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Introduction
Practising hydrologists and researchers have always been
faced with the frustrating experience of the lack of suitable
tools for the direct measurement of areal precipitation – the
essential driving input of all processes involved in the
ground phase of the water cycle. Indeed, while the rainfall
process is known to exhibit a high degree of variability both
in space and time, reliable direct rainfall measurements can
be obtained only at the very limited spatial scale where rain
catching is practically possible (often referred to in
hydrology as the point scale).

Based on the assumption that rain gauge measurements
can reliably account for the “true point rainfall” after
accounting for a number of possible errors (see e.g. Sevruk,
1982; WMO, 1994; Humphrey et al., 1997 and La Barbera
et al., 2001 for hints on the error sources), areal rainfall
estimates have been obtained traditionally through some
suitable interpolation method and aggregation technique.
These are based on the hypothesis that rainfall estimates at
ungauged sites can be obtained as linear or non-linear
combinations of the values measured at a number of
instrumented locations using the appropriate weights. Most
of such approaches can be traced back from the subjective
isohyets methods (Linsley et al., 1949), to the more objective
geometrical interpolators based on Thiessen polygons
(Linsley et al., 1949, WMO, 1986), to the mathematical
surface interpolators based on splines (Matheron, 1981), to
the paradigms of geostatistics – the new branch of statistical
theory introduced by Matheron (1971) in the field of mining
engineering.

On the other hand, indirect estimates of areal rainfall based
on the measurement of related ancillary variables have been
provided since the late ’60s by ground-based meteorological
RADARs and remote sensing devices borne on satellite
platforms, such as RADARs and other sensors, with varied
associated degrees of reliability. All such indirect methods,

whose significance and reliability for hydrological purposes
are still to be determined, are often assumed to provide an
indication of the coarse scale pattern of the rain field useful
in many applications.  Nevertheless, indirect methods  must
first be calibrated and validated using historical data and
then, in operation, adjusted continuously against direct
ground measurements (e.g. rain gauges).

Finally, physically-based numerical models of the
atmosphere — though relying on various theoretical
approximations — provide predictions of temporal
accumulation values for areal rainfall over wide spatial
scales. The output of such models has little to do with actual
precipitation measurements; they rather project in the future
the data assimilation analysis of the present status of the
atmosphere, which allows rainfall forecasting with a lead
time of up to a few days. The accuracy of the predicted
values depends both on the quality of the model and on the
lead time length, due to possible divergence owing to the
chaotic nature of the atmosphere.

Depending on the available measurement and modelling
approaches and the nature of application, hydrologists tend
to replace the unavailable areal rainfall observations, at the
required space-time scales, with suitable surrogates based
on interpolation or downscaling techniques. In general,
interpolation is applied when ground-based rain gauge and/
or radar networks are available, while downscaling is applied
when using indirect measurements from other remote
sensing devices, or predicted values from atmospheric
models, all of which are usually available at much coarser
scales than those required in most hydrological applications.
However, a sharp distinction cannot be made since
interpolation and downscaling can both be incorporated in
one single approach, e.g. in order to exploit jointly the
information content of both remotely sensed and rain gauge
data (Fiorucci et al., 2001; Todini, 2001).

Interpolation and downscaling approaches have been
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categorised in many ways depending on the author’s
background and the specific field of application (see e.g.
Wilby and Wigley, 1997; Xu, 1998; Kang and Ramírez,
2001). In the present context, the underlying assumed
categories relate to stochastic (and statistical) and physically
based schemes. The papers included in this volume pertain
mostly to the first category, which is traditionally the most
familiar within the community of hydrologists.

The physically-based approach (also referred to as
dynamical downscaling) involves atmospheric models at the
local scale that are driven by boundary conditions derived
from the output of larger-scale global circulation models.
All these models are widely investigated within the
meteorological community and the reader is referred to the
related literature for further details.

Stochastic interpolation techniques
Stochastic interpolation attempts to obtain unbiased,
minimum variance estimates of precipitation at points where
measurements are not available, as a function of
measurements available at a number of gauged sites.
Stochastic interpolation has also become an important tool
for the estimation of areal rainfall, due to the linearity of
the process of aggregation from point rainfall rates to areal
volumes.

The early work on stochastic interpolation is due to Gandin
(1970), who developed the “objective analysis” of
meteorological fields. Objective analysis defines an
unbiased, minimum variance estimator, based on the
assumption that the covariance structure of the variable to
be interpolated is known. The major advantage of the new
approach is the possibility of quantifying the uncertainty in
the resulting precipitation surface or precipitation volume
as a function of the number and position of gauges and of
the assumed spatial covariance structure. The method of
Gandin has been used extensively in meteorology for data
assimilation, while receiving scant attention in hydrological
applications, more traditionally based on the isohyets or the
Thiessen polygons methods.

In the early seventies, Matheron (1971) formalised in more
appropriate mathematical terms the early work that Krige,
a South African engineer, had introduced in the field of
mining engineering. These works led to the development
of Kriging, the optimal linear interpolation technique derived
by Krige, and of the field of geostatistics, a new branch of
statistical theory. Describing geostatistics falls beyond the
scope of this introductory paper; however, a few comments
are necessary to clarify the possible uses of Kriging for the
interpolation of rainfall fields.

Similar to Gandin’s objective analysis, Kriging is a linear

interpolator characterised by the property of being unbiased
and of minimum variance. Unfortunately, this is true
conditionally upon the a priori knowledge of the spatial
covariance (in the case of stationary random functions) or
upon the knowledge of a special function, the variogram
(in the case of non-stationary fields). Originally, this property
was taken for granted and no investigation was made of the
effect of the uncertainty induced by the estimation of such
functions. Later, Kitanidis (1986) introduced a Bayesian
approach to Kriging, more specifically to a special
formulation of Kriging based upon the generalised
covariance functions (Kitanidis, 1983), and appropriately
discussed the problem of uncertainty induced by parameter
estimation. Additional Bayesian approaches have been
developed, among others, by Omre and Halvorsen (1989),
Le and Zidek (1992) and Woodbury and Ulrych (2000).
Bayesian approaches have the advantage of assessing and
reducing the effects of uncertainty on model parameters,
although at the expense of extensive numerical integration,
generally based upon Monte Carlo or Markov chain, Monte
Carlo techniques.

As an alternative to full Bayesian approaches, in view of
these difficulties, a new technique is presented by Todini
(2001) and demonstrated for the interpolation of the rainfall
field in a region (Todini et al., 2001).

Unfortunately, although Kriging is a powerful and
effective tool, it does not address all the rainfall interpolation
problems. As a matter of fact, observed rainfall generally
shows strong anisotropy in space and, in particular, along
the third co-ordinate, the elevation above sea level, where
the behaviour is non-linear. In addition, the typical vertical
scale (hundreds or thousands of metres) hardly compares
with the tens or hundreds of kilometres of the horizontal
scale. Improvements in the interpolation of rainfall will
probably stem from the use of space-time scale-dependent
non-linear techniques similar to the ones used in
downscaling.

Stochastic models for rainfall
downscaling
Stochastic downscaling aims at the reconstruction of
(possible scenarios of) the small scale structure of rainfall
in either the spatial or temporal domain (or both) by
assuming rainfall can be suitably interpreted as a random
process with specified conditions applied to some statistics
that are relevant to the application of concern.
Reconstruction of rainfall scenarios is therefore based on
appropriate constraints. The trivial (and traditional)
condition imposed on the downscaling process is that the
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accumulated values at some larger scale are preserved. In
the paper by Fiorucci et al. (2001) a new approach is
proposed where the above condition is relaxed, assuming
that even the large scale values (when obtained as rainfall
estimates, e.g. from remote sensing) can be interpreted as
expected values with an associated probability distribution.

`The usual objective of stochastic downscaling is however
to preserve pre-specified conditions imposed on statistical
parameters related to first and second order moments of the
random process, including correlation. More sophisticated
models aim at preserving additional characteristics of the
rain process that are relevant to hydrological applications,
such as the scaling of moments and/or intermittency,
clustering, fractional coverage, etc.

Cascade-based models, such as the one proposed by
Güntner et al. (2001) for temporal downscaling of daily to
hourly rainfall, became quite popular in recent times and
derive from the very immediate operation of disaggregating
a single large scale value into a series of lower scale
contributions by partitioning and weighting the original
figure while preserving the desired characteristics of the
process. The main feature reproduced here is the empirically
observed scaling behaviour of rainfall in both space and
time. The cascade process essentially “repeatedly divides
the available space (of any dimension) into smaller regions,
in each step re-distributing some associated quantity
according to rules specified by the so-called cascade
generator” (Güntner et al., 2001). The dependence of the
model’s parameters and the generator itself on various
possible characteristics of the rainfall climate at the site of
concern allows linkage with appropriate climatological
features, which ensure the desired statistics are preserved
and reproduced. The scale-invariant assumptions of these
models are fulfilled in many climates and different model
parameters allow reflecting the dominance of e.g. convective
and/or advective processes in various cases.

A wide range general assessment of the relative merits
and performances of cascade-based rainfall downscaling
models in different geographical regions and with various
governing rainfall processes is clearly required, and the
paper by Güntner et al. (2001) is a valuable step forward in
this direction. Because cascade-based models (and scaling
models in general) have been supported by the need to model
extreme rainfall values better, the discussion presented by
the authors in their conclusions about the overestimation of
extreme rainfall for frontal-dominated temperate regions
deserves some attention and highlights the need for
additional case studies, possibly in the space-time domain
as well.

Other stochastic models for rainfall downscaling rely on
various approaches based on rain field reconstruction

techniques that involve direct generation of random fields
with specified characteristics. Since fractional coverage of
real rain fields is a relevant feature with practical
implications in many hydrological studies, models have been
proposed that address the two processes of rain/no-rain
definition separately and that of rainfall intensity within the
rainy areas.

Mackay et al. (2001) present a location-based approach
that allows for the generation of an ensemble of
disaggregated fields at each time-step for a time-series of
coarse scale rainfall. The method considers the generation
of the wet areas and the simulation of rainfall intensities
separately. For the first task, a nearest-neighbour Markov
scheme based upon a Bayesian technique used in image
processing is implemented so as to preserve the structural
features of the observed rainfall. The second task is dealt
with by seeking to reproduce the morphological
characteristics of the field of rainfall intensities through a
random sampling of intensities according to a Beta
distribution and their allocation to pixels chosen so that the
higher intensities are more likely to be further from the dry
areas. Notwithstanding some calibration and parameter
assessment issues, this family of methods seems to be quite
promising for practical applications.

With the increasing availability of operational, remotely-
sensed estimates of space–time rainfall over wide areas, such
as from RADAR and/or satellite sensors, downscaling
methods that are able to include such information as a
dominant constraint are becoming important for
hydrological applications. Pegram and Clothier (2001)
propose the String of Beads model as a space-time model
of rain fields that are measured by weather RADAR. The
model is driven by two auto-regressive time series models,
the first one at the image scale and the other at the pixel
scale, so as to give it a causal nature.

The problem of conditioning to a set of point
measurements, such as rain-gauge measurements, or a
random field of rainfall obtained on a lattice from
meteorological RADAR or satellite image, is addressed by
Fiorucci et al. (2001) and Todini (2001) using similar
methods. These methods are based on the assumption that
remotely sensed estimates of instantaneous rain fields can
be viewed as probabilistic indicators of the actual rain rates
and used to infer at least one parameter of the probability
density function for rain intensity at each pixel site. This
represents the underlying assumption of the geostatistical
methodology proposed by Fiorucci et al. (2001), aimed at
suitable integration of rainfall estimates from remote sensing
with the observed figures from a number of rain gauges at
the ground. Downscaling is performed by assuming the a
posteriori estimates of the rain values at each grid cell as
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the a priori large scale conditioning values for reconstruction
of the rain field at finer scale. In the paper by Todini (this
issue) the point rain-gauge measurements are first extended
to the pixel scale by means of Block Kriging, and
successively combined with the RADAR rainfall estimates
by means of a Bayesian approach, in order to provide
unbiased and minimum variance a posteriori estimates.

Statistical downscaling methods are based on quite a
different approach with respect to those mentioned above.
In this case, with reference to the output of atmospheric
circulation models at the synoptic or mesoscale, temporal
and spatial scale details of the variables of interest at sub-
grid scales — including rainfall — are derived using
statistical climate inversion techniques based on regression
methods (linear or non-linear). The underlying hypothesis
is that meaningful statistical relationships between
atmospheric state and space-time rainfall can be established
at the desired scales. One of the main limitations of statistical
methods is that their applicability is strictly limited to the
scales at which regression relationships are obtained and to
the climatic region where the regression data have been
recorded. A series of case studies is therefore included in
this volume with the aim of providing the reader with a
view of possible approaches used in different contexts.

In the paper by Bertacchi Uvo et al. (2001) linear
regression models based on singular value decomposition
are presented with the aim of statistically downscaling
atmospheric variables to estimate average rainfall on a
12-hour basis. High correlations between observed and
estimated precipitation are obtained in the case study
analysed by considering precipitable water and wind speeds
at 850 hPa.

The variance of actual rain fields is seldom captured fully
by statistical downscaling models and the small scale rainfall
obtained fails to reproduce low frequency values. Despite
the many explanations provided and the related solutions
proposed, probably enhanced capabilities will be obtained
only at the cost of developing much more complex methods,
which frustrates the original valuable simplicity of the
method. To mediate between the two requirements above,
covariances between summer rainfall and the eigenvectors
(EOFs) of summer North Atlantic sea surface temperature
(SST) anomalies are used by Wilby (2001) so as to evaluate
the skill of summer rainfall forecasts produced by statistical
downscaling models that use EOFs of the preceding winter
SSTs.

Empirical Orthogonal Functions (EOFs) is the method
employed by Rodriguez-Puebla et al. (2001) to describe the
variance distribution and to summarise precipitation data
over the Iberian Peninsula into a few modes. The time series
associated with these modes are then analysed with large

scale circulation indices and tropical sea surface temperature
anomalies by using lag cross-correlation and cross-spectrum.

Conclusions
This volume collects together a series of papers on rainfall
interpolation and downscaling techniques that has the
objective of providing an overview of recent developments
in the field. One of the expectations of the guest editors at
the beginning of this effort was that of highlighting some
current issues and possible hints for future improvements
of the available models as well as for better understanding
of the rainfall process. Therefore, the objective of this
introductory paper is to provide the reader with a logical
thread connecting all the papers included in this volume
and the editors’ interpretation of and a few considerations
on the main issues treated.

A common problem of all interpolation and downscaling
methods remains model validation. Despite the many case
studies presented, direct validation of downscaling models
is strictly impossible (except for methods focused only on
the rainfall process in time) due to the lack of reliable
measurements of areal rainfall and the related patterns in
both space and time. Indirect validation is therefore widely
resorted to and hydrological rainfall-runoff models are
sometimes used to transform the variability of rainfall in
space and time into simulated flow discharges in river
courses, the latter being suitably measured by means of any
flow gauge. Obviously, this introduces additional
uncertainties related to the many processes involved in the
rainfall-runoff transformation and the modelling scheme
used, and makes the validation of downscaling models only
affordable in an indirect and therefore scarcely reliable way.
To overcome this difficulty, standard synthetic tests based
on Monte Carlo approaches should be set up and, most
important, agreed upon by the hydrological and
meteorological communities, to test objectively the different
approaches in terms of expectation and reduction in
uncertainty (Todini, 2001). Nonetheless, the investigation
of detailed case studies is of great relevance and must be
encouraged. In particular, case studies involving more than
one method for rainfall downscaling are necessary and
detailed inter-comparisons required. Experiments should be
organised and the performances of the various
methodologies available be compared against both the
synthetic and the indirect validation technique. For practical
applications, indeed, it would be useful to compare the
computational burden and complexity of the best performing
methods against their capabilities in reproducing the relevant
features of interest related to the space-time variability of
rainfall.
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