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Abstract

Normal downstream routing of a flood flow is a highly stable process for Froude numbers less than 1 and hence the results are reliable. In
contrast, reverse routing in an upstream direction, which may be required for flow control, is potentially unstable. This paper reports the
results of a study of the practical limits on channel lengths for reverse routing. Harmonic analysis is applied to the full non-linear solution of
the St. Venant equations for three different wave patterns and two different wave periods, for a particular channel with a Froude number of
0.5. Reverse routing can be done for prismatic channels longer than 100 km. For long periods (>10 hours) the shape of the upstream hydrograph
is recovered well. However, when the wave period is short (< 1hour), the high frequency components of the upstream hydrograph and, thus,
its shape, are not recovered. These limits are influenced by the channel morphology and shape of the wave. Further work is needed to

determine how these factors interact.
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Practical use of reverse routing

The topic of downstream direct routing of an upstream input
to a free surface channel is well established in both
hydrological theory and practice. Closed form solutions can
be derived for linearised versions of the basic equations
(Napiorkowski, 1992) and efficient methods have been
developed for numerical solutions of the more general non-
linear equations. The inverse problem of reverse routing
from the downstream outflow back to the upstream inflow
has not been studied to the same extent.

The reverse routing problem is a subject of both practical
and theoretical interest. One of the earliest applications was
in ‘gate-stroking’, i.e. the downstream control of the supply
of water at various points in irrigation canals (as reviewed
by Bodley and Wylie, 1978; Bautista et al., 1997; Clemmens,
1998). The corresponding problem of determining the
optimum control of an upstream reservoir to reduce
downstream flooding at critical sites has been studied to a
lesser extent. Reliable techniques would be of practical value
in dealing with the problem of urban flooding due to flash
floods, which is becoming a matter of increasing concern
and attention.

Szollosi-Nagy(1987) applied the conceptual model of a

linear discrete cascade as the basis of a reverse routing
procedure to the severe, August 1980, flood of the Fekete-
Kores River in Hungary. Nachlik and Witt (1990, 1993)
used numerical computation to study the problem of
reservoir control on the Dunajec River, a tributary of the
upper Vistula, in Poland.

The work reported in this paper extends research in the
1990s, supported by the EU project TELFLOOD
(Forecasting Floods in Urban Areas downstream of steep
catchments). In that project, the reverse routing work was a
prognostic approach to defining the limits to stability in
reverse routing (Bruen and Dooge, 1999; Dooge and Bruen,
2005)

Basic equations of open channel flow

The basic formulation of unsteady one-dimensional flow in
open channels is due to St. Venant (1871). He wrote the
continuity equation as

QA _,
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where Q(x,f) is the discharge and A(x,f) the area of flow. He
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wrote the momentum equation in terms of elevation, z, and
velocity, u, i.e.

0z 10ou
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where z(x,7) is the elevation of the water surface, u(x,?) is
the velocity of flow, A(x,?) is the cross-sectional area of flow
and P(x,) its wetted perimeter, 7,(x,) is the boundary shear,
g is the acceleration due to gravity, and y is the weight density
of water. For a prismatic channel, the momentum equation

can be written in terms of discharge, O, and cross-sectional
area 4, i.e. in the 2-dimensional state space form, as
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where, B =—— is the top-width of the water surface and z

is its elevation.

Equations (1), (2) and (3) or their equivalents are the basic
equations for both direct routing and reverse routing. For a
solution, two boundary conditions and two initial conditions
are required for the problem to be well-posed. However,
(because of the non-linear form of the momentum equation),
no analytical solution of the full St. Venant equations has
been found and either analytical solutions of simplified
versions of the equations, or numerical solutions to the
discretised equations are sought.

Numerical solutions by finite
differences

The non-linear open channel flow equations can be
discretised in a four-point Preissman scheme (Preissman,
1961) similar to that used by Szymkiewicz (1993, 1996),
Fig. 1.

jt+l

The scheme is defined by prescribing how space and time
derivatives of any quantity, say F, are to be approximated,
Eqns. (4) and (5);
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and how the value of F at the point P is be approximated,
Eqn. (6);

Fo = W[OF' ™" + (1-0)F'] + (1-w)[6FR'*

i+1

+ (1-90)F', 1©
This discretisation scheme can be applied to the continuity
and momentum equations to yield a set of finite difference
equations which, given appropriate initial and boundary
conditions, can be solved simultaneously for the unknown
variables at each time step (forward routing) or, given a
downstream hydrograph and appropriate initial and final
time conditions, can be solved for the unknown variables at
a previous space step (reverse routing) (Dooge and Bruen,
2005).

Fourier analysis

Fourier analysis is a well established method of examining
time-series, Chatfield (1975). It determines the contribution
to an individual time series of individual sinusoidal
components of different frequencies. It considers that a time
series can be represented as a sum of such sinusoidal
components, Eqn. (7),

1-0

time 0

-y v i+1

distance

Fig. 1. Four-point discretisation scheme
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n/2-1

x(k) = a, + > [a,cos(27ik/n) + b,sin(2zk/n] +
~ a_,,cos(zk) (7)

The coefficients a, and b/. can be estimated as follows:

2 .
a, = = [Z X, cos(2xk / n)] (8)

and

9
bj=%[2xksin(2ﬂjk/n)] ©)

The periodogram (Chatfield, 1975) is proportional to rjz,
where

r?2=a? + b?
] ] J

(10)
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and is used as a quantitative indication of the contribution
of a particular frequency to the time series.

Input series used

Three different input series were tested for this paper. (i) a
single wave of sinusoidal shape, starting from a base flow
of 500 m*s™', rising to a peak of 4500 m*s™ and falling
back to the 500 m?s™ base. The period of the sinusoidal
shape is 1 hour. (ii) a train of ten such sinusoidal waves and
(iii) a step function, stepping from 500 m*s™' up to 4500
m’s'and dropping back after 1 hour. This is physically
unrealistic, but is instructive to see the effects of the
discontinuities on the reverse routing. The input shapes are
shown in Fig. 2 and the corresponding periodograms are in
Fig. 3.
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(ii) train of 10 sinusoidal waves
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Fig. 2. Inflow hydrographs used

1000.0000

100.0000 4

10.0000

1.0000

Contribution of Wave to input hydrograph

0.0100 [T

0.0010

0.1000 . ! ey

-1 cycle
—e—10 cycles
— 1 step

0.10

10.00

Wave Period (hours)

Fig 3. Fourier analysis of input hydrographs from waves of period 6 minutes to 10 hours
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Methodology

In this study, the stability of reverse routing has been
investigated using a Fourier Analysis. Upstream inflow
floods are generated and routed through a long prismatic
channel to give a downstream outflow hydrograph. Then,
using only this hydrograph and the knowledge that the initial
conditions were a steady base flow throughout the river,
the outflow hydrograph is reverse routed in an attempt to
recover the original upstream inflow. The periodogram of
all the time-series involved is calculated and the attenuation
of particular frequencies in the downstream routing and their
magnification in reverse routing is estimated.

The numerical calculations were made for a 100 km reach
of a 100 m wide rectangular channel using Manning’s
friction law with » = 0.025. The upstream boundary
condition was a specified flow hydrograph. Three patterns
of flood waves were used, but all rose from a base flow of
500 m*s'to a maximum of 4500 m*s™' and fell back to the
500 m*s™! base. The first shape was a single sinusoid of a
specified period, the second a train of ten such sinusoids
and the third was a single step of specified duration. This
last involves an instantaneous rise and subsequent fall in
discharge and is unrealistic in practice but represents a very
extreme case. It is included in the test because it contains
high frequency Fourier components. Two different periods
(or duration of the step) were used, 1 hour and 10 hours.
The former represents an extreme case of a short duration
flash flood and the latter period is more usual. A longitudinal
channel slope of 0.000971 was used, which gives a Froude
number of 0.5 at the mean flow of 2500 m’s™!, mid-way
between the base flow and the peak. The tests were
performed with a channel length of 100 km as previous work

3000

had shown that reverse routing over this distance was
possible (Dooge and Bruen, 1995). The downstream
boundary condition was a uniform flow condition. To avoid
possible complications with this condition, it was imposed
200 km downstream of the inflow. In effect, a 200 km reach
of channel was simulated and the outflow was taken from
the middle as the outflow from a 100 km reach of channel.

Results

INFLLOW HYDROGRAPHS

The three inflow shapes used (single sinusoid, train of 10
sinusoids and step of lhour period) are shown in Fig. 2.
The contribution to each of these shapes from sinusoids of
different wave periods (Fig. 3) are plotted in terms of period
(rather than frequency) as it is easier to relate to waves in
channels. The train of sinusoids has a local peak contribution
at a period of lhour, as might be expected; however, it has
side-lobes over the entire spectrum, due to the finite duration
of the train and the constant pre- and post-train flows. The
single cycle has a more uniform contribution from the longer
periods and fewer side-lobes. The square pulse has
substantially more contribution from the shorter periods
(higher frequencies) as might be expected from its
unrealistically sharp transitions.

DOWNSTREAM HYDROGRAPHS

The downstream hydrographs produced by the numerical
routing, using the full non-linear equations, are shown in
Fig. 4 for the 1hour period inflow shapes. Note that, of the
single wave shapes, the peak of the square pulse is

2500
d/s: step function

2000 - /

1500
d/s: single
4 sinusoid

Discharge (cumecs)

1000

d/s : train of 10 sinusoids

AN

\

0 500 1000

1500 2000 2500
Time (minutes)

Fig. 4. Downstream hydrographs (100 km downstream of inflow)
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considerably higher than that of the single sinusoid, although
both inputs had the same peak, and its flat peak has been
rounded. The individual waves of the 10-wave train have
been effectively combined and the outflow is now essentially
a single, flat-topped, wave. The information about the
individual components of the train has been lost. A Fourier
analysis of these wave shapes shows that the high frequency
components of the inflow hydrograph have been strongly
attenuated (Fig. 5). Dividing the periodogram of the

Harmonic analysis of the stability of reverse routing in channels

downstream hydrographs by that of the upstream inflows
gives a measure of the attenuation in the forward routing
(Fig. 6). The curves are complex because they contain
spurious short spikes at frequencies which are not well
represented in the inflow, but all three show a strong drop
in the contribution in the downstream hydrograph as the
wave period drops from 10 hours to 1 hour.

100.000

10.000 -

1.000 -

Periodogram

0.100

—1 sinusoid

—6—10 sinusoids

1.0 10.0

Wave Period (hours)

Fig. 5. Fourier analysis of downstream hydrographs
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Fig. 6. Attenuation of waves in forward routing
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Reverse routing

In linear situations, reverse routing would magnify the higher
frequencies and the inverse of Fig. 6 would apply. However,
the linear analysis does not apply to the full non-linear
equations, so the reverse routing is investigated by numerical
experimentation. The main parameters which can be
adjusted for reverse routing are $ and ¥, which specify the

discretisation point within the four-point grid in time and
space respectively. Tables 1 to 3 show the results of
attempting to reverse route the three outflows of Fig. 4 back
up the 100 km channel. The bold entries indicate where the
routing was a success and the number is the peak discharge
of the resulting upstream hydrograph (the actual inflow
hydrographs all had peaks of 4500 cumecs). The rest of the
entries indicate that the routing was not successful and the

Table 1. Results of Nonlinear Reverse Routing of the single sinusoid wave of period 1 hour

0.9 1 1 3 4
0.8 1 2 3 5
0.7 1 3 4 6
0.6 2 4 6 9
4 05 4 5 8 16
0.4 3 5 8 15
0.3 2 5 7 12
0.2 1 4 6 10
0.1 1 3 5 8
0.1 0.2 0.3 0.4

6 10 28 74 100
8 15 52 84 1480
12 33 72 97 1458
21 44 80 1496 1439
31 61 90 1469 1418
39 73 100 1451 1399
30 85 1484 1427 1381
21 95 1461 1408 1360
15 1500 1440 1390 1342

0.5 0.6 0.7 0.8 0.9
¥

Table 2. Results of Nonlinear Reverse Routing of the 10 sinusoids wave of period 1 hour

0.9 1 1 1 4
0.8 1 1 3 5
0.7 1 3 5 8
0.6 3 5 7 11
g 05 4 6 9 17
0.4 4 6 9 17
0.3 1 5 8 13
0.2 1 4 7 10
0.1 1 1 5 8
0.1 0.2 0.3 0.4

6 9 19 85 2612
8 14 51 99 2583
12 28 68 2613 2561
23 43 94 2584 2545
29 52 2614 2562 2533
36 67 2585 2546 2524
32 83 2563 2534 2518
20 98 2547 2525 2513
14 38 2535 2518 2509

0.5 0.6 0.7 0.8 0.9
¥

Table 3. Results of Nonlinear Reverse Routing of the single step wave of duration 1 hour

0.9 1 1 2 4
0.8 1 1 3 4
0.7 1 3 4 6
0.6 2 4 5 9
4 05 3 5 8 16
0.4 3 5 8 15
0.3 2 5 7 11
0.2 1 4 6 9
0.1 1 1 5 7
0.1 0.2 0.3 0.4

5 9 18 61 89
7 13 45 78 96
10 25 69 90 98
19 40 79 95 100
29 52 88 97 2487
35 73 94 99 2435
26 82 97 2486 2389
17 92 99 2436 2342
12 38 100 2390 2299

0.5 0.6 0.7 0.8 0.9
¥
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number indicates the distance in km, measured from the
downstream end, of the location of failure. Thus, for the
single sinusoidal wave and @= 0.5 and #=0.5, the routing
failed at 31 km from the downstream end. Failure is deemed
to occur if the values of depth or discharge become negative.
The calculated wave shape may become quite unrealistic
and unusable even before this type of failure occurs.
Although there are differences between the different inputs,

Harmonic analysis of the stability of reverse routing in channels

all show success for lower values of @and higher values of
Y. In all cases, the reverse routed hydrograph has a smaller
peak discharge than the original inflow.

Tables 4 to 6 show the corresponding results for inflow
wave periods of 10 hours. Figure 7 superimposes the reverse
routing result on the original inflow hydrograph for the case
of'the single sinusoid with a 10-hour period. There is a good
match of timing and only a slight reduction in recovered

Table 4. Results of Non-linear Reverse Routing of the single sinusoid wave of period 10 hours

0.9 1 1 1 2
0.8 1 1 2 4
0.7 1 2 4 6
0.6 2 4 6 10
g 05 4 6 9 17
0.4 4 6 9 17
0.3 1 5 8 12
0.2 1 2 6 9
0.1 1 1 4 7
0.1 0.2 0.3 0.4

5 8 13 30 4377

7 12 28 4385 4370
10 22 73 4378 4363
21 45 4387 4372 4356
30 56 4380 4365 4350
39 73 4373 4358 4343
28 95 4367 4351 4336
16 46 4360 4344 4329
11 22 4353 4338 4322

0.5 0.6 0.7 0.8 0.9
¥

Table 5. Results of Non-linear Reverse Routing of the 10 sinusoids wave of period 10 hours

0.9 1 1 1 2
0.8 1 1 2 4
0.7 1 2 4 6
0.6 2 4 6 10
g 05 4 6 9 18
0.4 4 6 9 17
0.3 1 5 8 12
0.2 1 2 6 9
0.1 1 1 4 7
0.1 0.2 0.3 0.4

5 7 13 29 4379

6 11 28 97 4370
10 22 71 4379 4363
20 42 94 4372 4356
29 54 4380 4365 4350
37 69 4373 4358 4343
27 94 4367 4351 4336
16 47 4360 4344 4329
12 23 4353 4338 4322

0.5 0.6 0.7 0.8 0.9
¥

Table 6. Results of Non-linear Reverse Routing of the single step wave of duration 10 hours

0.9 1 1 1 1
0.8 1 1 1 4
0.7 1 1 4 5
0.6 1 3 5 7
g 05 3 4 7 13
0.4 3 5 7 12
0.3 1 4 6 9
0.2 1 2 5 7
0.1 1 1 3 6
0.1 0.2 0.3 0.4

4 6 9 18 85
5 9 17 75 4772
8 16 67 4856 4667
15 42 89 4736 4630
30 55 4830 4679 4601
34 70 4743 4642 4575
18 89 4690 4611 4553
12 30 4653 4586 4534
9 16 84 4563 4517

0.5 0.6 0.7 0.8 0.9
¥
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Fig. 7. Reverse routing of a single cycle of period 10 hours

peak. Some oscillations have begun to build up at the tail of
the recession. However, for the flash flood, with a period of
Lhour (Figs. 9 and 10), the high-frequency detail has been
substantially attenuated and is not recovered in the reverse
routing. The reverse routed hydrographs are smoother and
broader than the original inflows. The peak of the reverse
routed hydrograph is one-third of the original inflow peak.
Similar results are obtained for the step functions (Fig. 11).

Figure 9 shows the periodogram for the upstream inflow,
downstream outflow and best reverse routed inflow for the
case of the single sinusoid of period (T) 1 hour. While the

6000

upstream inflow does contain contributions from all periods
from 0.1 to 10 hours, there is a marked reduction in
amplitude with reduction in period (higher frequency). The
forward routing reduces the higher frequencies even more,
giving a downstream outflow with little information, only
noise, for periods below 20 minutes. The reverse routing
fails to recover the shape of the original upstream inflow
periodgram and actually contains more short period (high
frequency) components than the original. This demonstrates
the growth of high frequency noise in the reverse routing
process.
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Fig. 8. Reverse routing of a step of duration 10 hours
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Fig. 9. Build-up of high frequencies in reverse routing (for single sinusoid case with reriod T = 1 hour)
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Fig. 11. Reverse routing of a step of duration 1 hour
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Conclusions

The properties of a numerical procedure for reverse routing
have been investigated. Despite the problem being
mathematically ill-posed , reverse routing is shown to be
possible for long channel lengths (> 100 km) in prismatic
channels. It can give reasonably accurate results for long
period waves, for which the general shape and peak flow
are well recovered.

However, for short period waves (flash floods, in this case
of period 1 hour), the reverse routing generates high
frequency noise which ultimately limits the upstream reverse
routing distance which can be achieved. The noise build-up
appears to begin at the end of recessions and at
discontinuities (e.g. in the case of the step) in the hydrograph.
In addition, the reverse routing is unable to recover the high
frequency components of the upstream inflow which have
been attenuated strongly by the forward routing. The
calculated reverse routed hydrographs are then very different
from the original upstream inflows.

These results are influenced by the channel morphology
and shape of the wave. Further work is needed to determine
how these factors interact.
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