
or two are assigned distinct colors in any ori-
ented vertex-coloring.

The oriented chromatic number of G, de-
noted by χo(G), is the smallest integer k such
that G admits an oriented k-vertex-coloring.
The oriented chromatic number χo(F) of a
class of oriented graphs F is defined as the
maximum of χo(G) taken over all graphs G in
F.

Let G and H be two oriented graphs. A
homomorphism from G to H is a mapping ϕ

from V (G) to V (H) that preserves the arcs
(that is ϕ(u)ϕ(v) ∈ A(H) whenever uv ∈
A(G)). An oriented k-vertex-coloring of an
oriented graph G can thus be viewed as a ho-
momorphism from G to H, where H is an ori-
ented graph of order k. The existence of such

1



a homomorphism from G to H is denoted by
G → H. The vertices of H are called colors,
and we say that G is H-vertex-colorable. The
oriented chromatic number of G can then be
equivalently defined as the smallest order of
an oriented graph H such that G → H.

The notion of oriented vertex-coloring, in-
troduced by Courcelle in [3], has been stud-
ied by several authors in the last decade and
the problem of bounding the oriented chro-
matic number has been investigated for vari-
ous graph classes (see [1, 2, 6, 8, 9, 11], or [10]
for an overview).

Concerning outerplanar graphs, Sopena
proved in [9] that the class of oriented par-
tial 2-trees (which contains the class of ori-
ented outerplanar graphs) has oriented chro-
matic number at most 7 and that this bound is
tight (he provided an outerplanar graph with
oriented chromatic number 7). In [4], Hos-
seini Dolama constructed an oriented triangle-
free outerplanar graph with oriented chro-
matic number 6 and asked whether the ori-
ented chromatic number of the class of ori-
ented triangle-free outerplanar graphs is 6
or 7. Our first result gives a complete classi-
fication of the oriented chromatic numbers of
oriented outerplanar graphs with given girth:

Theorem 1

1. χo(O4) = 6,

2. χo(Og) = 5 for every g, g ≥ 5.

An oriented arc-coloring of an oriented
graph G is an oriented vertex-coloring of
its line digraph LD(G) (recall that LD(G)
is given by V (LD(G)) = A(G) and ab ∈
A(LD(G)) if there exists u, v,w ∈ V (G) such
that a = uv and b = vw). We say that an
oriented graph G is H-arc-colorable if there
exists a homomorphism ϕ from LD(G) to H.
The mapping ϕ is then an H-arc-coloring, or
simply an arc-coloring, of G. Therefore, an
oriented arc-coloring ϕ of G must satisfy (i)

ϕ(uv) 6= ϕ(vw) whenever uv and vw are two
consecutive arcs in G, and (ii) ϕ(vw) 6= ϕ(xy)
whenever uv, vw, xy, yz ∈ A(G) with ϕ(uv) =
ϕ(yz). Note that these two conditions ensure
that any two arcs belonging to a directed path
of length two or three must get distinct colors
in any oriented arc-coloring. Also note that
two arcs incoming to (resp. outgoing from)
the same vertex can get the same color since
the two corresponding vertices in LD(G) are
not adjacent and do not belong to a directed
2-path.

The oriented chromatic index of G, denoted
by χ′

o(G), is the smallest order of an oriented
graph H such that G is H-arc-colorable. The
oriented chromatic index χ′

o(F) of a class of
oriented graphs F is defined as the maximum
of χ′

o(G) taken over all graphs G in F.

Let G and H be two oriented graphs and
ϕ be a homomorphism from G to H. It is
not difficult to check that the mapping ϕ′ :
A(G) → V (H), given by ϕ′(xy) = ϕ(x) for
every arc xy in G is a homomorphism from
LD(G) to H. Hence we have:

Observation 2 [7] For every oriented graph
G, χ′

o(G) ≤ χo(G).

From that, we get that every oriented out-
erplanar graph has oriented chromatic index
at most 7. Our second result gives a com-
plete classification of the oriented chromatic
indexes of oriented outerplanar graphs with
given girth:

Theorem 3

1. χ′
o(O3) = 7,

2. χ′
o(O4) = 6,

3. χ′
o(Og) = 5 for every g, 5 ≤ g ≤ 9,

4. χ′
o(Og) = 4 for every g, g ≥ 10.
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This paper is organised as follows. We give
in Section 2 some notation and preliminary
results that will be used later. We prove The-
orem 1 in Section 3 and Theorem 3 in Sec-
tion 4. Finally, we discuss the case of oriented
partial 2-trees in Section 5.

2 Notation and preliminary

results

In the rest of the paper, we will use the fol-
lowing notation. A k-vertex is a vertex of de-
gree k. The minimum degree of a graph G is
denoted by δ(G). If uv is an arc, u is a pre-
decessor of v and v is a successor of u. For
a given vertex u in G, we denote by N+

G (u)
(resp. N−

G (u)) the set of successors (resp. pre-
decessors) of u in G.

A k-path in G is a sequence x0x1 . . . xk such
that xixi+1 ∈ A(G) or xi+1xi ∈ A(G) for ev-
ery i, 0 ≤ i < k. A directed k-path in G is a
sequence x0x1 . . . xk such that xixi+1 ∈ A(G)
for every i, 0 ≤ i < k. The notions of a k-
cycle and of a directed k-cycle are defined in
a similar way.

For a graph G and a vertex v of V (G), we
denote by G \ v the graph obtained from G

by removing v together with the set of its in-
cident arcs. This notion is extended to sets of
vertices in a standard way.

Let G be an oriented graph and f be an
oriented arc-coloring of G. For a given vertex
v of G, we denote by C+

f (v) and C−
f (v) the

outgoing color set of v (i.e. the set of colors
of the arcs outgoing from v) and the incoming
color set of v (i.e. the set of colors of the arcs
incoming to v), respectively.

The upper bounds of Theorems 1 and 3 will
be obtained by proving that the correspond-
ing oriented outerplanar graphs are T -vertex-
or T -arc-colorable for some tournament T .
The three tournaments that will be used are
depicted in Figure 1.

The tournament T4 is the only tournament
on four vertices containing a directed 4-cycle.

21
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(a) The tournament
T4
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(b) The tournament T5
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(c) The tournament T6

Figure 1: Three target tournaments

Note that the tournament T5 is a circular
tournament and thus is arc-transitive. More-
over, this tournament has the following prop-
erty:

Proposition 4 [2] For every pair of (not
necessarily distinct) vertices u, v ∈ V (T5),
there exists an oriented 4-path connecting u

with v for any of the 16 possible orientations
of such an oriented 4-path.

By a case analysis, it is tedious but not dif-
ficult to prove the following:

Proposition 5 For every pair of (not nec-
essarily distinct) vertices u, v ∈ V (T6), there
exists an oriented 3-path connecting u with v

for any of the 8 possible orientations of such
an oriented 3-path.

Finally, we will extensively use the follow-
ing obvious property of outerplanar graphs
with high girth:
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Proposition 6 Every outerplanar graph G

with girth at least k and δ(G) ≥ 2 contains
a face of length l ≥ k with at least l − 2 con-
secutive 2-vertices.

3 The oriented chromatic

number of outerplanar

graphs

In this section we prove our Theorem 1.

Proof of Theorem 1(1). We first prove
that χo(O4) ≤ 6. To show that, we prove
that every triangle-free outerplanar graph has
a homomorphism to the tournament T6 de-
picted in Figure 1(c). Let H be a mini-
mal (with respect to inclusion as a subgraph)
triangle-free outerplanar graph having no ho-
momorphism to T6. We show that H contains
neither a 1-vertex nor two adjacent 2-vertices.

1. Suppose that H contains a 1-vertex u.
Then, due to the minimality of H, the
triangle-free outerplanar graph H ′ = H \
u admits an oriented T6-vertex-coloring
f . Since every vertex of T6 has at least
two successors and at least two predeces-
sors, f can easily be extended to H.

2. Suppose now that H contains two adja-
cent 2-vertices v and w. Then, due to the
minimality of H, the triangle-free outer-
planar graph H ′ = H \ {v,w} admits an
oriented T6-vertex-coloring f . By Propo-
sition 5, f can be extended to H.

We thus get a contradiction thanks to
Proposition 6.

In [4], Hosseini Dolama constructed an ori-
ented triangle-free outerplanar graph G with
oriented chromatic number 6 (see Figure 2).
For completion, we prove now that χo(G) ≥ 6.

Assume to the contrary that f is a T -
vertex-coloring of G for some tournament T

on five vertices (V (T ) = {1, 2, 3, 4, 5}) and let
f(u) = 1, f(v) = 2, f(w) = 3, f(x) = 4 and

y2
y

x w

v1

v2

w1

w2

u2

z2z1

u1

u

v

x1

x2

y1

Figure 2: An oriented triangle-free outerpla-
nar graph with oriented chromatic number 6

f(y) = 5 (these five vertices belong to a di-
rected 5-cycle in G and thus must be assigned
distinct colors).

Since every vertex in {u, v,w, x, y} has 2
successors and 2 predecessors that are linked
by a directed 2-path in G, each vertex of T

must have 2 predecessors and 2 successors.
Hence, T is necessarily the tournament T5 de-
picted in Figure 1(b). (Note that since the
tournament T5 is arc-transitive, we may still
assume w.l.o.g. that f(u) = 1, f(v) = 2,
f(w) = 3, f(x) = 4 and f(y) = 5.)

Finally, observe that we necessarily have
f(u2) = 3 and that we cannot color the re-
maining vertices z1 and z2 since there is no
directed 3-path in T5 from 1 to 3.

This completes the proof of Theorem 1(1).
2

Proof of Theorem 1(2). We first prove
that χo(Og) ≤ 5 for every g, g ≥ 5. Note
that it is enough to consider the case g = 5.
More precisely, we prove that every outerpla-
nar graph with girth at least 5 has a homo-
morphism to the tournament T5 depicted in
Figure 1(b).

Let H be a minimal (with respect to inclu-
sion as a subgraph) outerplanar graph with
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girth 5 having no homomorphism to T5. We
show that H contains neither a 1-vertex nor
three adjacent 2-vertices.

1. Suppose that H contains a 1-vertex u.
Then, due to the minimality of H, the
outerplanar graph H ′ = H \u (which has
girth at least 5) admits an oriented T5-
vertex-coloring f . Since every vertex of
T5 has two successors and two predeces-
sors, f can easily be extended to H.

2. Suppose now that H contains three ad-
jacent 2-vertices u, v and w. Then, due
to the minimality of H, the outerplanar
graph H ′ = H\{u, v,w} (which has girth
at least 5) admits an oriented T5-vertex-
coloring f . By Proposition 4, f can be
extended to H.

We thus get a contradiction thanks to
Proposition 6.

In [5], Nesetril et al. constructed for every
g, g ≥ 3, an oriented outerplanar graph Gg

with girth at least g which has no homomor-
phism to the tournament T4. We recall this
construction here.

Let Pg be the oriented path on ⌊g
2
⌋ ver-

tices whose edges have alternatively forward
and backward direction and let u and v de-
note its end-vertices. The graph Gg is then
constructed as follows : let x1x2 . . . xp be a
directed cycle on p ≥ g vertices, such that
p ≡ 1 or 2 (mod 3). To every vertex xi at-
tach two copies of Pg by identifying the two
u-vertices with xi and adding an arc (with
any direction) linking the two v-vertices. The
graph Gg thus obtained has clearly girth g

or g + 1. Moreover, for every homomorphism
f : Gg → T4, one vertex xi at least satisfies
f(xi) = 3. It is then easy to check that the
two v-vertices of the paths attached to xi are
mapped to the same vertex of T4, namely 0 or
3 depending on the parity of ⌊g

2
⌋. Since these

two vertices are joined by an arc in Gg we ob-
tain the desired contradiction and the result
follows.

2

34
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2,6

3,4,6 1,3,4

1,6
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5,
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u12 u1 u7

u8u11 u6 u2

Figure 3: An oriented outerplanar graph with
oriented chromatic index 7

This completes the proof of Theorem 1(2).
2

4 The oriented chromatic in-

dex of outerplanar graphs

In this section we prove our Theorem 3.

Proof of Theorem 3(1). In [9], Sopena
proved that every outerplanar graph has ori-
ented chromatic number at most 7. By Obser-
vation 2, we thus get that the oriented chro-
matic index of every outerplanar graph is at
most 7.

To show that this bound is tight, we shall
prove that the oriented outerplanar graph G

depicted on Figure 3 has oriented chromatic
index 7.

Assume to the contrary that f is an arc-
coloring of G using at most six colors (say
1, 2, 3, 4, 5, 6). Necessarily, the colors of the
arcs u1u2, u2u3, u3u4, u4u5, u5u6 and u6u1

are pairwise distinct since any two such arcs
belongs to a directed 2- or 3-path in G. Sup-
pose w.l.o.g. that f(uiuj) = i (as drawn on
Figure 3). This forbids for each remaining
uncolored arc 3 or 4 colors. The sets of avail-
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able colors for each of these arcs are given in
Figure 3.

Suppose first that f(u6u2) = 6 and
f(u2u4) = 3. This implies f(u11u6) = 5 and
f(u4u10) = 4 and then f(u10u5) = 1 and
f(u5u11) = 2 since we already have 1 → 2
with u1u2 and u2u3. Therefore, since we have
2 → 5 with u5u11 and u11u6 (resp. 4 → 1
with u4u10 and u10u5), we necessarily have
f(u7u2) = 1 (resp. f(u2u8) = 2). Finally,
this implies f(u1u7) = 4 and f(u8u3) = 5 and
there is no remaining available color for u4u6.

Suppose now that f(u6u2) = 1 and
f(u4u6) = 4. This implies f(u2u8) = 2
and f(u9u4) = 3 and then f(u8u3) = 5 and
f(u3u9) = 6 since we already have 5 → 6 with
u5u6 and u6u1. Therefore, since we have 6 →
3 with u3u9 and u9u4 (resp. 2 → 5 with u2u8

and u8u3), we necessarily have f(u4u10) = 4
(resp. f(u6u12) = 6). Finally, this implies
f(u10u5) = 2 and f(u12u1) = 3 and there is
no remaining available color for u2u4.

Finally, suppose that f(u2u4) = 2 and
f(u4u6) = 5. This implies f(u7u2) = 1 and
f(u6u12) = 6 and then f(u12u1) = 3 and
f(u1u7) = 4 since we already have 3 → 4
with u3u4 and u4u5. Therefore, since we have
6 → 3 with u6u12 and u12u1 (resp. 4 → 1
with u1u7 and u7u2), we necessarily have
f(u11u6) = 5 (resp. f(u9u4) = 3). Finally,
this implies f(u5u11) = 1 and f(u3u9) = 6
and there is no remaining available color for
u6u2.

Therefore, the colors of u2u4, u4u6 and u6u2

are respectively either 3, 5, 1 or 2, 4, 6.
Suppose first that f(u2u4) = 3, f(u4u6) =

5 and f(u6u2) = 1. This implies f(u9u4) = 3
and f(u11u6) = 5. Then, we necessarily have
f(u3u9) = 6 and f(u5u11) = 2. Finally, this
implies f(u4u10) = 4, and there is no remain-
ing available color for u10u5.

Finally, suppose that f(u2u4) = 2,
f(u4u6) = 4 and f(u6u2) = 6. This implies
f(u4u10) = 4 and f(u2u8) = 2. Then, we nec-
essarily have f(u10u5) = 1 and f(u8u3) = 5.
Finally, this implies f(u9u4) = 3, and there is
no remaining available color for u3u9.

Hence, there exists no tournament T on
six vertices such that G is T -arc-colorable,
which completes the proof of Theorem 3(1). 2

Proof of Theorem 3(2). By Theorem 1(1),
every triangle-free outerplanar has oriented
chromatic number at most 6 and thus, by Ob-
servation 2, has oriented chromatic index at
most 6.

To show that this bound is tight, we shall
prove that the oriented triangle-free outerpla-
nar graph G depicted on Figure 4(a) has ori-
ented chromatic index 6.

Assume to the contrary that f is an ori-
ented arc-coloring of G using at most 5 col-
ors, say 1, 2, 3, 4, 5. Necessarily, the colors
of the arcs uv, vw, wx, xy and yu have to
be pairwise distinct. Suppose w.l.o.g. that
f(uv) = 1, f(vw) = 2, f(wx) = 3, f(xy) = 4
and f(yu) = 5.

We first prove that f is an oriented T5-arc-
coloring (T5 is the tournament depicted on
Figure 1(b)). Suppose to the contrary that f

is an oriented T ′
5-arc-coloring of G, with T ′

5 6=
T5. We may assume w.l.o.g. that N+

T ′
5

(1) =

{2}, which implies N−
T ′
5

(1) = {3, 4, 5}. This

successively implies f(vv2) = 2, f(w1w) =
5, f(ww2) = 3, f(x1x) = 2, f(xx2) = 4,
f(y1y) = 2, f(v1v) = 1 and f(uu2) = 3.
Then, the only avalaible color for u1u and yy2

is 5, a contradiction.

Therefore, f is an oriented T5-arc-coloring
of G. (Note that since the tournament T5

is arc-transitive, we may still assume w.l.o.g.
that f(uv) = 1, f(vw) = 2, f(wx) = 3,
f(xy) = 4 and f(yu) = 5.)

Observe now that we have either f(uu2) =
1 or f(uu2) = 2. In each case, the color of
f(uu2) fixes the colors of all but five arcs of G

(see Figure 4(b) for the case f(uu2) = 1 and
Figure 4(c) for the case f(uu2) = 2).

To complete the T5-arc-coloring f , we
thus need a directed 3-path in T5 from color
1 to 3 (when f(uu2) = 1) or from color 3
to 5 (when f(uu2) = 2). Since such paths
do not exist in T5, we get a contradiction

6
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Figure 4: An oriented triangle-free outerpla-
nar graph with oriented chromatic index 6

z′

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

z

Figure 5: The configuration H for the proof
of Theorem 3(3)

which completes the proof of Theorem 1(1). 2

Proof of Theorem 3(3). By Theorem 1(2),
every outerplanar graph with girth g, 5 ≤ g ≤
9, has oriented chromatic number at most 5
and thus, by Observation 2, has oriented chro-
matic index at most 5.

To show that this bound is tight, we con-
struct an outerplanar graph with girth 9 and
oriented chromatic index 5.

Consider the configuration H, made of an
alternating path of ten vertices and four di-
rected 9-cycles arranged as depicted on Fig-
ure 5. Observe first that the tournament
T4 (depicted on Figure 1(a)) contains only
two directed 3-cycles, namely 124 and 134.
Hence, any oriented T4-arc-coloring of the di-
rected 9-cycle has the form 1x41x41x4 with
x ∈ {2, 3}. Let now h be a T4-arc-coloring
of H with h(y1y2) = 1. We then neces-
sarily have h(y2z) ∈ {2, 3} and, by the ob-
servation before, h(z′y3) = 4, which implies
h(y3y2) = h(y3y4) = 1. By repeating this ar-
gument for the four directed 9-cycles of H, we
get h(y9y10) = 1.

Consider finally the oriented graph G ob-
tained from the directed 10-cycle C10 =
x0x1 . . . x9 by gluing ten copies of H to the
ten arcs of C10 by identifying y1 with xi and
y10 with xi−1 (subscripts are taken modulo
10) for every i, 0 ≤ i ≤ 9. The so-obtained
graph G has clearly girth 9. If T is a tour-
nament on four vertices such that G admits a
T -arc-coloring then T must contain a directed
4-cycle since G contains a directed 10-cycle.

7



Therefore, T is necessarily the tournament T4.
Let now f be a T4-arc-coloring of G. Since

10 ≡ 1 (mod 3), the color 4 must be used on
some arc of the cycle C10, say f(x0x1) = 4.
Considering the copy of H glued to x0x1,
we necessarily have f(x1y2) = 1 and thus
f(y9x0) = 1 from the above discussion, a con-
tradiction.

Hence, the graph G has no T4-arc-coloring
and has thus oriented chromatic index 5.
That completes the proof of Theorem 1(2).
2

In order to prove Theorem 3(4) we need the
following technical results.

We say that a T4-arc-coloring f of an ori-
ented graph G is good if

1. ∀u ∈ V (G), C+

f (u) ∈ {{1}, {2}, {3}, {4},
{2, 3}, {3, 4}},

2. ∀u ∈ V (G), C−
f (u) ∈ {{1}, {2}, {3}, {4},

{1, 2}, {2, 3}}.

Ochem et al. [7] proved the following:

Proposition 7 [7] Let P = v0, v1, . . . , v9, v10

be an oriented 10-path. Any good T4-arc-
coloring of P ′ = P \ {v2, . . . , v8} can be ex-
tended to a good T4-arc-coloring of P .

A computer check shows the following:

Proposition 8 Let P = u, v1, v2, . . . , v8, w

be an oriented 9-path. Any good T4-arc-
coloring of P ′ = P \ {v2, . . . , v7} such that
C−

f (u) ∩ C+

f (w) 6= ∅ or C+

f (u) ∩ C−
f (w) 6= ∅

can be extended to a good T4-arc-coloring of
P .

We are now able to prove Theorem 3(4).

Proof of Theorem 3(4). We first prove
that χ′

o(Og) ≤ 4 for every g, g ≥ 10. Note
that it is enough to consider the case g = 10.
More precisely, we prove that every outerpla-
nar graph with girth at least 10 has a homo-
morphism to the tournament T4 depicted in
Figure 1(a).

Let H be a minimal (with respect to inclu-
sion as a subgraph) outerplanar graph with
girth 10 having no homomorphism to T4. We
show that H contains neither a 1-vertex nor a
face F of length l ≥ 10 with l− 2 consecutive
2-vertices.

1. Suppose that H contains a 1-vertex
u. Let v be its neighbor and sup-
pose that uv ∈ A(H). The graph
H ′ = H \ u is an outerplanar graph
with girth at least 10 and, due to min-
imality of H, admits a good T4-arc-
coloring f . Therefore, we have C+

f (v) ∈
{{1}, {2}, {3}, {4}, {2, 3}, {3, 4}}. For
each possible case, there clearly exists a
predecessor in T4 that can be used to ex-
tend f to a good T4-arc-coloring of H.
The proof of the case vu ∈ A(H) is simi-
lar.

2. Suppose now that H contains a face F

of length l ≥ 10 with l − 2 consecutive
2-vertices. We consider two cases:

(a) l = 10.
Let F = u, v1, v2, . . . , v8, w. Due
to the minimality of H, the graph
H ′ = H \{v2, . . . , v7} admits a good
oriented T4-arc-coloring f . More-
over, since uw ∈ A(H) or wu ∈
A(H), we have C−

f (u) ∩ C+

f (w) 6= ∅

or C+

f (u) ∩ C−
f (w) 6= ∅ respectively.

By Proposition 8, f can be extended
to H.

(b) l > 10.
The face F contains nine consecu-
tive 2-vertices, say u1, . . . , u9. Due
to the minimality of H, the graph
H ′ = H\{u2, . . . , u8} admits a good
T4-arc-coloring f . By Proposition 7,
f can be extended to H.

We thus get a contradiction thanks to
Proposition 6.

We finally prove that for every k ≥ 3 there
exist outerplanar graphs with girth k and ori-
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ented chromatic index at least 4, using a con-
struction proposed in [7]. Observe first that
any arc-coloring of a directed cycle of length
p, p ≡ 1 or 2 (mod 3), must use at least 4
colors. Hence, the graph Gk made of two di-
rected cycles sharing one arc, one with length
k, the other with length p, p ≡ 1 or 2 (mod 3),
p ≥ k, has the desired property.

This completes the proof of Theorem 3(4).
2

5 Oriented partial 2-trees

Recall that a partial 2-tree is a K4-minor-
free graph (also knwon in the litterature as
a series-parallel graph) and that the class of
oriented partial 2-trees strictly contains the
class of outerplanar graphs.

A natural question is thus to extend our
results to the case of partial 2-trees.

As discussed before, Sopena proved in [9]
that every oriented partial 2-tree has oriented
chromatic number at most 7 and that this
bound is tight. Moreover, we can prove that
this bound is also tight for oriented triangle-
free partial 2-trees:

Theorem 9 The exist oriented triangle-free
partial 2-trees with oriented chromatic num-
ber 7.

Proof. We shall prove that the oriented
triangle-free partial 2-tree G depicted on Fig-
ure 6 has oriented chromatic number 7.

Suppose that G admits an oriented 6-
vertex-coloring f . Clearly, the colors of the
vertices u,w1, w2, w3, w4, v have to be pair-
wise distinct. W.l.o.g., we assume that f(u) =
1, f(v) = 2, f(w1) = 3, f(w3) = 4, f(w3) = 5
and f(w4) = 6.

Suppose first that f(w) = 3 (resp. f(w) =
4). Then, the two vertices v2 and v4 (resp.
v1 and v3) must get distinct colors and the
two only available colors are 2 and 5 (resp. 2
and 6). Therefore, we will have an arc in G

from the color 2 to the color 1 (resp. from 1

u3

u v

w

v4

u1

u2

u4

w1

w2

w3

w4

v1

v2

v3

Figure 6: An oriented triangle-free partial 2-
tree with oriented chromatic number 7

to 2). Now, the vertices u1 and u4 (resp. u2

and u3) must get distinct colors and the only
two available colors are 1 and 6 (resp. 1 and
5). We get a contradiction since we will then
have an arc in G from the color 1 to the color
2 (resp. from 2 to 1).

The remaining cases f(w) = 5 and
f(w) = 6 lead to a contradiction in a similar
way. 2

Finally note that Theorem 3(1) implies that
the oriented chromatic index of every oriented
partial 2-tree is at most 7 and that this bound
is tight.

It would thus be interesting to determine
the exact value of the oriented chromatic
number (resp. of the oriented chromatic in-
dex) of oriented partial 2-trees with girth k,
for every k ≥ 5 (resp. k ≥ 4).
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versité Bordeaux I, 2005.
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