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Reflection principle and Ocone martingales.

July 24, 2008

L. Chaumont1and L. Vostrikova2

Abstract

Let M = (Mt)t≥0 be any continuous real-valued stochastic process. We prove
that if there exists a sequence (an)n≥1 of real numbers which converges to 0 and
such that M satisfies the reflection property at all levels an and 2an with n ≥ 1,
then M is an Ocone local martingale with respect to its natural filtration. We
state the subsequent open question: is this result still true when the property
only holds at levels an ? Then we prove that the later question is equivalent
to the fact that for Brownian motion, the σ-field of the invariant events by all
reflections at levels an, n ≥ 1 is trivial. We establish similar results for skip free
Z-valued processes and use them for the proof in continuous time, via a discreti-
sation in space.

Key words and phrases: Ocone martingale, skip free process, reflection prin-
ciple, quadratic variation, Dambis-Dubins-Schwarz Brownian motion.

MSC 2000 subject classifications: 60G44, 60G42, 60J65.

1 Introduction and main results

Local martingales whose law is invariant under any integral transformations preserving
their quadratic variation were first introduced and characterized by Ocone [2]. Namely
a continuous real-valued local martingale M = (Mt)t≥0 with natural filtration F =
(Ft)t≥0 is called Ocone if

(
∫ t

0

HsdMs

)

t≥0

L
= M , (1.1)

for all processes H belonging to the set

H = {H = (Ht)t≥0 |H is F-predictable, |Ht| = 1, for all t ≥ 0}.
1,2 LAREMA, Département de Mathématiques, Université d’Angers, 2, Bd Lavoisier - 49045,

Angers Cedex 01.
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In the primary paper [2], the author proved that a local martingale is Ocone when-
ever it satisfies (1.1) for all processes H belonging to the smaller class of deterministic
processes:

H1 = {
(

1I[0,u](t) − 1I]u,+∞[(t)
)

t≥0
, with u ≥ 0} . (1.2)

A natural question for which we sketch out an answer in this paper is to describe mini-
mal sub-classes of H characterizing Ocone local martingales through relation (1.1). For
instance, it is readily seen that the subset {

(

1I[0,u](t) − 1I]u,+∞[(t)
)

t≥0
, with u ∈ E} of

H1 characterizes Ocone martingales if and only if E is dense in [0,∞). Let us denote by
〈M〉 the quadratic variation of M . In [2] it was shown that for continuous local martin-
gales, (1.1) is equivalent to the fact that conditionally to the σ-algebra σ{〈M〉s, s ≥ 0},
M is a gaussian process with independent increments. Hence a continuous Ocone lo-

cal martingale is a Brownian motion time changed by any independent nondecreasing

continuous process. This is actually the definition we will refer to all along this paper.
When the continuous local martingale M is divergent, i.e. P-a.s.

lim
t→∞

〈M〉t = +∞ ,

we denote by τ the right continuous inverse of 〈M〉, i.e. for t ≥ 0,

τt = inf{s ≥ 0 : 〈M〉s > t} ,

and we recall that the Dambis-Dubins-Schwarz Brownian motion associated to M is
the (Fτt

)-Brownian motion defined by

BM (def)
= (Mτt

)t≥0.

Then Dubins, Emery and Yor [3] refined Ocone’s characterization by proving that (1.1)
is equivalent to each of the following three properties:

(i) The processes 〈M〉 and BM are independent.

(ii) For every F-predictable process H , measurable for the product σ-field B(R+) ⊗
σ(〈M〉) and such that

∫∞

0
H2

s d〈M〉s < ∞, P-a.s.,

E

(

exp

(

i

∫ ∞

0

Hs dMs

)

| 〈M〉

)

= exp

(

−
1

2

∫ ∞

0

H2
s d〈M〉s

)

.

(iii) For every deterministic function h of the form
∑n

j=1 λj1I[0,aj ],

E

[

exp

(

i

∫ ∞

0

h(s) dMs

)]

= E

[

exp

(

−
1

2

∫ ∞

0

h2(s) d〈M〉s

)]

.

It can be easily shown that the equivalence between (1.1) and (i), (ii), (iii) also holds
in the case when M is not necessarily divergent. This fact will be used in the proof
of Theorem 1. We also refer to [8] for further results related to Girsanov theorem and
different classes of martingales.
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In [3], the authors conjectured that the class H1 can be reduced to a single process,
namely that (1.1) is equivalent to:

(
∫ t

0

sign(Ms) dMs

)

t≥0

L
= M . (1.3)

In fact, (1.3) holds if and only if BM and 〈M〉 are conditionally independent given the
σ-field of invariant sets by the Lévy transform of BM , i.e. BM 7→

(∫ ·

0
sign(BM

s ) dBM
s

)

,
see [3]. Hence if the Lévy transform of Brownian motion is ergodic, then BM and 〈M〉
are independent and (1.3) implies that M is an Ocone local martingale. The converse
is also proved in [3], that is if (1.3) implies that M is an Ocone local martingale, then
the Lévy transform of Brownian motion is ergodic.

Different other approaches have been proposed to prove ergodicity of the Lévy
transform but this problem is still open. Among the most accomplished works in this
direction, we may cite papers by Malric [6], [7] who studied the density of zeros of iter-
ated Lévy transform. Let us also mention that in discrete time case this problem has
been treated in [4] where the authors proved that an equivalent of the Lévy transform
for symmetric Bernoulli random walk is ergodic.

In this paper we exhibit a new sub-class of H1 characterizing continuous Ocone
local martingales which is related to first passage times and the reflection property
of stochastic processes. If M is the standard Brownian motion and Ta(M) the first
passage time at level a, i.e.

Ta(M) = inf{t ≥ 0 : Mt = a}, (1.4)

where here and in all the remainder of this article, we make the convention that
inf{∅} = +∞, then for all a ∈ R:

(Mt)t≥0
L
= (Mt1I{t≤Ta(M)} + (2a − Mt)1I{t>Ta(M)})t≥0.

It is readily checked that this identity in law actually holds for any continuous Ocone
local martingale. This property is known as the reflection principle at level a and was
first observed for symmetric Bernoulli random walks by André [1]. We will use this
terminology for any continuous stochastic process M and when no confusion is possible,
we will denote by Ta = Ta(M) the first passage time at level a by M defined as above.

Let (Ω,F , F, P) be the canonical space of continuous functions endowed with its
natural right-continuous filtration F = (Ft)t≥0 completed by negligible sets of F =
∨

t≥0 Ft. The family of transformations Θa, a ≥ 0, is defined for all continuous functions
ω ∈ Ω by

Θa(ω) = (ωt1I{t≤Ta} + (2a − ωt)1I{t>Ta})t≥0 . (1.5)

Note that Θa(ω) = ω on the set {ω : Ta(ω) = ∞}. When M is a local martingale,
Θa(M) can by expressed in terms of a stochastic integral, i.e.

Θa(M) =

(
∫ t

0

(

1I[0,Ta](s) − 1I]Ta,+∞[(s)
)

dMs

)

t≥0

.
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The set H2 = {
(

1I[0,Ta](t) − 1I]Ta,+∞[(t)
)

t≥0
| a ≥ 0} is a subclass of H which provides

a family of transformations preserving the quadratic variation of M and we will prove
that it characterizes Ocone local martingales. But the fact that the transformations
ω 7→ Θa(ω) are defined for all continuous functions ω ∈ Ω allows us to characterize
Ocone local martingales in the whole set of continuous stochastic processes as shows
our main result.

Theorem 1. Let M = (Mt)t≥0 be a continuous stochastic process defined on the canon-

ical probability space, such that M0 = 0. If there exists a sequence (an)n≥1 of positive

real numbers such that limn→∞ an = 0 and for all n ≥ 0:

Θan(M)
L
= Θ2an(M)

L
= M , (1.6)

then M is an Ocone local martingale with respect to its natural filtration. Moreover, if

Ta1 < ∞ a.s., then M is a divergent local martingale.

Remark 1. It is natural to wonder about the necessity of the hypothesis Θ2an(M)
L
= M

in Theorem 1. The discrete time counterpart of this problem which is presented in

section 2, shows that it is necessary for a skip free process M to satisfy Θa(M)
L
= M ,

for a = 0, 1 and 2 in order to be a skip free Ocone local martingale, i.e. the reflection

property at a = 0 and 1 is not sufficient, see the counterexamples in section 2.2.

This argument seems to confirm that the assumption Θ2an(M)
L
= M is necessary in

continuous time.

In an attempt to identify the sequences (an)n≥1 which characterize Ocone local
martingales, we obtained the following theorem. Let a = (an)n≥1 be a sequence of real
numbers with limn→∞ an = 0 and let Ia the sub-σ-field of the invariant sets by all the
transformations Θan , i.e.

Ia = {F ∈ F : 1IF ◦ Θan a.s.
= 1IF , for all n ≥ 0}.

Theorem 2. The following assertions are equivalent:

(i) Any continuous local martingale M satisfying Θan(M)
L
= M for all n ≥ 0 is an

Ocone local martingale.

(ii) The sub σ-field Ia is trivial for the Wiener measure on the canonical space (Ω,F).

Remark 2. It follows from Theorems 1 and 2 that if the sequence (an) contains a

subsequence (2an′) (this holds, for instance, when (an) is dyadic sequence ), then the

sub σ-field Ia is trivial for the Wiener measure on (Ω,F). So, our open question is

equivalent to: is the sub σ-field Ia trivial for any sequence (an) decreasing to zero ?

In the next section, we prove analogous results for skip free processes. We use
them as preliminary results to prove Theorem 1 in section 3. In section 2.2, we give
counterexamples in the discrete time setting, related to Theorem 3. Finally, in section
4, we prove Theorem 2.
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2 Reflecting property and skip free processes

2.1 Discrete time skip free processes

A discrete time skip free process M is any measurable stochastic process with M0 = 0
and for all n ≥ 1, ∆Mn = Mn − Mn−1 ∈ {−1, 0, 1}. This section is devoted to an
analogue of Theorem 1 for skip free processes.

To each skip free process M , we associate the increasing process

[M ]n =

n−1
∑

k=0

(Mk+1 − Mk)
2 , n ≥ 1 , [M ]0 = 0 ,

which is called the quadratic variation of M . In this section, since no confusion is
possible, we will use the same notations for discrete processes as in continuous time
case. For every integer a ≥ 0, we denote by Ta the first passage time by M to the level
a,

Ta = inf{k ≥ 0 : Mk = a} .

We also introduce the inverse process τ which is defined by τ0 = 0 and for n ≥ 1,

τn = inf{k > τn−1 : [M ]k = n}

with inf{∅} = τn−1. Then we may define

SM = (Mτn
)n≥0 (2.7)

Denote also
T = inf{k ≥ 0 : [SM ]k = [SM ]∞} ,

then note that the paths of SM are such that ∆SM
k ∈ {−1, +1}, for all k ≤ T and

∆SM
k = 0, for all k > T , where ∆SM

k = Sk − SM
k−1.

We recall that skip free martingales are just skip free processes being martingales
with respect to some filtration. It is well known that for any divergent free skip mar-
tingale M , that is satisfying limn→+∞[M ]n = +∞, a.s., the process SM is a symmetric
Bernoulli random walk on Z. This property is the equivalent of the Dambis-Dubins-
Schwartz theorem for continuous martingales. In discrete time, the proof is quite
straightforward and we recall it now.

A first step is the equivalent of Lévy’s characterization for skip free martingales :
any skip free martingale S such that Sn+1 − Sn 6= 0, for all n ≥ 0 (or equivalently,
whose quadratic variation satisfies [S]n = n) is a symmetric Bernoulli random walk.
Indeed for n ≥ 1, S1, S2 − S1, . . . , Sn − Sn−1 are i.i.d. symmetric Bernoulli r.v.’s if and
only if for any subsequence 1 ≤ n1 ≤ · · · ≤ nk ≤ n:

E[(Sn1 − Sn1−1)(Sn2 − Sn2−1) . . . (Snk
− Snk−1)] =

E[Sn1 − Sn1−1]E[Sn2 − Sn2−1] . . .E[Snk
− Snk−1] = 0
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and this identity can be easily checked from the martingale property. Finally call
F = (Fn)n≥0 the natural filtration generated by M . Since [M ]n is an F-adapted pro-
cess, from the optional stopping theorem, SM is a martingale with respect to the
filtration (Fτn

)n≥0 and since its increments cannot be 0, we conclude from Lévy’s char-
acterization.

We recall also the following important property: any skip free process which is a
symmetric Bernoulli random walk time changed by an independent nondecreasing skip
free process, is a local martingale with respect to its natural filtration.

This leads to the definition:

Definition 1. A discrete Ocone local martingale is a symmetric Bernoulli random

walk time changed by any independent increasing skip free process.

We emphasize that in this particular case, Definition 1 coincides with the general
definition of Ocone [2]. It should also be noticed that the symmetric Bernoulli random
walk of Definition 1 is not necessarily the same as in (2.7). It coincides with SM if M
is a divergent process. If M is not divergent, then it can obtained obtained from the
initial one by pasting of an independent symmetric Bernoulli random walk (see Lemma
3), otherwise the independence can fail.

A counterpart of transformations Θa defined in (1.5) for skip free processes is given for
all integers a ≥ 0 by

Θa(M)n =

n
∑

k=1

(1I{k≤Ta} − 1I{k>Ta})∆Mk , (2.8)

where ∆Mk = Mk − Mk−1. Again in the following discrete time counterpart of The-
orem 1, we characterize discrete Ocone local martingales in the whole set of skip free
processes.

Theorem 3. Let M be any discrete skip free process. Assume that for all a ∈ {0, 1, 2},

Θa(M)
L
= M, (2.9)

then M is a discrete Ocone local martingale with respect to its natural filtration. If in

addition T1 < ∞ a.s. then M is a divergent local martingale.

The proof of Theorem 3 is based on the following crucial combinatorial lemma concern-
ing the set of sequences of partial sums of elements in {−1, +1} with length m ≥ 1:

Λm = {(s0, s1, . . . , sm) : s0 = 0 and ∆sk ∈ {−1, +1} for 1 ≤ k ≤ m },

where ∆sk = sk − sk−1.
For each sequence s ∈ Λm, and each integer a, we define Ta(s) = inf{k ≥ 0 : sk = a},

with inf ∅ = +∞. The transformation Θa(s) is defined for each s ∈ Λm by

Θa(s)n =

n
∑

k=1

(1I{k≤Ta(s)} − 1I{k>Ta(s)})∆sk , n ≤ m.

6



Lemma 1. Let m ≥ 1 be fixed. For any two elements s and s′ of the set Λm such that

s 6= s′, there are integers a1, a2, . . . , ak ∈ {0, 1, 2} depending on s and s′ such that

s′ = ΘakΘak−1 . . .Θa1(s) . (2.10)

Moreover, the integers a1, . . . , ak can be chosen so that s ∈ Λm
a1

and Θai−1Θai−2 . . .Θa1(s) ∈
Λm

ai
, for all i = 2, . . . , k where

Λm
a = {s ∈ Λm, Ta(s) ≤ m − 1} .

Proof. The last property follows from the simple remark that for s ∈ Λm we have that
Θa(s) 6= s if and only if s ∈ Λm

a . So, for the rest of the proof we suppose that all
transformations used verify the above property.

Let s̄(m) be the sequence of Λm defined by s̄
(m)
1 = 1 and ∆s̄

(m)
k = −∆s̄

(m)
k−1 for all 2 ≤

k ≤ m. That is s̄(m) (def)
= (0, 1, 0, 1, . . . , 0, 1) if m is odd and s̄(m) (def)

= (0, 1, 0, 1, . . . , 1, 0)
if m is even.

First we prove that the statement of the lemma is equivalent to the following one:
for any sequence s of Λm such that s 6= s̄(m), there are integers b1, b2, . . . , bp ∈ {0, 1, 2}
such that

s̄(m) = ΘbpΘbp−1 . . .Θb1(s) . (2.11)

Indeed, suppose that the later property holds and let s′ ∈ Λm such that s′ 6= s. If
s′ = s̄(m), then the sequence b1, b2, . . . , bp satisfies the statement of the lemma. If
s′ 6= s̄(m), then let c1, . . . , cl ∈ {0, 1, 2} such that

s̄(m) = ΘclΘcl−1 . . .Θc1(s′) .

We notice that the transformations Θa are involutive, i.e. for all x ∈ Λm,

ΘaΘa(x) = x. (2.12)

Then we have Θc1Θc2 . . .Θcl(s̄m) = s′, so that

s′ = Θc1Θc2 . . .ΘclΘbpΘbp−1 . . .Θb1(s) ,

which implies (2.10). The fact that (2.10) implies (2.11) is obvious.

Now we prove (2.11) by induction in m. It is not difficult to see that the result is true
for m = 1, 2 and 3. Suppose that the result is true up to m and let s ∈ Λm+1 such that
s 6= s̄(m+1). For j ≤ m, we call s(j) the truncated sequence s(j) = (s0, s1, . . . , sj) ∈ Λj.
From the hypothesis of induction, there exist b1, b2, . . . , bp ∈ {0, 1, 2} such that

s̄(m) = ΘbpΘbp−1 . . .Θb1(s(m)) (2.13)

where

s(m) ∈ Λm
b1

and Θbi−1Θbi−2 . . .Θb1(s(m)) ∈ Λm
bi

, for all i = 2, . . . , p. (2.14)

Then, let us consider separately the case where m is even and the case where m is odd.
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If m is even and ∆sm∆sm+1 = −1, then we obtain directly that

ΘbpΘbp−1 . . .Θb1(s) = s̄(m+1) .

Indeed, from (2.14), none of the transformations Θbi−1 . . .Θb1 , i = 2, . . . , p affects the
last step of s, so the identity follows from (2.13).

If m is even and ∆sm∆sm+1 = 1, then from the hypothesis of induction there exist
d1, d2, . . . , dr ∈ {0, 1, 2} such that

Θdr . . .Θd1(s(m)) = (s̄(m−1), 2) (2.15)

which, from the above remark, may be chosen so that

s(m) ∈ Λm
d1

and Θdi−1Θdi−2 . . .Θd1(s(m)) ∈ Λm
di

, for all i = 2, . . . , r. (2.16)

Since from (2.16), none of the transformations Θdi . . .Θd1 , i = 1, . . . , r affects the last
step of s, it follows from (2.15) that

Θdr . . .Θd1(s) = (s̄(m−1), 2, 3) . (2.17)

Then by applying transformation Θ2, we obtain:

Θ2(s̄(m−1), 2, 3) = (s̄(m−1), 2, 1) . (2.18)

Hence, from (2.15) and since none of the transformations Θdr−i . . .Θdr , i = 0, 1, . . . , r−1
affects the last step of (s̄(m−1), 2, 1), we have

Θd1Θd2 . . .Θdr(s̄(m−1), 2, 1) = (s(m), sm − ∆sm+1) .

Finally from (2.13) and (2.14), we have

ΘbpΘbp−1 . . .Θb1Θd1 . . .ΘdrΘ2Θdr . . .Θd1(s) = s(m+1)

and the induction hypothesis is true at the order m + 1, when m is even.

The proof when m is odd is very similar and we will pass over some of the arguments
in this case. If m is odd and ∆sm∆sm+1 = −1, then we obtain directly that

ΘbpΘbp−1 . . .Θb1(s) = s̄(m+1) .

If m is odd and ∆sm∆sm+1 = 1 then from the hypothesis of induction, there exist
d1, d2, . . . , dr ∈ {0, 1, 2} such that

Θdr . . .Θd1(s(m)) = (s̄(m−1),−1) (2.19)

and

s(m) ∈ Λm
d1

and Θdi−1Θdi−2 . . .Θd1(s(m)) ∈ Λm
di

, for all i = 2, . . . , r. (2.20)
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Then it follows from (2.19) and (2.20) that

Θdr . . .Θd1(s) = (s̄(m−1),−1,−2) (2.21)

and by performing the transformation Θ1Θ0Θ1 = Θ−1,

Θ0Θ1Θ0(s̄(m−1),−1,−2) = (s̄(m−1),−1, 0) . (2.22)

From (2.19) and (2.20), it follows that

Θd1 . . .Θdr(s̄(m−1),−1, 0) = (s(m), sm − ∆sm+1),

which finally gives from (2.13) and (2.14),

ΘbpΘbp−1 . . .Θb1Θd1 . . .ΘdrΘ0Θ1Θ0Θdr . . .Θd1(s) = s̄(m+1)

and ends the proof of the lemma.

In the proof of Theorem 3 for technical reasons we have to consider two cases:
T1 < ∞ a.s. and P(T1 = ∞) > 0. Lemma 2 proves that in the first case M is a
divergent process.

Lemma 2. Any skip free process such that T1 < ∞ a.s. and Θa(M)
L
= M for a = 0

and 1 satisfies:
lim

n→+∞
[M ]n = +∞ , a.s.

Proof. Let us introduce the first exit time from the interval [−a, a]:

σa(M) = inf{n : |Mn| = a} ,

where a is any integer. Let us put

Ψa(M) =

(

n
∑

k=1

(1I{k≤σa} − 1I{k>σa})∆Mk

)

n≥0

,

where ∆Mk = Mk −Mk−1. First we observe that if Θa(M)
L
= M for a = 0 and 1, then

Ψa(M)
L
= M , for a = 0 and 1. This assertion is obvious for a = 0 since σ0 = T0. For

a = 1, it follows from the almost sure identity:

Ψa(M) = Θa(M)1I{Ta<T−a} + Θ−a(M)1I{T−a<Ta} .

and the equalities:

{Ta(M) < T−a(M)} = {Ta(Θ
a(M)) < T−a(Θ

a(M))},

{T−a(M) < Ta(M)} = {T−a(Θ
−a(M)) < Ta(Θ

−a(M))} .

9



Then from the almost sure inequality

σ3(Ψ
1(M)) ≤ max{T1(M), T−1(M)} ,

the fact that T1(M) < ∞, T−1(M) < ∞ a.s. and the identity in law Ψ1(M)
L
= M ,

we deduce that σ3(M) < +∞, a.s. It means, since M is a symmetric process, that
T3(M) < ∞ and T−3(M) < ∞, a.s. Generalizing the above inequality, we obtain

σa+2(Ψ
1(M)) ≤ max{Ta(M), T−a(M)} .

This gives in the same manner as before, that for each a ≥ 0, σa < ∞ a.s.. From this
it is not difficult to see that limn→∞[M ]n = +∞, P-a.s..

The next lemma shows that in the case P(T1 = ∞) > 0 we can modify our process
M by pasting to it an independent symmetric Bernoulli random walk S and reduce
the case P(T1 = ∞) > 0 to the case T1 < ∞ a.s..

We denote by [M ]∞ = limk→∞[M ]k which always exists since it is an increasing
process and we put

T = inf{k ≥ 0 : [M ]k = [M ]∞} ,

with inf{∅} = +∞. We denote the extension of the process M by X where for all
k ≥ 0

Xk = Mk1I{k<T} + (MT + Sk−T )1I{k≥T}.

Note that X = M , on the set {T = ∞}.

Lemma 3. Let M be a discrete skip free process which satisfies Θa(M)
L
= M for some

a ∈ Z. Then X also satisfies Θa(X)
L
= X. Moreover, the σ−algebras generated by the

respective quadratic variations coincide, i.e. σ([M ]) = σ([X]), X is a divergent process

P-a.s. and M = SX
[M ].

Proof. We show that reflection property holds for X. In this aim, we consider the two
processes Y and Z such that for all k ≥ 0,

Yk = Θa(M)k1I{k<T} + (Θa(M)T − Sk−T )1I{k≥T},

Zk = Mk1I{k<T} + (MT + Θa−MT (S)k−T )1I{k≥T}.

We remark that
Θa(X) = Y 1I{Ta(Y )≤T} + Z1I{Ta(Z)>T} (2.23)

and we write the same kind of decomposition for X:

X = X1I{Ta(X)≤T} + X1I{Ta(X)>T} . (2.24)

In view of (2.23) and (2.24), to obtain X
L
= Θa(X) it is sufficient to show that for all

bounded and measurable functional F ,

E[F (X)] = E[F (Y )1I{Ta(Y )≤T}] + E[F (Z)1I{Ta(Z)>T}] .

10



Since reflection is a transformation which preserves the quadratic variation of the pro-
cess, the random time T can be defined as a functional of Y as well as a functional

of Z. So we see that the last equality is equivalent to X
L
= Y and X

L
= Z. The first

equality in law follows from the fact that

(M, S)
L
= (Θa(M),−S)

which holds due to the reflection property of M and S, and independency of M and
S. The second one holds since it can be reduced to the reflection property of S itself,
by conditioning with respect to M .

Finally, the identity M = SX
[M ] just follows from the construction of X.

Proof of Theorem 3. Since both processes M and Θa(M) have the same quadratic
variation, the identity in law of the statement is equivalent to: for all a = 0, 1, 2

(M, [M ])
L
= (Θa(M), [M ]) .

Then we remark that the above equalities are equivalent to: for all a = 0, 1, 2

(SM , [M ])
L
= (SΘa(M), [M ]) .

Now it is crucial to observe the path by path equality: for each a = 0, 1, 2

SΘa(M) = Θa(SM) ,

from which we obtain
(SM , [M ])

L
= (Θa(SM), [M ]) . (2.25)

Hence,
L(SM |[M ]) = L(Θa(SM)|[M ]) (2.26)

Fix m ≥ 1 and let s, s′ ∈ Λm with s 6= s′ be fixed. Consider the sequence of integers
a1, a2, . . . , ak ∈ {0, 1, 2} given in Lemma 1 such that

s = ΘakΘak−1 . . .Θa1(s′) . (2.27)

Denote by SM,m the restricted path (S0, S1, . . . , Sm). Iterating (2.26), we may write
for all u ∈ Λm :

P
(

SM,m = u | [M ]
)

= P
(

Θa1Θa2 . . .Θak(SM,m) = u | [M ]
)

.

Applying (2.12), we see that the right-hand side is equal to

P
(

SM,m = ΘakΘak−1 . . .Θa1(u) | [M ]
)

.

Take now u = s′ and use (2.27), to obtain

P
(

SM,m = s′ | [M ]
)

= P
(

SM,m = s | [M ]
)

. (2.28)

11



If T1 < ∞ a.s. then from Lemma 2 we can see that M is divergent and for all m ≥ 0
P(SM,m ∈ Λm) = 1. Then from (2.28) the law of SM,m is uniform over Λm and it
coincides with the conditional law of SM,m given [M ]. Hence, SM,m is symmetric
Bernoulli random walk on [0, m] independent from [M ]. Since this holds for all m ≥ 0,
we conclude that SM is a symmetric Bernoulli random walk which is independent of
[M ]. So from Definition 1, M is a divergent Ocone local martingale.

If P(T1 = ∞) > 0, we consider the extension X of the process M defined in
Lemma 3. Then, X satisfies the hypotheses of Theorem 3. Moreover, from Lemma
3, P(T1(X) < ∞) = 1. From what has just been proved SX is a symmetric Bernoulli
random walk which is independent of [X], and hence from [M ]. This implies that SX

and [M ] are independent. From Lemma 3 we have M = SX
[M ], and, hence, the process

M is itself an Ocone martingale by Definition 1.

2.2 Counterexamples

In this part, we give two examples of a discrete skip free process M which satisfy

M0 = 0, Θ0(M)
L
= M and Θ1(M)

L
= M , but which are not a discrete Ocone martingales.

Counterexample 1: Let (ǫk)k≥1 be a sequence of independent symmetric Bernoulli
random variables. We put M0 = 0, ∆M1 = ǫ1, ∆M2 = ǫ2, ∆M3 = ǫ2 and for k > 3,
∆Mk = ǫk. We introduce also

Mn =

n
∑

k=1

∆Mk.

Since [M ]n = n for all n ≥ 1 and since M is not Bernoulli random walk, it can not be
an Ocone martingale.

Let us verify that Θa(M)
L
= M for a ∈ N \ {2}. For a = 0 we have reflection

property since the ǫk’s are symmetric and independent. For a = 1 we consider four
possible cases related with the values of (M1, M2, M3). Let us put Rn =

∑n
k=4 ǫk for

n ≥ 4.
In fact, if M1 = 1, M2 = 2, M3 = 3, we have Θ1(M) = (0, 1, 0,−1, (−1 − Rn)n≥4))

If M1 = 1, M2 = 0, M3 = −1, then Θ1(M) = (0, 1, 2, 3, (3− Rn)n≥4))
If M1 = −1, M2 = 0, M3 = 1, then Θ1(M) = (0,−1, 0, 1, (1− Rn)n≥4))
If M1 = −1, M2 = −2, M3 = −3, then Θ1(M) = (0,−1,−2,−3, Θ1(−3 − (Rn)n≥4))

Similar presentation is valid for M :
if M1 = 1, M2 = 2, M3 = 3, then M = (0, 1, 2, 3, (3 + Rn)n≥4)),
if M1 = 1, M2 = 0, M3 = −1, then M = (0, 1, 0,−1, (−1 + Rn)n≥4))
if M1 = −1, M2 = 0, M3 = 1, then M = (0,−1, 0, 1, (1 + Rn)n≥4))
if M1 = −1, M2 = −2, M3 = −3, then M = (0,−1,−2,−3, Θ1(−3 + (Rn)n≥4))
To see that the laws of Θ1(M) and M are equal it is convenient to pass to increments
of corresponding processes.

If we take a pass with M1 = 1, M2 = 2, M3 = 3, then Θ2(M) of such trajectory
has a probability zero which is not the case for the corresponding trajectory of M . So,

12



Θ(M)
L

6= M . For a ≥ 3 we can write that

Θ3(M) = (M1, M2, M3, Θ
3((Mk)k≥4))

and we conclude from symmetry of Bernoulli random walk.

−1

1
3

Sample path of counterexample 1

Counterexample 2: Let (εk)k≥0 be a sequence of independent {−1, +1}-valued sym-

metric Bernoulli random variables. Set kn =
⌊

ln(n+1)
ln 2

⌋

− 1, where ⌊x⌋ is the lower

integer part of x and let us consider the following skip free process:

M0 = 0 and for n ≥ 1, Mn =
kn
∑

k=0

2kεk + (n − 2kn)εn .

Actually, M is constructed as follows: M0 = 0, M1 = ε0 and for all k ≥ 1 and
n ∈ [2k, 2k+1 − 1], the increments Mn − Mn−1 have the sign of εk. In particular, the
increments of (Mn) are −1 or 1 and since, from the discussion at the beginning of
section 2, the only skip free local martingale with such increments is the Bernoulli
random walk, it is clear that M is not an Ocone local martingale.

13
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3
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3 7 15 31

Sample path of counterexample 2

The equality Θ0(M)
L
= M only means that M is a symmetric process, which is straight-

forward from its construction. Now let us check that T1 < ∞, a.s. and Θ1(M)
L
= M .

Almost surely on the set {M1 = −1}, there exists k ≥ 0 such that εi = −1 for all
i ≤ k and εk+1 = 1. The later assertion is equivalent to say that for all integer
n ∈ (0, 2k+1 − 1], Mn −Mn−1 = −1 and for all n ∈ [2k+1, 2k+2 − 1], Mn −Mn−1 = 1. It
is then easy to check that

M2k+2−1 = 1 .

So we have proved that {M1 = −1} ⊆ {T1 < ∞}, but since we also have {M1 = 1} ⊆
{T1 < ∞}, it follows that P(T1 < ∞) = 1.

Then we see from the construction of (Mn) that almost surely, T1 belongs to the
set {2j − 1 : j ≥ 1} and that for j ≥ 1, conditionally to T1 = 2j − 1, (Mn, n ≤ T1) and
(MT1+n, n ≥ 0) are independent. Moreover,

(MT1+n, n ≥ 0)
L
= (2 − MT1+n, n ≥ 0) ,

so this proves that Θ1(M)
L
= M .

Finally note that 0 and 1 are the only nonnegative levels at which the reflection

principle holds for the process M , i.e. Θa(M)
L
= M implies a = 0 or 1. Indeed, at

least it is clear from the construction of M that the only times and levels at which the
sign of its increments can change belong to the set {2j − 1, j ≥ 0}, i.e. if a ≥ 0 is

such that Θa(M)
L
= M , then necessarily a ∈ {2j − 1, j ≥ 0} and Ta ∈ {2j − 1, j ≥ 0}.

But suppose that for i ≥ 2 we have T1 = 2i − 1 and recall that all the increments
MT1+k+1 −MT1+k for all k = 0, 1, . . . 2i − 1 have the same sign. If these increments are
1, then the process M reaches the level 2i −1 at time T1 +2i −2 = 2i+1 −3 which does
not belong to the set {2j−1, j ≥ 0}. So the sign of the increments of M cannot change

at this time and the level 2i − 1 cannot satisfy the identity in law Θ2i−1(M)
L
= M .

14



2.3 Continuous time lattice processes

As a preliminary result for the proof of Theorem 1, we state an analogue of Theorem
3 for continuous time lattice processes. We say that M = (Mt)t≥0 is a continuous

time lattice process if M0 = 0 and if it is a pure jump càdlàg process whose jumps
∆Mt = Mt−Mt− verify : |∆Mt| = η, for some fixed real η > 0. If we denote by (τk)k≥1

the jump times of M , i.e. with τ0 = 0, for k ≥ 1,

τk = inf{t > τk−1 : |Mt − Mτk−1
| = η} ,

with inf{∅} = τk−1, then for all t ≥ 0 and P-a.s.

Mt =
∞
∑

k=1

∆Mτk
1I{τk≤t} .

The quadratic variation of M is given by:

[M ]t =

∞
∑

k=1

(∆Mτk
)21I{τk≤t} = η2

∞
∑

k=1

1I{τk≤t}.

Note that τk admits the equivalent definition τk = inf{t ≥ 0 : [M ]t = kη2}. We define
the time changed discrete process SM by SM = (Mτk

)k≥0 which has values in the lattice
ηZ. In particular, we have:

Mt = SM
η−2[M ]t

, t ≥ 0 . (2.29)

We say that M is a continuous time lattice Ocone local martingale if it can be written
as Mt = SAt

, where S is a symmetric Bernoulli random walk with values in the lattice
ηZ and A is an increasing continuous time lattice process with values in N which is
independent of S. In the case where M is divergent, S coincide with SM given in
formula (2.29). When M is not divergent, S is different from SM , namely if T =
inf{k ≥ 0 : [SM ]k = [SM ]∞} then S can be taken as:

Sk = SM
k 1I{k≤T} + (SM

T + S̃T−k)1I{k>T} ,

where S̃ is a symmetric Bernoulli random walk which is independent from SM . In
this case S is independent from [M ]. Therefore, when considering a continuous time
lattice Ocone local martingale M , in identity (2.29) we can and will suppose that
SM is a symmetric Bernoulli random walk with values in the lattice ηZ and which is
independent of [M ].

Recall the definitions (1.4) and (1.5) of the hitting time Ta and transformations Θa,
respectively.

Proposition 1. Let M be any continuous time lattice process such that for all k =
0, 1, 2,

Θkη(M)
L
= M ,

then M is a continuous time lattice Ocone local martingale. If in addition Tη < ∞
a.s., then SM is a symmetric random walk on the lattice ηZ which is independent of

[M ]. Moreover, M is a divergent local martingale with respect to its own filtration.
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Proof. Set N = η−1M . We remark that for k = 1, 2, 3,

Θk(N)
L
= N.

Then following the proof of Theorem 3 along the lines for the continuous time process
N , we obtain that SN conditionally to [N ] is Bernoulli random walk. Hence SN

is a Bernoulli random walk which is independent of [N ]. Since SN = η−1SM and
η−2[N ] = [M ], we obtain that SM is a symmetric Bernoulli random walk on the lattice
ηZ which is independent of [M ]. It means that it is local martingale with respect to
its own filtration. Finally, when Tη < ∞ a.s., M is a divergent local martingale since
N is so.

3 Proof of theorem 1

Let (Ω,F , F, P) be the canonical space of continuous functions with filtration F satis-
fying usual conditions. Let M be a continuous stochastic process which is defined on
this space and satisfying the assumptions of Theorem 1. Without loss of generality we
suppose that the sequence (an) is decreasing.

Proof of Theorem 1. First of all we note that since the map x → Θx(ω) is continuous

on C(IR+, IR), the hypothesis of this theorem imply that Θ0(M)
L
= M , i.e. M is

symmetric process.
Now, fix a positive integer n. We define the continuous lattice valued process Mn

by using discretisation with respect to the space variable. In this aim, we introduce
the sequence of stopping times (τn

k )k≥0 i.e. τn
0 = 0 and for all k ≥ 1

τn
k = inf{t > τn

k−1 : |Mt − Mτn
k−1

| = an} ,

with inf{∅} = τn
k−1. Then Mn = (Mn

t )t≥0 is defined by:

Mn
t =

∞
∑

k=0

Mτn
k
1I{τn

k
≤t<τn

k+1}
.

We can easily check that Mn is a continuous time lattice process verifying the assump-
tions of Proposition 1. Therefore according to this proposition, [Mn] is a continuous
time lattice Ocone local martingale.

From the construction of Mn we have the almost sure inequality

sup
t≥0

|Mt − Mn
t | ≤ an . (3.30)

Hence the sequence (Mn) converges a.s. uniformly on [0,∞) toward M . The condition

sup
n≥1

sup
t≥0

|∆Mn
t | ≤ a1

and (3.30) imply (cf. [5],Corollary IX.1.19, Corollary VI.6.6) that M is a local martin-
gale and that

(Mn, [Mn])
L
→ (M, 〈M〉) . (3.31)

16



Since the properties (i) and (iii) given in introduction are equivalent, it is sufficient to
verify that for every deterministic function h of the form

∑k
j=1 λj1I]tj−1,tj ] with t0 = 0 <

t1 < · · · tk we have:

E

[

exp

(

i

∫ ∞

0

h(s) dMs

)]

= E

[

exp

(

−
1

2

∫ ∞

0

h2(s) d〈M〉s

)]

. (3.32)

From (3.31) we see that

lim
n→∞

E

[

exp

(

i

∫ ∞

0

h(s) dMn
s

)]

= E

[

exp

(

i

∫ ∞

0

h(s) dMs

)]

.

Then in order to obtain (3.32), we will show by straightforward calculations that

lim
n→∞

E

[

exp

(

i

∫ ∞

0

h(s) dMn
s

)]

= E

[

exp

(

−
1

2

∫ ∞

0

h2(s) d〈M〉s

)]

. (3.33)

To prove (3.33) we first write

E

[

exp

(

i

∫ ∞

0

h(s) dMn
s

)]

=

∫

E

[

exp

(

i

∫ ∞

0

h(s) dMn
s

)

| [Mn] = ω

]

dP[Mn](ω) ,

where P[Mn] is the law of [Mn]. Then from Proposition 1 we have that

Mn L
= anSa−2

n [Mn]

where S is symmetric Bernoulli random walk independent from [Mn]. Moreover,

∫ ∞

0

h(s) dMn
s =

k
∑

j=1

λj∆Mn
tj

L
= an

k
∑

j=1

λj∆Srj

where ∆Mn
tj

= Mn
tj
− Mn

tj−1
, ∆Srj

= Srj
− Srj−1

and rj = a−2
n [Mn]tj , 1 ≤ j ≤ k.

Since S and [Mn] are independent and E [exp(ia∆Sk)] = cos(a) for all a ∈ IR, we
have:

E

[

exp

(

i

∫ ∞

0

h(s) dMn
s

)

| [Mn] = ω

]

=
k
∏

j=1

[cos(λjan)](u
n
j −un

j−1) , (3.34)

where un
j = ⌊a−2

n ωtj⌋, j = 0, 1, . . . , k and ⌊x⌋ is the lower integer part of x. Moreover,
it is not difficult to see that

lim
n→∞

k
∏

j=1

[cos(λjan)](u
n
j −un

j−1) = exp

(

−
1

2

k
∑

j=1

λ2
j (ωtj − ωtj−1

)

)

(3.35)

uniformly on compact sets of IRk
+. Then, the expression (3.34) and the convergence

relations (3.31), (3.35) imply (3.33).
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4 Proof of Theorem 2

In what follows we assume, without loss of generality, that the process M is divergent.
We begin with the following classical result of ergodic theory, a proof of which may be
found in [3], Lemma 1.

Let (Ω,F , F, P) be canonical space of continuous functions endowed by natural
right-continuous filtration F = (Ft)t≥0 completed by negligible sets of F =

∨

t≥0 Ft.

Lemma 4. Let Θ be a measurable transformation of Ω to Ω which preserves P. A

random variable X ∈ L2(Ω,F , P) is a.s. invariant by Θ if and only if

E(Z · (Y ◦ Θ)) = E(Z · Y ) ,

for all Y ∈ L2(Ω,F , P).

Let Θn, n ≥ 1 be a family of transformations defined on canonical space of contin-
uous functions (Ω,F , F, P). Let I be the sub σ-algebra of the invariant events by all
the transformations Θn, n ≥ 1, i.e.

I = {F ∈ F : 1IF ◦ Θn
a.s.
= 1IF , for all n ≥ 1}.

The following lemma extends Theorem 1 in [3].

Lemma 5. Let M be a continuous divergent local martingale defined on the filtered

probability space (Ω, F,F , P). Assume that the transformations Θn preserve the Wiener

measure, i.e. if B is the standard Brownian motion then for all n ≥ 1, B ◦ Θn
L
= B.

The following assertions are equivalent:

(j) For all n ≥ 1, (BM , 〈M〉)
L
= (Θn(BM), 〈M〉) have the same law.

(jj) BM and 〈M〉 are conditionally independent given the σ-field IM = (BM)−1(I).

Proof. The proof almost follows from this of Theorem 1 in [3] along the lines. We first
prove that (j) implies (jj).

Let h, g two measurable functions Ω → Ω. Then (j) implies:

E
(

h(〈M〉)g(BM)
)

= E
(

h(〈M〉)g(BM ◦ Θn)
)

= E
(

h(〈M〉)(g(BM) ◦ Θn)
)

(4.36)

We take conditional expectation with respect to BM . For this we denote by f the
following function:

E
(

h(〈M〉)|BM
) a.s.

= f(BM)

Then (4.36) implies that

E
(

f(BM)g(BM)
)

= E
(

f(BM)(g(BM) ◦ Θn)
)

(4.37)

Then according to Lemma 4 f(BM) is Θn-invariant variable, i.e. it is measurable with
respect to σ-algebra of Θn-invariant sets In. Since it holds for all n ≥ 1, f(BM) is
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measurable with respect to I = ∩∞
n=1In. Moreover,

E
(

h(〈M〉)g(BM)|IM
)

= E
(

f(BM)g(BM)|I
)

=

E
(

f(BM)|I
)

E
(

g(BM)|I
)

= E(h(〈M〉)|IM )E(g(BM)|IM)

and (jj) is proved.
Now suppose that (jj) is valid. Then

E(h(〈M〉)g(BM)) = E
(

E
(

h(〈M〉)|IM
)

E
(

g(BM)|IM
))

Moreover, since BM ◦Θn and 〈M〉 are also conditionally independent for all n ≥ 1,
we have

E
(

h(〈M〉)g(BM ◦ Θn)|IM)
)

= E
(

h(〈M〉)|IM
)

E
(

g(BM) ◦ Θn|I
M
)

Since every IM -measurable random variable has the form u(BM), where u is I-measurable,

E
(

g(BM) ◦ Θn) | IM
)

= E
(

g(BM) | IM
)

and we obtain
E
(

h(〈M〉)g(BM)
)

= E
(

h(〈M〉)g(BM ◦ Θn)
)

which is (j).

Proof of Theorem 2.

If (ii) holds then from Lemma 5, BM and 〈M〉 are independent, so (i) holds. Let us
prove that (i) implies (ii). Suppose that (ii) fails. We show that (i) fails, too. Namely
we show that one can construct a continuous martingale M = BA, where B is standard
Brownian motion and A is non-decreasing continuous adapted process, such that M
verify reflection properties of (i) but it is not Ocone martingale.

Let X be a non trivial B−1(Ia)-measurable bounded random variable. Call (FB
t ) the

natural filtration generated by B. Let Nt = E(X | FB
t ) for all t ≥ 0 and N = (Nt)t≥0.

We remark that N is a (FB
t )-martingale invariant by all transformations (Θan):

N
L
= N ◦ Θan .

Now, we can construct a finite non-constant stopping time T which is invariant
by all the transformations Θan by setting T = inf{t ≥ t0 |Nt ∈ K}, where t0 is
large enough and K is a suitable Borel set. For instance we can choose K such that
P(X ∈ K) ≥ 2/3. Since Nt → X a.s. as t → ∞ we can find t0 such that for t ≥ t0,
P(Nt ∈ K) ≥ 1/2.

Finally, for α > 0, let us define the following increasing process

At =

∫ t

0

1I[0,T ](s) + α1I]T,∞[(s) ds .
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This process is not deterministic whenever α 6= 1 and since it is invariant by all the

transformations Θan , one has (B, A)
L
= (Θan(B), A) for all n ≥ 1. The inverse of A is

given by

A−1
t =

∫ t

0

1I[0,T ](s) + α−11I]T,∞[(s) ds ,

so it is adapted and each At is a (FB
t )-stopping time.

Therefore M = (Mt)t≥0 with Mt = BAt
is a continuous divergent (FB

At
)-martingale

satisfying Θan(M)
L
= M , for all n ≥ 1. Moreover, BM = B and 〈M〉 = A are not

independent by construction. Hence, M can not be Ocone martingale with respect to
the filtration (FB

At
)t≥0 and it provides a counterexample to the assertion (i). So, we

have proved that (i) implies (ii).
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