
HAL Id: hal-00306009
https://hal.science/hal-00306009

Submitted on 25 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ontology-Directed Generation of Frameworks For
Pervasive Service Development

Charles Consel, Wilfried Jouve, Julien Lancia, Nicolas Palix

To cite this version:
Charles Consel, Wilfried Jouve, Julien Lancia, Nicolas Palix. Ontology-Directed Generation of Frame-
works For Pervasive Service Development. Proceedings of The 4th IEEE Workshop on Middleware
Support for Pervasive Computing (PerWare 07), Mar 2007, United States. pp.501 - 508. �hal-00306009�

https://hal.science/hal-00306009
https://hal.archives-ouvertes.fr

Ontology-Directed Generation of Frameworks
For Pervasive Service Development

C. Consel1, W. Jouve1, J. Lancia2, and N. Palix1

1INRIA / LaBRI, Bordeaux, France, 2Thales / LaBRI, Bordeaux, France
{consel, jouve, lancia, palix}@labri.fr

Abstract

Pervasive computing applications are tedious to
develop because they combine a number of problems
ranging from device heterogeneity, to middleware
constraints, to lack of programming support. In this
paper, we present an approach to integrating the
ontological description of a pervasive computing
environment into a programming language, namely
Java. From this ontological description of a
pervasive computing environment, a framework is
automatically generated. It provides the developer
with dedicated programming support to manage,
discover and invoke services. Besides, it performs a
number of verifications both at compile and run time,
ensuring the robustness of applications.

1. Introduction

Pervasive Computing relies on an environment
filled with devices and communications with which
users interact. A key enabler to make this interaction
possible is services that exploit the functionalities of
the pervasive computing environment. These services
must cope with a wide variety of entities and support
a range of interactions while abstracting over entity
details to prevent hardware dependencies as much as
possible. Furthermore, services should cope with an
environment that is highly dynamic. In fact,
developing applications for a pervasive computing
environment is a major challenge combining a
number of issues including (1) describing, organizing
and using environment entities, (2) designing and
developing applications (3) ensuring the robustness
of the resulting pervasive computing system.

Middleware-based approaches (e.g., [1] [2]) have
been developed to address a number of key features
like mobility, service discovery and distributed
applications. Their key benefit has been to propose a
unique platform that offers as many generic features
and mechanisms as possible to cover the needs of

application developers. The limitation to these
middleware-based approaches is that they do not
necessarily match the constant flow of new devices
and new application requirements that are inherent to
a rapidly emerging area. Also, because of the generic
nature of a middleware, it tends to act as some kind
of interpreter, processing the computations of an
application at run time. Yet, some processing,
especially verifications (e.g., for service invocations),
could be done at either compile or deployment time,
drastically improving the application reliability.
Finally, a middleware-approach does not provide the
developer with a programming model. Consequently,
the developer is still left producing glue code to
bridge the gap between the middleware and its
application domain. A first step toward bridging this
gap is proposed by Olympus [2]. This approach
enables ontological descriptions of entities to be
integrated into the development of an application. A
middleware based on Gaia resolves these descriptions
into actual entities depending on various aspects such
as resource availability and developer-supplied
constraints. Also, Olympus provides developers with
a set of high-level functions to perform common
operations like start and stop a component.

This paper proposes to push the Olympus approach
further by integrating the ontological modeling of a
pervasive computing environment into a
programming language, namely Java. To do so, we
introduce two syntactic constructs to Java that permit
ontological descriptions of entities to be defined. One
construct defines an abstract service, which abstracts
over variations of a category of entities. An abstract
service is defined with respect to an ontological
hierarchy based on service inheritance. An abstract
service consists of semantic properties, characterizing
variations of entities, and interaction modes, defining
ways in which it can interact with other services. We
introduce another syntactic construct that enables a
concrete service to be implemented; it must be in
conformance with an abstract service. A concrete

service can compose other services. Because the
modeling of a pervasive computing environment is
integrated into Java, we can provide the developer
with dedicated programming support for managing,
discovering and invoking services. This programming
support takes the form of a framework that is
automatically generated with respect to an
ontological description of a pervasive computing
environment. As well, various verifications are
performed at compile time whenever possible;
otherwise code is generated in the framework to
perform verifications that depend on run time values.

The rest of this paper is organized as follows:
Section 2 presents the ontological description of a
pervasive computing environment and associated
abstract services. Section 3 describes the pervasive
service development within the automatically
generated framework. Section 4 details benefits from
the framework generation in terms of programming
support. Section 5 reviews some related work and
Section 6 concludes.

2. Abstracting Pervasive Environments

Application domains of pervasive systems can
widely vary; it can range from building surveillance
to elderly health care. Our approach covers this great
diversity of domains by giving the tools to describe
and use heterogeneous entities present in these
domains. Specifically, entities may be external to our
framework; they correspond to either devices or
software components (e.g., databases and Web
services). Also, entities may be internal to our
framework; they are user-defined software
components. They allow developers to coordinate
other entities. All these kinds of entities, whether
internal or external, are covered by the notion of a
service; this notion provides a uniform view of these
heterogeneous building blocks.

2.1. Abstract services

To abstract over the variations of a type of
services, we introduce the notion of abstract services.
The scope of an abstract service is specified by three
key aspects: its parent abstract service, the semantic
properties characterizing its variations, and the modes
of interaction it supports. An abstract service
declaration is displayed in Figure 1. It defines a class
of services dedicated to measuring luminosity. Let us
now examine each aspect of an abstract service
declaration.

1. AbstractService LightSensor extends
 MeasurementSensor{
2. constrained unit {Lux, Phot, Foot-candle};
3. Command Luminosity getLuminosity(void);
4. EventOutput {Luminosity};
5.}

Figure 1. The LightSensor abstract service

2.1.1. Abstract service Inheritance. To capture all
heterogeneous and domain-specific services in a
consistent way, our approach allows an abstract
service to be defined as an enrichment of another
service. As an example, in Figure 1, the abstract
service for light sensors is defined as an enrichment
of a measurement sensor. This relationship is
expressed using the extends clause of the
declaration. As such it inherits a semantic property
defining the measurement unit. As well, it may
inherit a requirement for providing interaction mode
operations. Abstract service inheritance is further
described below as interaction modes and semantic
properties are introduced.

2.1.2. Interaction modes. Regardless of the
application domain, developing pervasive systems
critically relies on interacting with services. Most
existing approaches [2] consider that this interaction
is achieved using some form of procedure invocation
or event mechanism. Procedure invocation typically
addresses the need to control a service. We call this
kind of service interaction the command mode. An
example of a command mode is shown in Line 3 of
Figure 1. This operation is named getLuminosity;
it takes no argument and returns the current
luminosity. Besides the command mode, an abstract
service may also offer the event mode, either as a
subscriber or as a publisher, using the
publish/subscribe mechanism. In our light sensor
example (Figure 1), the abstract service is defined as
a publisher of light measurements, as shown in Line
4. Events are characterized by their direction (input or
output) and the class defining the data they publish or
receive. Another important mode of interaction
consists of interacting with a service by exchanging a
stream of data. This interaction mode is called the
session mode because it requires the consumer and
the producer of the data stream to set up a session to
communicate. Besides multimedia, stream-oriented
services may also produce a stream of arbitrary data.
We illustrate the session mode by extending our light
sensor abstract service, as shown in Figure 2. This
extended form of light sensors produces a stream of
measurements. A service can either be invited or

invite other services, as indicated by the Input/Output
keyword.

1.AbstractService ExtendedLightSensor extends
 LightSensor{
2. SessionInput {Luminosity};
3.}

Figure 2. The ExtendedLightSensor abstract service

2.1.3. Semantic properties. Not only is a range of
concrete services defined by its supported interaction
modes, but it is also defined by the semantic
properties that may hold. These properties are
included in the ontological description of an abstract
service and further characterize the target range of
concrete services. Examples of properties include
measurement unit, priority or location, as displayed
in Figure 3. Semantic properties can either be
inherited from a parent abstract service or introduced
by the abstract service being defined. A property can
be assigned a value or constrained. In our example,
Line 2 of Figure 1 defines a constraint on the unit
property inherited from the MeasurementSensor
abstract service. The key feature of our approach is to
provide the developer with a typed interface to
semantic properties. Specifically, querying the unit
property of light sensors requires a well-typed value,
belonging to the enumeration Lux, Phot and Foot-
candle. This strategy enables a range of errors to be
detected at compile time.

2.2. An ontological hierarchy of abstract
services

To further explain our approach, we now examine
fragments of an ontological hierarchy defining
abstract services developed in the context of building
manager applications; this hierarchy is displayed in
Figure 3. The ontological hierarchy uses abstract
service inheritance to propagate semantic properties
and interaction modes of one abstract service to all its
child nodes (i.e., classes). As a result, all abstract
services define the shutdown command and the type
property inherited from the root class (i.e., the
Service abstract service). This inheritance allows an
abstract service to abstract over the variations of its
sub-classes. A group of heterogeneous abstract
services can thus be considered as one homogeneous
entity. For instance, every abstract service extending
the Light abstract service (e.g., DimmerLight) can
be considered as a Light abstract service, hiding
their extra interaction modes. The abstraction given
by the service ontology allows developers to use

services that expose the level of abstraction that is
appropriate for their needs. This inheritance allows
abstract services to incrementally reveal new
interaction modes, as illustrated by our light sensor
example extended with the session mode (see Figure
2).

Service

Device

actuatorSensor

LightMeasurementSensor

DimmerLight

Application

Manager

LightManager

P: type

I: command {shutdown}

P: location, autonomy

I: command{DO}

LightSensor

ExtendedLightSensor

P: unit

I: command {get}

I: SessionInput{Luminosity}

P: color, power

I: command{on, off}

I: command{dim}

P: priority

I: EventInput{Luminosity}

P: Semantic properties
I: Interaction modes

I: EventOutput{Luminosity}

Figure 3: An example of ontological hierarchy

3. Application-Specific Framework

Once an application domain has been analyzed and
organized in the form of ontological descriptions of
abstract services, the application logic can be
developed. Let us now describe the application-
specific framework generated for the application
developer, from ontological descriptions.

3.1. Concrete Services

Abstract services can be seen as a specification to
which concrete services need to conform. In our
programming model, a concrete service is defined via
the ConcreteService construct. This construct
defines a concrete service that must conform to the
abstract service included in the from clause. Let us
start by examining external concrete services. To do
so, a concrete service needs to implement each
functionality of the abstract service in terms of device
driver operations, in case of a hardware entity, or in
terms of object method invocations, in case of a
software component. To illustrate this kind of
concrete services, consider the example displayed in
Figure 4. This Light wrapper service must
implement all the Light operations (e.g., the on and
off operations). Besides, the inheritance requires us
to implement the DO operation from the actuator
service class and the shutdown operation from the
service service class.

ConcreteService MyLight from Light {
 public MyLight(String uri) { (…) }
 void on() {(…)}
 void off(){(…)}
 void DO(){(…)}
 void shutdown(){(…)}
}

Figure 4: Definition of a concrete service

3.2. Service discovery

The heterogeneity and dynamicity of services in
pervasive environments must be supported by an
adapted service discovery mechanism. The goal of
our approach is to allow the application logic to be
decoupled from a concrete pervasive computing
environment. At the basis of service management is
the ontological hierarchy of services: it is used both
to register concrete services and select specific
concrete services.

3.2.1. Service registration. When a concrete service
declaration is executed, it is automatically registered
in the service hierarchy at the node corresponding to
its abstract service. Consequently, any registered
service behaves like a service of its class as well as a
service of its parent classes; as such it is also
registered as a concrete service of its parent classes.
For example, a concrete Light service is also
registered as an actuator because, as a child node of
the actuator, it supports the DO operation.

3.2.2. Browsing in the pervasive computing
environment. We propose to use the ontological
descriptions to partition the environment. To choose a
node in the hierarchy, the developer must identify an
abstract service. The higher the abstract service node
in the ontological hierarchy, the more re-targetable
the application logic will be. This strategy makes it
possible to maximize the number of services that
belongs to the target partition of the pervasive
computing environment. This situation demonstrates
the key importance of the partitioning of services
represented by the ontological hierarchy. This notion
is illustrated by the fragment of code browsing shown
in Figure 5 that selects the Light partition in Line 1.
The semantic properties of an abstract service are
used to further refine a partition of the pervasive
computing environment. Each property covers a
specific dimension. For example, once the Light
partition is chosen, it can be further refined by
selecting lights with respect to their location. Besides
exact matching, our framework provides the
developer with various other matching strategies,

including value ranges, enumeration of values and
existence of properties. Once the selection criteria
have been set, the application can invoke a
framework operation to collect the corresponding
concrete services available in the pervasive
computing environment. This collection of concrete
services is illustrated in Line 3 of Figure 5.

1. LightPart part = Light.getPartition();
2. part.location.setValue(mylocation);
3. LinkedList<Light> lights = part.getServices()

Figure 5: Browsing a Light environment partition

3.3. Service composition

The development of an application for a pervasive
computing environment critically relies on the
composition of services. We now examine how this
aspect is tightly integrated into our proposed
ontology-based approach.

3.3.1. Composition with respect to the ontology of
services. Prior to developing the logic of a new
service, the programmer, or a project architect, needs
to study how to place it into the ontological hierarchy
of services. To do so, he needs to determine whether
this new service falls into an existing category of
services defined by an abstract service. If so, the
developer leaves the hierarchy of services unchanged
and simply implements a new concrete service. The
key benefit of this strategy is service re-use.

In other cases the logic to be developed refers to a
new category of services. Typically, this situation
occurs for services that are inherent to the application
domain. For example, managing a building requires
the definition of various managers operating building
resources. To address this category of situations, we
define the LightManager abstract service, as shown
in Figure 6. Its aim is to turn on/off the lights in the
building hallways depending on the outside
luminosity. To do so it extends the Manager abstract
service and is declared as a receiver of Luminosity
event.

AbstractService LightManager extends Manager {
 EventInput {Luminosity};
}

Figure 6: The LightManager abstract service

3.3.2. Composition with respect to the service
logic. Service logic typically coordinates a number of
other services. The example in Figure 7 illustrates
service composition with the MyLightManager

concrete service. The constructor is first defined: it
implements the discovery process of the
LightSensor service and subscribes to a
Luminosity event. Conforming to the abstract
service, MyLightManager defines a receive
operation to handle Luminosity events.

ConcreteService MyLightManager from LightManager
{
 LightSensor myLightSensor;
(…)
 MyLightManager(Uri uri) {
 super(uri);
 priority.setValue(Priority.LOW);

 myLightSensor = sensorPart.getService();
 myLightSensor.subscribe(this);
 }
 void receive(LuminosityEvent e){
 (…)
 }
 (…)
}

Figure 7: The MyLightManager concrete service

3.4. Service verification

An important contribution of our approach is to
perform verifications at every stage of a service
lifecycle. To do so, verifications are performed at
both compile and run time.

When an abstract service is created, verifications
are performed on the consistency of the ontological
hierarchy of services, the type signature of the
interaction mode operations, and the constraints on
semantic properties. When a concrete service is
created, verifications are similar to the ones on
abstract services. In addition, the conformance of the
concrete service with its abstract service is checked.

Every step of the service discovery performs
verifications: the selection of the abstract service in
the service hierarchy and the refined selection using
the semantic properties. In particular, semantic
properties are strongly typed unlike other approaches
based on strings (e.g., Olympus [2]). Importantly, the
verifications of service discovery are performed at
compile time.

The interaction modes of a concrete service are
strongly typed with respect to the signatures defined
by its abstract service. This applies to command
operations, events and sessions. Like service
discovery, service invocation is verified at prior to
run time.

4. Framework Generation

Abstract services defined in the ontological
hierarchy are used to generate programming support
for managing, discovering and invoking a service.
Our current prototype uses Java as the
implementation language.

4.1. Programming support

Abstract service declarations produce abstract
classes in Java. Each semantic property is mapped
into a Java field in the abstract class. Each interaction
mode of an abstract service generates a Java
interface. These abstract classes implement methods
to support browsing in the corresponding partition of
the pervasive computing environment. Specifically, a
method is generated to select a node in the
ontological hierarchy of services. When invoked, this
method produces a partition containing the concrete
services corresponding to the selected node (see Line
1 of Figure 5). Furthermore, methods are generated to
manipulate each semantic property of the abstract
service, according to its nature (see Line 2 of Figure
5). These methods are used by the developer to refine
the set of target concrete services. Two methods are
also produced to complete the discovery process: one
to select a unique concrete service and one to get all
the concrete services. When a concrete service is
selected, it is not referenced directly. Instead, a
reference to proxy is returned. This proxy is an
implementation of the abstract Java class associated
with the selected abstract service. This strategy has
two major benefits: actual concrete services may be
spread over a distributed system; and, concrete
services can be hot swapped.

4.2. Assessment

Ontology descriptions are specified in OWL [5]
and created with Protégé [6]. The framework
generator was developed in Java and is based on the
JENA API. The prototype implementation uses the
Java Remote Method Invocation to invoke service
operations. We are conducting experimental studies
to measure how much code is generated from
ontologies in various application domains.

5. Related Work

As introduced earlier, two research projects are
most related to our work, namely, Gaia and Olympus.
Gaia is a distributed middleware infrastructure that
coordinates software entities and heterogeneous

networked devices contained in a physical space [1].
Active Spaces enable user mobility and application
portability. Olympus enhances Gaia by proposing a
high-level programming model [2]. Bodhuin et al.
use an entity description graph to abstract the
physical world [3]. This graph contains a host of
hierarchical tuples to define a device and its
functionalities. Each class of devices inherits
functionalities from its parent’s interface. These
functionalities are limited to two interaction modes:
command and event. Unlike our approach, the
session mode is not addressed. Also, entity
descriptions are not integrated in a programming
model and entity composition is not examined.
Kalyanpur et al. propose an approach to generating
Java APIs from OWL ontologies. It attempts to map
OWL ontology semantics into Java [4]. This
approach is quite appropriate for distributed
architectures (e.g., multi-agent environment) in that it
allows agents to share a common view. However, by
targeting no particular application domain, this
approach is too generic to leverage the power of
mapping ontologies to Java in the framework of
pervasive computing.

6. Conclusion

We have introduced an approach to integrating the
ontological description of a pervasive computing
environment into a programming language. Entities
in a pervasive computing environment are uniformly
captured by the notion of a service, whose creation is
supported by syntactic constructs. Abstract services
form a hierarchical ontology that represents a design
framework for developers. An abstract service
defines semantic properties that characterize
variations of concrete services. Also, it specifies the

supported interaction modes. Our proposed
interaction modes cover a wide range of situations
and, in particular, enable stream-based services to be
handled. Verifications on applications are performed
both at compile and run time. Finally, a framework is
automatically generated from an ontological
description of a pervasive computing environment,
providing the programmer with environment-specific
operations.

7. References

[1] Román, M., Hess, C., Cerqueira, R., Ranganathan, A.,
Campbell, R. H., and Nahrstedt, K. “Gaia: a middleware
platform for active spaces”. SIGMOBILE Mob. Comput.
Commun. Rev. 6, 4 (Oct. 2002), 65-67.

[2] Ranganathan, A., Chetan, S., Al-Muhtadi, J., Campbell,
R. H., and Mickunas, M. D. “Olympus: A High-Level
Programming Model for Pervasive Computing
Environments”. In Proceedings of the Third IEEE
international Conference on Pervasive Computing and
Communications (March 08 - 12, 2005). PERCOM. IEEE
Computer Society, Washington, DC, 7-16.

[3] Bodhuin, T., Canfora, G., Preziosi, R., and Tortorella,
M. 2006. “Hiding complexity and heterogeneity of the
physical world in smart living environments”. In
Proceedings of the 2006 ACM Symposium on Applied
Computing (Dijon, France, April 23 - 27, 2006). SAC '06.
ACM Press, New York, NY, 1921-1927.

[4] A.D. Kalyanpur, et al., “Automatic Mapping of OWL
Ontologies into Java”, Proc. 16th Int'l Conf. Software Eng.
and Knowledge Eng. (SEKE 2004), 2004, 98–103.

[5] M. Dean and G. Schreiber. “OWL Web Ontology
Language Reference”. W3C Recommendation, February
2004.

[6] Protégé, http://protege.stanford.edu/

