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Abstract

In this study, the spatio-temporal and seasonal distributions of EOS/Terra Moderate

Resolution Imaging Spectroradiometer (MODIS)-derived aerosol optical depth (AOD)

over East Asia were analyzed in conjunction with US EPA Models-3/CMAQ v4.3 mod-

eling. In this study, two MODIS AOD products (τMODIS:τM−BAER and τNASA) retrieved5

through a modified Bremen Aerosol Retrieval (M-BAER) algorithm and NASA collec-

tion 5 (C005) algorithm were compared with the AOD (τCMAQ) that was calculated from

the US EPA Models-3/CMAQ model simulations. In general, the CMAQ-predicted AOD

values captured the spatial and temporal variations of the two MODIS AOD products

over East Asia reasonable well. Since τMODIS cannot provide information on the aerosol10

chemical composition in the atmosphere, different aerosol formation characteristics in

different regions and different seasons in East Asia cannot be described or identified

by τMODIS itself. Therefore, the seasonally and regionally varying aerosol formation

and distribution characteristics were investigated by the US EPA Models-3/CMAQ v4.3

model simulations. The contribution of each particulate chemical species to τM−BAER,15

τNASA, and τCMAQ showed strong spatial, temporal and seasonal variations. For exam-

ple, during the summer episode, τM−BAER, τNASA, and τCMAQ were mainly raised due

to high concentrations of (NH4)2SO4 over Chinese urban and industrial centers and

secondary organic aerosols (SOAs) over the southern parts of China, whereas during

the winter episode, τM−BAER, τNASA, and τCMAQ were higher due largely to high lev-20

els of NH3NO3 formed over the urban and industrial centers, as well as in areas with

high NH3 emissions. In addition, the accuracy of τM−BAER and τNASA was evaluated by

a comparison with the AOD (τAERONET) from the AERONET sites in East Asia. Both

τM−BAER and τNASA showed a strong correlation with τAERONETR around the 1:1 line

(R=0.79), indicating promising potential for the application of both the M-BAER and25

NASA aerosol retrieval algorithms to satellite-based air quality monitoring studies in

East Asia.
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1 Introduction

Tropospheric aerosols are important components in the atmospheric system. They

affect the global radiation budget directly by scattering or absorbing solar radiation

and indirectly by changing cloud condensation nuclei (CCN) concentrations and cloud

lifetimes in the atmosphere (Twomey et al., 1984; Charlson et al., 1992; Kaufman et5

al., 2002; Ramanathan et al., 2007). Furthermore, tropospheric aerosols provide im-

portant surfaces for heterogeneous reactions between gas-phase air pollutants and

atmospheric particles. Through the heterogeneous reactions, acidic and alkaline sub-

stances such as sulfate, nitrate, ammonium, and secondary organic aerosols (SOAs)

are formed in the tropospheric aerosols, causing urban-, regional-, and global-scale air10

pollution (Jacobson, 1999; Ramanathan and Crutzen, 2003; Seinfeld et al., 2004).

The generation, transport, and formation of tropospheric aerosols and aerosol cli-

matology (radiative effects) have often been studied by several collaborative research

campaigns in East Asia, which integrate ground-based monitoring, aircraft and ship

measurements, and 3-dimensional (3-D) chemistry-transport modeling (CTM) efforts15

(e.g., PEM-West A and B, ACE-Asia, TRACE-P). However, such efforts have been lim-

ited by the inability of the point (ground-based monitoring) and line (aircraft- and ship-

borne measurements) measurements in the campaign activities to completely capture

the spatially and temporally varying, regional-scale aerosol generation, formation, and

transport characteristics.20

For the last couple of decades, satellite-based, remote-sensing techniques have

been greatly developed. Particularly, environment observing satellites have provided

2-D, column-integrated aerosol “optical” concentrations as important complimentary

and/or alternative data to the current point- and line-based “chemical” measurements

(King et al., 1999; Singh and Jacob, 2000). The satellite-derived, aerosol optical prop-25

erties have been applied to various research areas in air pollution studies such as: i)

identifying the sources of air pollution (e.g., Herman et al., 1997), ii) estimating ground-

level particulate concentrations (e.g., Wang and Christopher, 2003; van Donkelaar et
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al., 2006), iii) understanding the long-range transport of air pollutants across oceans

and continents (e.g., Husar et al., 2001; Colarco et al., 2002; Takemura et al., 2002; Lee

et al., 2005b), iv) developing an advanced air quality forecast system (e.g., Al-Saadi et

al., 2005), and v) aerosol climatology studies (e.g., Holben, et al., 2001; Weaver et al.,

2002; Kaufman et al., 2002; Hsu et al., 2003). Currently, many satellite platforms, such5

as Total Ozone Mapping Spectrometer (TOMS), Sea-Viewing Wide Field-of-View Sen-

sor (SeaWIFS), Moderate Resolution Imaging Spectroradiometer (MODIS), Medium

Resolution Imaging Spectroradiometer (MERIS), Ozone Monitoring Instrument (OMI),

Multi-angle Imaging Spectroradiometer (MISR), and Cloud-Aerosol Lidar and Infrared

Pathfinder Satellite Observation (CALIPSO), have provided various qualities and lev-10

els of aerosol optical properties (King et al, 1999; Singh and Jacob, 2000). Mean-

while, remotely sensed, aerosol optical column properties are also provided by ground-

based, sunphotometer network and data archive, such as the Aerosol Robotics Net-

work (AERONET) managed by the NASA Goddard Space Center (Holben et al., 1998).

Therefore, it would be desirable and promising to use these abundant, satellite- and15

sunphotometer-derived aerosol optical properties in urban- and regional-scale air pol-

lution studies, in conjunction with the point- and line-based chemical measurements

and 3-D photochemical modeling. In this study, we therefore apply the satellite- and

sunphotometer-derived aerosol optical depth (hereafter, denoted as AOD or τ) to par-

ticulate pollution studies over East Asia in the link with 3-D Eulerian CTM simulations.20

The main aims of the study were three-fold. The first was to examine the season-

ally and regionally varying aerosol characteristics in East Asia using i) the particulate

chemical composition from 3-D Eulerian CTM simulations, ii) two MODIS AOD products

(τMODIS:τM−BAER and τNASA) retrieved through a modified Bremen Aerosol Retrieval

(M-BAER) algorithm and NASA collection 5 (C005) algorithm, and iii) the AOD product25

(τAERONETR) from the NASA AERONET sites in East Asia. The second aim was to com-

pare the τM−BAER and τNASA with τAERONETR, and validate the 3-D CTM simulations with

2-D domain-wide satellite-derived τM−BAER and τNASA and point measurement-based

τAERONETR. The third aim was to test the potential for the application of both the M-
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BAER and NASA aerosol retrieval algorithms to satellite-based air quality monitoring

and aerosol climate forcing studies in East Asia, by comparing the four different AOD

products (τM−BAER, τNASA, τCMAQ, τAERONET) over East Asia.

In particular, the use of the 2-D domain-wide, satellite-derived, aerosol column data

for the validation of the 3-D CTM simulations overcomes the typically faced “point-5

versus-grid errors” and “line-versus-grid errors” (also, often called “pencil-thin effect”),

when the 3-D CTM simulation results are compared with data from the ground station,

ship, and aircraft measurements. As the 3-D CTM, we used the US EPA Models-

3/CMAQ v4.3 (Community Multi-scale Air Quality) model. The AOD products retrieved

from the MODIS satellite sensor on board the NASA EOS/Terra satellite were used for10

the satellite-derived aerosol optical properties.

The integrated analysis of satellite-, AERONET-, and Models-3 CMAQ-derived τ has

many merits. For example, while τMODIS can provide spatial and temporal, 2-D domain-

wide, aerosol distributions, it cannot provide information on the chemical composition

of the atmospheric aerosols. This limitation can be overcome by using the 3-D CTM15

simulations. By conducting US EPA Models-3/CMAQ modeling in the link with the

satellite-derived aerosol data, different aerosol formation characteristics in different re-

gions and different seasons in East Asia can be more clearly described and identified.

This study carried out a comprehensive investigation by closely integrating the re-

mote sensing data with the 3-D CTM products considering the detailed atmospheric20

gas/aerosol chemico-physical processes in the 3-D CMAQ modeling. This is a fun-

damental study to investigate the seasonally and regionally varying, aerosol formation

and distribution characteristics in East Asia. Based on the results, a further aim is to

establish a state-of-the-science chemical weather forecast system in East Asia in the

near future, as in the USA (e.g., Al-Saadi et al., 2005), and to more accurately estimate25

the seasonally varying direct climate forcing by primary and secondary anthropogenic

aerosols and mineral dust in East Asia.
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2 Model descriptions

In order to conduct CTM over East Asia, we used a one-way coupling of PSU/NCAR

MM5 (Pennsylvania State University/National Center for Atmospheric Research

Mesoscale Model 5) to the US EPA Models-3/CMAQ model along with the East Asian

emission inventory. The procedures are explained in detail below.5

2.1 US EPA Models-3/CMAQ modeling

We performed 3-D Eulerian modeling over East Asia, using the US EPA Models-

3/CMAQ v4.3 model (Byun and Ching, 1999; Byun and Schere, 2006). In this modeling

study, both Carbon Bond Mechanism 4 (CBM4) and Carnegie-Mellon University (CMU)

aqueous-phase chemistry were selected for the full consideration of gas-phase and10

aqueous-phase chemistries, respectively. For the advection and dry deposition of the

gas and particulate species, the Piece-wise Parabolic Method (PPM) and latest version

of Wesley scheme were chosen.

With regard to the aerosol chemical, dynamic, and thermodynamic processes, one of

the most salient features of the US EPA Models-3/CMAQ v4.3 model is that the aerosol15

module includes the ISORROPIA aerosol equilibrium model and the mathematically-

efficient, modal approach. The performance of the ISORROPIA model in predicting

gas-particle distributions of ambient acidic (e.g., H2SO4, HNO3, HCl) and alkaline (e.g.,

NH3) species is presented in Nenes et al. (1998). Capaldo et al. (2000) also reported

that interactions between gas-phase species and fine-mode particles are sufficiently20

fast for this heterogeneous process to be dealt with in a thermodynamic manner. In

contrast, interactions between gas-phase species and coarse-mode particles are so

slow that this process must be treated in a kinetic or dynamic manner, in a method

called the “CMU hybrid approach”. The aerosol modal approach has been applied to

3-D photochemical models because it can provide mathematically-convenient forms25

of formulas describing various aerosol processes such as coagulation, condensation,

and particle growth (Binkowski, 1999; Binkowski and Roselle, 2003).
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The study domain covered approximately the region from 100
◦

to 150
◦
E and from 20

◦

to 50
◦
N (shown in Fig. 1), which includes all of Korea, Japan, most of eastern China,

and parts of Mongolia and Russia. The region has dramatic variations in topography

and land type, and features mixtures of industrial/commercial/urban centers and agri-

cultural/rural regions. Figure 1 illustrates the Chinese urban-industrial centers, such5

as Bohai Bay, Sichuan Basin, and Yangtze Delta areas, denoted as regions A, B and

C, respectively, and the region with high NH3 emission due to strong agricultural and

livestock farming activities (Hebei, Shandong, Henan, Jiangsu, and Anhui provinces).

In addition, dust storms frequently erupt from the Gobi desert, loess plateau, and Inner

Mongolia, typically in spring.10

In the 3-D CMAQ modeling, the horizontal grid spacing was 108 km×108 km with 46

and 33 grids in the x and y directions, respectively, and vertical domain ranged from

1000 hPa to 180 hPa, with 24 terrains following σ-coordinates, giving a total of 36 432

grid points.

The 3-D photochemical modeling was conducted for four episodes, representing the15

four seasons, in East Asia. The periods of the four episodes, each approximately

3 weeks long, were: i) 9–27 November 2001 (Late fall); ii) 25 March–13 April 2002

(Spring); iii) 24 August–13 September 2002 (Late Summer); and iv) 11–28 February

2003 (Winter). US EPA Models-3/CMAQ CTM was conducted for the four episodes

using the MET fields generated from the PSU/NCAR MM5 modeling.20

2.2 Meteorological modeling

As a meteorological preprocessor for the US EPA Models-3/CMAQ CTM, PSU/NCAR

MM5 was used in this study. In the meteorological modeling (MET modeling), the

3-D non-hydrostatic primitive equation was selected as the governing equation. The

horizontal spacing was 108 km×108 km, which follows the horizontal spacing of the25

US EPA Models-3/CMAQ model. However, the size of the domain for MM5 model-

ing was larger by two grids than that for US EPA Models-3/CMAQ modeling in the

4 compass directions in order to minimize the uncertainties that could occur when me-
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teorological boundary conditions were set for US EPA Models-3/CMAQ modeling. For

the same reason, the vertical domain for MET modeling was also higher, from 1000

to 70 hPa, than that for US EPA Models-3/CMAQ modeling, with 30 terrain following

σ-coordinates. For the MET modeling, 2.5
◦×2.5◦

re-analyzed, National Centers for

Environmental Prediction (re-analyzed NCEP) data were used to drive MM5. The re-5

analyzed NCEP data used in this study also contained the sea surface temperature

(SST) data. In addition, the data included in the PSU/NCAR storage were used to give

consideration for the terrain heights within the domain. In order to improve the accuracy

of the MET fields, NCEP Automated Data Processing (ADP) global surface and upper

air observation data were utilized by employing Four-D Data Assimilation (FDDA) tech-10

niques with nudging coefficients of 2.5×10
−4

for temperature and wind and of 1×10
−5

for mixing ratios. In the MM5 modeling, Blackadar scheme and five-layer land surface

models (LSMs) were used for the planetary boundary layer (PBL) parameterization and

associated ground temperature scheme, respectively. Rapid Radiative Transfer Model

(RRTM), Grell scheme, and Reisner-2 scheme were chosen to give consideration for15

atmospheric radiation, cumulus parameterization, and cloud microphysics, respectively

(Grell et al., 1994; Reisner et al., 1998). Using these schemes, grided MET fields were

generated with a high temporal resolution of 1-h interval. After the generation of the

grided MET fields from the MM5 modeling, the data were then processed and con-

verted by the meteorological-chemistry interface processor (MCIP) to produce MET20

inputs for the US EPA Models-3/CMAQ model.

2.3 Emissions

Resolved emission data at 1
◦×1

◦
were obtained from the ACE-ASIA (Asian Pacific

Regional Aerosol Characterization) emission estimation web site (http://www.cgrer.

uiowa.edu/people/carmichael/ACESS/Emissions-data\main.html). The emission data25

for NOx and SO2 were of primary importance, as they are the precursors of partic-

ulate nitrate and sulfate, respectively. The emission inventory for the two primary

pollutant species in East Asia has been continuously improved and evaluated in the
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literature (van Aardenne et al., 1999; Streets et al., 2003; Woo et al., 2003). Although

some studies indicated that the NOx emissions would be ∼30% underestimated in

East Asia through comparisons between model-predicted and satellite-derived NO2

column concentrations (Ma et al., 2006), it is generally believed that the uncertain-

ties in their emissions are relatively small. Uncertainty levels of ±37 and ±16% were5

reported by Streets et al. (2003) for NOx and SO2 emissions, respectively, in East

Asia. NH3 emission in East Asia is more uncertain and poorly-understood, despite

being an important gas-phase precursor of particulate ammonium. The NH3 emission

used in this study was estimated by taking four major sources into account: i) fertilizer

applications, ii) livestock-farming (animal excreta and manures), iii) biomass/bio-fuel10

burnings, and iv) industrial combustion (Woo et al., 2003). Non-Methane Volatile Or-

ganic Compound (NMVOC) emissions are also important, since they are SOA pre-

cursors. In this study, we conducted chemical speciation (chemical species split-

ting) of the total NMVOC emissions in East Asia, using the SPECIATE database built

up by US EPA. For the consideration of the biogenic isoprene and terpene emis-15

sions, we used the monthly emission data from the Global Emission Inventory Activity

(http://weather.engin.umich.edu/geia). Emissions of primary carbonaceous particles

(black carbon and organic carbon: BC and OC) were also included in the emission

inventory. Some of the aforementioned emissions are shown in Fig. 2.

Spring is a typical dust season in East Asia. During the spring episode studied, high20

wind speeds over the Gobi desert resulted in significant dust emissions. In order to

estimate the mass flux of dust emissions (EDust), a method that employs both friction

velocity (u∗) and threshold friction velocity (u∗t) was utilized (Gillette and Passi, 1988;

Gillette et al., 1992):

EDust = CA∆t[u4
∗ (1 −

u∗,t

u∗

)] (1)25

where C is a combined constant, and A and ∆t represent the surface area and time

period considered for dust emissions, respectively. This parameterization was success-

fully tested by several previous studies over the same East Asian domain (Phadnis and
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Carmichael, 2000; Song and Carmichael, 2001a, b). Unfortunately, however, the sea-

salt particle (another natural aerosol) generation over the ocean areas of the domain

was not considered in this study, partly because the primary study focus was on the

modeling and monitoring investigations for anthropogenic-influenced pollution areas.

This consideration should, however, be included in future study.5

3 Remote sensing of aerosol optical properties

In this study, we used two different types of satellite-derived, aerosol optical properties:

Aerosol Index (AI) and AOD. AI was retrieved from the Earth Probe TOMS platform and

AOD from the NASA/Terra MODIS satellite sensor. The AOD values at several ground

locations inside the domain were also obtained through a sunphotometer network of10

AERONET managed by the NASA Goddard Space Flight Center (Holben et al., 1998).

These aerosol optical properties were then applied to further analysis in conjunction

with 3-D Eulerian MM5-CMAQ modeling.

3.1 TOMS Aerosol Index

TOMS instruments (McPeters et al., 1996) have been providing useful global UV radi-15

ation, ozone, and UV absorbing aerosol data for more than two decades. The TOMS

AI was initially computed for the correction of aerosol-induced errors in the retrieval

of total ozone (Herman et al., 1997; Torres and Bhartia, 1999). The TOMS AI is cal-

culated on the basis of the difference between the measured spectral contrast of the

360 nm and 331 nm wavelength radiances and the contrast calculated from the radia-20

tive transfer theory for a pure molecular atmosphere, which allows for the detection

of UV absorbing aerosols over both land and ocean. In the current version 8 Nim-

bus7 TOMS (1979–1993), Earth Probe TOMS (1996–2007) and version 2 Aura OMI
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(2004-present) algorithms, it is mathematically defined as:

AI = 100

{

log10

(

I360

I331

)

meas

− log10

(

I360

I331

)

calc

}

(2)

where the indices meas and calc indicate the radiance measured by TOMS and the

radiance calculated for pure Rayleigh scattering, respectively. AI is positive for ab-

sorbing aerosols (e.g. dust and BC particles) and negative for non-absorbing aerosols5

(e.g. sulfates). In this study, the TOMS AI data were retrieved from the Earth Probe

TOMS platform.

3.2 MODIS AOD data

The MODIS instrument is mounted on two NASA Earth Observation System (EOS)

platforms: the Terra and Aqua satellites. The former is on a descending orbit flying10

southward across the equator around 10:30 local sun time, while the latter Aqua satel-

lite is on an ascending orbit flying northward around 13:30 local sun time. MODIS

has 36 channels ranging from 0.41µm to 14µm at three different spatial resolutions

(250 m, 500 m and 1 km). In this study, we used the AOD retrieved from the EOS/Terra

MODIS platform.15

For spatially-resolved aerosol retrieval from MODIS data, a modified version of the

BAER algorithm (von Hoyningen et al., 2003; Lee et al., 2005, 2007) was applied.

To avoid inhibition from cloud and sun-glint effects, the MODIS L1B data were first

processed to filter out cloud and sun glint pixels (Ackerman et al., 1998; Martins et al.,

2002), after which the following radiative transfer equation was used to calculate the20

aerosol reflectance (ρAERO):

ρAERO(λ) = ρTOA(λ) − ρRay(λ) −
T0 · TS · ρSurf

1 − s · ρSurf

(3)

where ρTOA, ρRay, and ρSurf represent the Top-of-the-Atmosphere (TOA) reflectance,

Rayleigh path radiance, and surface reflectance, respectively, To and Ts the total and
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surface transmittance, respectively, and s the hemispheric reflectance. As shown in

Fig. 3 and Eq. (3), the MODIS-BAER algorithm is composed of three parts. First,

MODIS TOA reflectance in a cloud-free pixel is separated from Rayleigh path radiance.

The Rayleigh path radiance can be determined from the altitude-dependent surface

pressure p(z) in each pixel (Bucholtz, 1995). Second, the surface reflectance obtained5

from the “linear mixing model” is separated (shown in Eq. 4 below). Finally, AOD can

be determined by the pre-calculated Look up tables (LUT) approach.

M-BAER was differentiated from the NASA operational, Level-2 Collection 5 (C005)

algorithm in the determination method of the surface reflectance. The NASA

Level-2 C005 uses “spectral conversion method”, based on the VIS/SWIR ratios10

(ρ0.47,0.66µm/ρ2.13µm). Although this spectral conversion factor is quite dependent on

land surface cover type, their assessments of accuracy are reported to be reasonable

for dark pixel (Kaufman et al., 1998; Levy et al., 2007). In the M-BAER, the surface

reflectance is determined by a linear mixing model of the spectral reflection of “green

vegetation” and “BAER soil” to determine the land surface reflectance in BAER (von15

Hoyningen et al., 2003; Lee et al., 2006).

ρSurf(λ) = CVegρVeg(λ) + (1 − CVeg)ρSoil(λ) (4)

where ρVeg(λ) and ρSoil(λ) are the spectral reflectance of “green vegetation” and

“BAER soil”, respectively, and CVeg is the vegetation fraction in each pixel. In Eq. (4), a

modified aerosol free vegetation index (AFRI) (Karnieli et al., 2001) was used instead20

of normalized difference vegetation index (NDVI) as CVeg, since the NDVI derived from

red and near-infrared (NIR) channels tends to be strongly affected by the presence of

aerosols, which could therefore lead to underestimation of vegetation (von Hoyningen-

Huene et al., 2003).

Lee et al. (2006, 2007) have applied the M-BAER algorithm to the retrieval of τ from25

the NASA EOS/Terra MODIS platform. They then evaluated the performance of the

M-BAER algorithm over “South Korea” by comparing τM−BAER with τAERONET. They

found that the M-BAER algorithm worked very well, showing good agreement between
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τM−BAER and τAERONET. This study is an extension of their works into “East Asia” in

regard to satellite-derived aerosol optical property monitoring. In addition, this study

compared two aerosol products (τM−BAER and τNASA) and evaluate the accuracy of both

the satellite-derived AOD with τCMAQ and τAERONET in East Asia.

3.3 AERONET data5

Two sunphotometer/skyradiometer networks have been operated in East Asia:

AERONET and SKYNET (Skyradiometer Network). The former is a federated sunpho-

tometer network and data archive for aerosol characterization that has been managed

by the NASA Goddard Space Flight Center in USA (Holben et al., 1998). The latter is

a skyradiometer (an instrument similar to sunphotometer) network established in late10

1997 for studying the role of aerosols in climate change as a part of GEWEX Asian

Monsoon Experiment/Asian Automatic Weather Station Network (GAME/AAN) (Kim et

al., 2004). In this study, we obtained the sunphotometer-derived AOD (τAERONET) from

AERONET.

AERONET has 21 ground-based monitoring stations within our East Asian modeling15

domain (this will be shown in Fig. 10), and provides total column spectral τ, single

scattering albedo (ωo), and reflective index at visible and NIR wavelengths. Among the

aerosol properties, the spectral τ provided by AERONET are regarded as “ground true

values”, since they are unaffected by surface reflectance, unlike the satellite-derived τ.

In this study, we selected τ at 550 nm, by using a power law interpolation. For example,20

at the Gosan AERONET site the AOD values at 550 nm were interpolated between τ
at 440 nm and 675 nm. In addition, the sunphotometer data closest to the satellite

scanning time were taken from the AERONET sites and τMODIS were selected at the

nearest locations to the AERONET sites for further comparison studies.
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4 Results and discussions

Spatial, temporal, and seasonal distributions of aerosol mass loading and τ generated

by US EPA Models-3/CMAQ modeling were compared with MODIS-derived AOD and

AOD from AERONET over East Asia. Following these comparisons, we discuss the

species-wise formation characteristics of particulate pollutants in the different regions5

of East Asia for the four seasons.

4.1 CMAQ- and MODIS-derived AOD in East Asia

4.1.1 Estimation of CMAQ-derived AOD

Section 3.2 presented the method to retrieve τMODIS from the NASA EOS/Terra MODIS

platform via the M-BAER and NASA C005 algorithms. This section introduces meth-10

ods to estimate τCMAQ from the particulate concentrations generated from the US EPA

Models-3/CMAQ model. AOD (τ) is theoretically calculated by integrating the aerosol

extinction coefficient (σext(z)) with respect to altitudes (z), i.e.:

τ =

∫

σext(z) · dz (5)

The method by which σext(z) is calculated from the particulate composition is therefore15

important. Actually, there are two such methods. The first is based on the Mie theory, in

which the extinction coefficient of a certain species i (σext,i) is calculated as a function

of density of particulate species i (ρi ), mass of particulate species i at an altitude

z (Mi (z)), extinction efficiency of particulate species i (Qext,i), and effective radius of

particulate species i (reff,i(z)) (d’Almeida et al., 1991; Chin et al., 2002):20

σext,i(z) =
3Qext,iMi (z)

4ρi reff,i(z)
(6)
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The total aerosol extinction coefficient (σext) is then calculated by σext=
∑

i

σext,i, based

on the assumption that all the particulate species, except for particulate water, are

externally mixed. Of the aerosol properties in Eq. (6), reff,i (z) is a function of the size-

distribution of particulate species i and altitude z, and Qext,i is a function of reff,i , refrac-

tive index (mi ) of particulate species i , and wavelength (λ), i.e., Qext,i (reff, mi , λ). Also,5

ρi , Qext,i , and reff,i are strongly variable with ambient relative humidity (RH), since each

particulate species has different hygroscopic capability. Thus, all the aerosol prop-

erties in Eq. (6) are dependent on RH (d’Almeida et al., 1991; Chin et al., 2002; and

more references therein). The Mie-theory-based, extinction coefficient calculations are,

therefore, based on several assumptions, as presented by Chin et al. (2002; 2004). For10

example, in Chin et al. (2002, 2004)’s global 3-D modeling studies, the size-distribution

of each particulate species was assumed (or determined), and then fixed during the

3-D model simulations. However, for example, the size-distributions of dust particles

have high spatial and temporal variations due to their different emission strength and

deposition characteristics, and sulfate and SOA distributions are also spatially and15

temporally variable due to different particle growth rates. In addition, the changes of

the aerosol properties due to hygroscopicity are highly uncertain. In East Asia, the

consideration of NH4NO3 is of primary importance, but its size-distribution has not

been sufficiently characterized to enable the use of the Mie-theory-based extinction

coefficient calculations. Therefore, following consideration of these uncertainties we20

estimated σext with an empirical correlation, often called the “reconstructed extinction

coefficient method”. The method was first proposed by Malm et al. (1994) to investi-

gate the spatial and temporal variability of haze and visibility impairment in USA, and

has been continuously improved by several researchers (e.g., Malm and Kreidenweis,

1997; Malm, 2000). Among the correlations available, we adopt the latest version of25

the formula proposed by Malm (2000) as a part of the Integracy Monitoring of Projected
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Visual environment (IMPROVE) program:

σext(Mm
−1

) = 3.0 × f(RH) × {[(NH4)2SO4] + [NH4NO3]} + 4.0 × [SOAs]

+10.0 × [BC] + 1.0 × [fine − dust] + 0.6 × [coarse − dust]
(7)

This method is also based on the same assumption as the Mie-theory-based method,

i.e., all the particulate species, except for particulate water, are externally mixed. As

shown in Eq. (7), σext is conveniently calculated from the particulate concentrations5

(in µg m
−3

) of (NH4)2SO4, NH4NO3, BC, SOAs, and fine-mode and coarse-mode dust,

which are generated from the US EPA Models-3/CMAQ model. In Eq. (7), the variability

in σext caused by variable RH was considered by hygroscopic growth factor or extinction

enhancement factor, f(RH). In the calculations, only (NH4)2SO4 and NH4NO3 were

considered hygroscopic. The consideration of f(RH) is of primary importance, since10

σext varies greatly with RH, particularly when RH is larger than 80%. In addition, f(RH)

exhibits seasonal variation which is accounted for by using the following equation:

f (RH) = b0 + b1

(

1

1 − RH

)

+ b2

(

1

1 − RH

)2

(8)

The correlation parameters (b0, b1, and b2) in Eq. (8) for the different seasons are pre-

sented in Table 1. Here, a further assumption made in using Eq. (8) is that the aerosol15

hygroscopic characteristics in East Asia are the same as those in USA. In addition, for

the calculations of RH (≡ e(z)/ew (z)), water vapor pressure (e(z)) is calculated by the

equation proposed by Mattis et al. (2002) and saturation vapor pressure is estimated

by the Bolton equation shown below:

ew (z) = 6.112 × exp

(

17.67 ×
T − 273.15

T − 29.65

)

(9)20

where T is temperature in K and ew (z) indicates the saturation vapor pressure at an

altitude z.
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4.1.2 CMAQ-derived AOD vs. MODIS-derived AOD

The two MODIS-derived AOD (τM−BAER and τNASA) were compared with both the

aerosol column mass loading (mg m
−2

) and the τCMAQ values calculated from the

aerosol composition produced by the Models-3/CAMQ model. τCMAQ was calculated

based on the reconstructed extinction coefficient method (Sect. 4.1.1). In Fig. 4, the5

spatial distributions of episode-average τM−BAER, τNASA, τCMAQ, and aerosol column

mass loading are shown for the four seasonal episodes. The high τM−BAER and τNASA

values appeared over four highly polluted areas: (i) Bohai Bay, (ii) Sichuan Basin, (iii)

lower course of the Yangtze river (also called “Yangtze River Delta”), and (iv) high NH3

emission area (refer to Fig. 1). During the spring episode, a large dust storm broke out,10

and was transported over long distances through Manchuria and the Korean penin-

sula. Therefore, Fig. 4 shows a high aerosol mass loading over these areas during

this episode (note that the scale of the column aerosol mass loading in spring was

changed to better present the dust plume in Fig. 4). τCMAQ along the transport track of

the dust storm was not noticeably high, although it ranged between 0.5 and 1.0 over15

Manchuria and the northern parts of the Korean peninsula, possibly due to the lower

sensitivity of the reconstructed extinction coefficient method to the coarse-mode dust

concentrations, as shown in Eq. (7). Figure 4 shows high τM−BAER and τNASAvalues

over the ocean but not over the land. In addition, there was a clear discontinuity in

τMODIS over land and ocean in the dust plume, i.e., high τMODIS over the Bohai Sea and20

the Sea of Japan (also known as the East Sea), but low τMODIS over Manchuria and the

Korean peninsula. This may have two causes: i) the different aerosol retrieval methods

in the M-BAER and NASA algorithms over the land and ocean (refer to Sect. 3.2) and

ii) the cloud pixel screening procedure in the AOD retrieval algorithms. Regarding the

latter, dust plumes are typically transported behind or below the cold frontal clouds in25

East Asia. During the spring episode, a dust storm erupted over the eastern parts of

Inner Mongolia on 7 April 2002, and was transported out over Sakhalin and Hokkai

Islands, passing through Manchuria and the Korean peninsula on 8 and 9 April 2002.

8677

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/8661/2008/acpd-8-8661-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/8661/2008/acpd-8-8661-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 8661–8713, 2008

Seasonal and

regional aerosol

characteristics in

East Asia

C. H. Song et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Figure 5 shows snapshots of the infrared difference dust index (IDDI) with clouds from

the NOAA satellite on 7 April to 9 April 2002. As shown in Fig. 5, the dust plumes

were accompanied by clouds. Therefore, the many pixel values reflecting high dust

concentrations were screened out. These procedures resulted in low average τM−BAER

and τNASA over Manchuria, as shown in Fig. 4. Further analysis of the dust plumes5

with TOMS AI is discussed in Sect. 4.1.3.

In addition, no τMODIS values were reported over the desert and loess areas due to

surface glint effects (cf. Fig. 1). The surface glint areas (white-colored areas in Fig. 4)

were the largest in winter and many parts of the desert and loess areas were also

covered by snow and ice during the winter season. In contrast, the grass-covered10

areas were the largest in summer, and thus the surface glint areas were shrunken

during the summer episode.

Although the integrated satellite-CMAQ model analysis has many merits, further

“chemical” analysis are still useful. τMODIS can provide the 2-D domain-wide, spatial

distributions of columnar aerosol optical properties, but not the species-wise, spatially-15

resolved, aerosol chemical composition distributions. Therefore, the different aerosol

formation characteristics in different regions and different seasons in East Asia could

not be described or identified by τMODIS itself, and the analysis requires comprehen-

sive CTM such as US EPA Models-3/CMAQ modeling in conjunction with the satellite-

derived, aerosol optical properties. This is discussed in Sect. 4.1.4.20

4.1.3 Dust event and TOMS AI

As discussed in Sect. 3.1, AI is a good optical indicator for absorbing aerosols

(such as dust and BC), especially when they are transported through the “free” tro-

posphere. Based on this, many scientists have investigated the ability of remotely

sensed, high AI plumes concurrently occurring over the same regions to represent25

dust plumes transported over long-distances across the oceans and continents (Phad-

nis and Carmichael, 2000; Israelevich et al., 2002; Ginoux et al., 2001; Ginoux and

Torres, 2003; Ginoux et al., 2004).
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Snapshots for the spatial and temporal AI distributions during the dust period (7 to 9

April 2002) over East Asia are shown in the top three panels in Fig. 6. The transport

of model-predicted, high column mass loading (mostly composed of dust particles)

through Manchuria and the Korean peninsula are also presented in the bottom three

panels in Fig. 6. Figure 6 illustrates the good agreements in the spatial and temporal5

distributions of both the high AI plumes and the high column mass loading (although

both quantities are not directly compared to each other).

In the top panels in Fig. 6, another high AI plume can be found over the Guangxi and

Guangdong provinces (near Hong Kong). The high AI plume may have been caused

by the BC plume emitted from biomass burning events. Spring is not only the typical10

dust season, but also the typical biomass burning season in East Asia (Ma et al.,

2003; Song et al., 2005b; more references therein). The former usually influences the

northeast Asian atmosphere, whereas the latter affects southeast Asian atmosphere,

and frequently occurs in the southwestern edges of China, Thailand, Myanmar, and

northern Vietnam. Since the biomass burning events took place outside the modeling15

domain, and as the CMAQ modeling does/can not consider the biomass burning event

in the boundary layer conditions, the BC plumes over the Guangxi and Guangdong

provinces were not captured in the results of the CMAQ modeling (bottom panels in

Fig. 6).

4.1.4 Seasonal and regional formation characteristics of particulate pollutants20

Figure 7 presents the spatial distributions of the column concentrations of five major

particulate constituents of PM2.5: (i) nitrate (NO
−
3

), (ii) sulfate (SO
2−
4

), (iii) dust, (iv) BC,

and (v) SOAs. Although the spatial distribution of ammonium (NH
+

4 ) is not shown in

Fig. 7, it can be estimated from the column concentrations of nitrate and sulfate, be-

cause ammonium is present in fine-mode particles as forms of crystallized salt like25

NH4NO3 and (NH4)2SO4, and/or is neutralized by nitrate and sulfate ions in the partic-

ulate water. The NH4NO3 salt formation or NH
+

4 -NO
−
3

ion association takes place by
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the following equilibrium reaction (Seinfeld and Pandis, 1998; Jacobson, 1999):

NH3 (g) + HNO3 (g)↔NH4NO3 (s) and/or NH+

4
(aq) + NO−

3
(aq) (R1)

The equilibrium reaction of (R1) is governed by thermodynamic relationships. If the

product of partial pressures of gas-phase NH3 and HNO3 is larger than the equilib-

rium constant (Keq), the equilibrium reactions proceed in the forward direction (i.e., the5

formation or association of NH4NO3 and/or NH
+

4 -NO
−
3

ions). On the contrary, if the

product is smaller than Keq, the equilibrium is governed by the reverse reaction. The

equilibrium is also controlled by temperature, since Keq is a function of temperature.

When temperature is low, the equilibrium tends to shift toward the particulate NH4NO3

and/or NH
+

4 –NO
−
3

formation, whereas, if temperature is high, it proceeds in the reverse10

direction. This heterogeneous process is considered by the ISORROPIA module in the

Models-3/CAMQ model (Nenes et al., 1998), and both forward and reverse reactions

take place so rapidly that one can treat these processes in a thermodynamic manner,

as described in Sect. 2.1 (Capaldo et al., 2000). In contrast, (NH4)2SO4 formation

and/or NH
+

4 –SO
2−
4

association take place in an “irreversible way”:15

2NH3(g) + SO2−
4

(aq) + 2H+ → (NH4)2SO4 (s) and/or 2NH+

4
(aq) + SO2−

4
(aq) (R2)

Once sulfate is formed via SO2+OH reaction and subsequent gas-to-particle conver-

sion, it is then neutralized by gas-phase NH3, following (R2).

Some amounts of nitrate and sulfate can also be formed in fine- and coarse-mode

dust particles, in which nitrate and sulfate mainly exist as forms of Ca(NO3)2 and20

CaSO4. Song et al. (2005a, 2007), however, revealed that major parts (>95% on

the mass basis) of NH
+

4 –NO
−
3

–SO
2−
4

are mainly present in anthropogenic pollution par-

ticles and that they are almost externally mixed with chemically near-fresh dust parti-

cles in the East Asian atmosphere. Only small amounts of nitrate and sulfate can be

formed in fine- and coarse-mode dust particles due to the small magnitudes of uptake25

coefficients of gas-phase sulfate and nitrate precursors (such as SO2, H2SO4, NO3,

N2O5, and HNO3) onto East Asian mineral dust. Based on the conclusions of Song et
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al. (2005a, 2007), we neglect the nitrate and sulfate formation in/on dust particles in

this study.

The first three columns in Fig. 7 present the spatial distributions of the nitrate, sulfate,

and dust concentrations. As discussed previously, dust concentrations are large only in

spring due to the dust storm. In Fig. 7, two facts are particularly noteworthy regarding5

the particulate NH
+

4 –NO
−
3

–SO
2−
4

formation. First, the levels of nitrate (associated with

ammonium) were almost comparable to those of sulfate (associated with ammonium).

Thus, the NH
+

4 –NO
−
3

formation can/should not be neglected in the CTM studies, partic-

ularly over East Asia. Second, the NH
+

4 -NO
−
3

formation characteristics differed greatly

from the NH
+

4 –SO
2−
4

formation characteristics throughout the four seasons. Regarding10

the sulfate formation, the SO2 into sulfate conversion rate peaked in summer, because

of the high temperature and high levels of hydroxyl radicals (OH) due to the intense so-

lar radiation and high levels of H2O. Therefore, sulfate concentrations were the largest

in summer and the smallest in winter. On the contrary, the fine-mode nitrate formation

was active at low temperature. Thus, the levels of nitrate were the highest in winter15

and the lowest in summer. Both fine-mode sulfate and nitrate are the key particulate

species that actually affect AOD (τMODIS and τCMAQ) and therefore climate forcing by

aerosols in East Asia. The contributions of both species to τMODIS and τCMAQ increased

with increasing RH, because both species are “hygroscopic”, as described in Eq. (7).

In addition, as mentioned above, the contributions of both species to τMODIS and τCMAQ20

exhibited seasonal variations. In East Asia, (NH4)2SO4 was the main contributor to

large τMODIS and τCMAQ in summer, whereas NH4NO3 was in winter. Meanwhile, the

extent of the contributions of both species also exhibited regional variations. NH4NO3

was usually formed over high NH3emission areas (refer to Fig. 1), whereas (NH4)2SO4

was formed mainly over the urban-polluted regions (regions A, B, and C in Fig. 1), since25

SO2 was mainly emitted from such areas.

BC is a light-absorbing particle. With the same mass concentration, its contribution

to σext and τ is large. Generally, the absolute BC levels are usually lower in East Asia

than those of nitrate and sulfate. Since BC has similar emission sources to SO2, its
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spatial distributions are more similar to those of sulfate than those of nitrate.

The contributions of SOAs to σext and τ were also considered to be large, as shown

in Eq. (7). The absolute levels of SOAs in East Asia were approximately 0.25–0.33

times lower than those of sulfate and nitrate. The SOA formation is mainly governed

by three factors: (i) temperature, (ii) the intensity of solar radiation, and (iii) the levels5

of precursors (i.e., NMVOCs). The SOA precursors react with OH radicals. The levels

of OH radicals are primarily controlled by the intensity of solar radiation, (R3), and are

also limited by the levels of H2O, (R4):

O3 + hν → O1D + O2 (R3)

O1D
+ H2O → 2OH (R4)10

NMVOCs + OH(O3andNO3) → SOAs (multi − steps) (R5)

The subsequent reaction of (R4) proceeds very fast, producing OH radicals in the at-

mosphere. The reaction rate of (R5) is controlled by the levels of OH radicals and

increases with increasing temperature. Therefore, in general SOAs were actively pro-

duced in summer. There are other important routes for SOA production. NMVOCs15

react with other oxidants in the atmosphere, such as O3 and NO3. The concentrations

of these two species are highest in summer and lowest in winter. In addition to the

high levels of OH, O3 and NO3, biogenic NMVOC emissions were also very active in

summer. As mentioned in Sect. 2.3, we used the monthly biogenic isoprene and mono-

terpene emissions from the GEIA inventory in the US EPA Models-3/CMAQ modeling20

study. The biogenic emissions were highly active in the southern parts of the Yangtze

river. Thus, high levels of SOAs were found in the southern areas of the Yangtze river,

and were the key particulate component that actually affected σext, and thus τMODIS and

τCMAQ, over such regions in summer (refer to the last column in Fig. 7).
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4.1.5 Statistical analysis

This section presents an investigation into the correlation between τMODIS and τCMAQ

over a pollution-affected window in the domain (100
◦
E–130

◦
E; 20

◦
N–45

◦
N). Remote

ocean and continental areas were excluded from the analysis because we were pri-

marily interested in the pollution-affected areas and did not consider the generation of5

sea-salt over the ocean. Figure 8 shows reasonably good correlations between τMODIS

and τCMAQ, with correlation coefficients (R) ranging from 0.45 to 0.58. As shown in

Fig. 8, the correlations between τM−BAER and τCMAQ (blue dots) and between τNASA

and τCMAQ (red circles) were similar around the 1:1 line. This was further confirmed by

statistical analysis.10

For further statistical investigations (error and bias analyses), four statistical parame-

ters were introduced: (i) Root Mean Square Error (RMSE), (ii) Mean Normalized Gross

Error (MNGE), (iii) Mean Bias (MB), and (iv) Mean Normalized Bias (MNB).

RMSE =

√

√

√

√

1

N

N
∑

1

(τCMAQ − τMODIS)2 (10)

MNGE =
1

N

N
∑

1

(
|τCMAQ − τMODIS|

τMODIS

) × 100 (11)15

MB =
1

N

N
∑

1

(τCMAQ − τMODIS) (12)

MNB =
1

N

N
∑

1

(
τCMAQ − τMODIS

τMODIS

) × 100 (13)

The results from the statistical analyses are presented in Table 2 for the four seasons.

In error analysis, the RMSEs (absolute errors) ranged between 0.23 and 0.30, and the
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MNGEs (relative errors) between 39.70% (spring) and 70.51% (fall). In the bias anal-

ysis, the MBs ranged between −0.15 (spring) and 0.10 (fall), and the MNBs between

−19.86% (spring) and 40.34% (summer). Again, as shown in Table 2, the magnitudes

of the four statistical values between τM−BAER and τCMAQ and between τNASA and τCMAQ

are similar, indicating that the M-BAER algorithm has equivalent capability to the NASA5

C005 algorithm in producing τ.

As discussed previously, τMODIS tends to be underestimated over the land areas

affected by dust plumes due to the cloud pixel screen-out procedure, which causes MB

and MNB to have negative values in spring (−0.10 and −11.26% for τM−BAER, −0.15

and −19.86% for τNASA, respectively). However, except for the spring episode, the10

values of MBs and MNBs were positive, indicating that τCMAQ was larger than τMODIS.

This may have been partly due to the fact that the reconstructed extinction coefficient-

based method reacts sensitively to RH, particularly at RH >80%. In addition, there

are, of course, uncertainties in the M-BAER and NASA algorithms. Such results are

contradictory to those reported by Chin et al. (2004) over East Asia during the ACE-15

Asia campaign period. Although they used different methods from those in this study,

i.e., (i) τNASA obtained from the NASA Level-2 C004 products and (ii) Mie-theory-based

σext calculations, τNASA tended to be larger than τGOCART (i.e., MB and MNB would

be negative, if Eqs. (12) and (13) were employed in their study; here, GOCART is

the name of the 3-D global CTM used by Chin et al., 2004). They interpreted these20

results by an explanation that τNASA from the NASA Level-2 C004 products tends to

overestimate AOD, mainly due to the possible underestimation of the influences of

the surface reflectance (Remer et al., 2005). Based on this, NASA released NASA

Level-2 Collection 5 (C005) products processed with an improved surface reflectance

consideration (Levy et al., 2007). In addition, Chin et al.’ work (2004) did not consider25

the particulate NH4NO3 formation, and thereby they also omitted the contribution of

particulate NH4NO3 to σext and τ. However, as shown in Fig. 7, the contribution of fine-

mode NH4NO3to σext and τ cannot be neglected in East Asia, and it should be taken

into account in the 3-D CTM study over East Asia. Such omission of the NH4NO3
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formation would lead to the under-predictions of τGOCART.

The distribution of τMODIS and τCMAQ can also be compared by probability distribu-

tion function (PDF). The PDFs of τMODIS and τCMAQ over the pollution-affected area,

presented in Fig. 9, display highly similar shapes for the four seasons.

4.2 CMAQ-, MODIS-derived AOD vs. AERONET AOD5

This section compares four different kinds of AOD (τCMAQ, τM−BAER, τNASA, and

τAERONET) at several AERONET sites in East Asia. Particularly, τAERONET has been

regarded as the “ground true value”, since it is not interfered by surface reflectance

(the largest uncertainty source in the retrieval of satellite-derived τ). Therefore, the

comparison studies between τMODIS and τAERONET may be able to provide a good op-10

portunity to evaluate the accuracy of the M-BAER and NASA algorithms and US EPA

Models-3/CMAQ modeling over East Asia.

AERONET has 21 ground-based monitoring stations in East Asia (Fig. 10) which pro-

vide total column spectral τt visible and NIR wavelengths. As discussed previously, we

selected τ at 550 nm for these comparison studies. The comparisons among the four15

different types of τ are shown in Fig. 11 (upper panel of each figure). The selections

of the AERONET sites were based on the AERONET data availability in each season

(i.e., in each season, the four sites with the largest number of τAERONET were chosen).

The particulate “chemical” composition generated from US EPA Models-3/CMAQ mod-

eling is also plotted in Fig. 11 (bottom panel of each figure), which exhibits the good20

agreement among τCMAQ, τM−BAER, τNASA, and τAERONET. This issue will be further

analyzed below.

During the spring episode, the peaks at the Gosan and Shirahama sites on 7 to 9

April 2002 were predominantly affected by the dust storm, and the influence lasted

till 13 April 2002. During the non-dust period, however, τCMAQ, τM−BAER, τNASA, and25

τAERONET appeared to be mainly influenced by secondary anthropogenic inorganic

compounds such as ammonium, nitrate, and sulfate, as discussed in Sect. 4.1.4,

whereas the contribution of SOAs was relatively small. Again, the contribution of sea-
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salt particles to τ may have been important, since the two sites were located in coastal

areas. However, in US EPA Models-3/CMAQ modeling, the sea-salt emissions were

not considered. Unlike the Gosan and Shirahama sites, the influence of dust particles

is negligible in Taipei, and τ is largely impacted by secondary inorganic compounds.

At the Dalanzadgad site, τMODIS was hardly observed, since Dalanzadgad is located5

inside the Gobi desert (i.e., due to the surface glint effects over the desert areas).

τAERONET available at the Dalanzadgad site showed two salient peaks on 3 and 5 April

2002, but they were not predicted by the dust generation model (Eq. 1). In practice, pre-

dictions and forecasts of dust storms have been difficult and very challenging (Gillette

and Passi, 1988; Gillette et al., 1992; Park and Lee, 2004; Uno et al., 2006). The dust10

generation model used in this study can predict large- or regional-scale dust storms

like the one that erupted on 7 to 9 April 2002 over Manchuria, but not the local-scale

dust events that take place inside the Gobi desert and loess plateau areas.

Unlike the spring season, several τMODIS were retrieved at the Dalanzadgad site in

summer due to the spreading of grass-covered areas in this area (also refer to Fig. 4).15

Nevertheless, the magnitude of τ in Dalanzadgad was small, due to its location in a

remote continental background area. In contrast, τ in Beijing was large and appeared

to be primarily affected by (NH4)2SO4 and secondarily by NH4NO3 in summer (note that

in Fig. 11 (summer), the y-axis in Beijing has been re-scaled). Gosan was also greatly

affected by (NH4)2SO4 and NH4NO3 on 9 to 13 September 2002. The magnitude20

of τ in winter was also large, but the contributions of particulate chemical species

were changed. As shown in Fig. 11 (winter), τ from Beijing to Shirahama was more

affected by the formation of NH4NO3 than of (NH4)2SO4. In fall, not many τAERONET

were available except at the Anmyon site, where both (NH4)2SO4 and NH4NO3 almost

equally contributed to τ.25

As mentioned above, we compared τM−BAER and τNASA with τAERONET at several

AERONET sites in East Asia to evaluate the performance of the M-BAER and NASA

algorithms in East Asia. First, the correlations between τMODIS and τAERONET were

analyzed in Fig. 12 for the four seasons. The two quantities were highly correlated to
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each other around the 1:1 lines with correlation coefficients (R) ranging from 0.72 to

0.96 (except for R between τM−BAER and τAERONET in the fall). The low R value in the fall

season was attributed to the availability of τAERONET. As discussed previously, not many

τAERONET were available in the fall episode. As previously discussed, since 2006 NASA

has released new satellite aerosol products, denoted as NASA Level-2 Collection 55

(C005), which are reported to have reduced the levels of τNASA, compared with τNASA

(NASA C004 product), and thus show better agreement with τAERONET (Dubobik et al.,

2002; Remer et al., 2005; Levy et al., 2007). As shown in Fig. 12, with reference

to τAERONET (ground true value), both τM−BAER and τNASA (NASA C005 product) were

highly correlated around the 1:1 lines during the four seasons. This suggests that:10

i) both M-BAER and NASA algorithms can produce a high quality τMODIS and ii) the

accuracy of τM−BAER is equivalent to that of τNASA. This was further confirmed by

statistical analysis.

RMSE, MNGE, MB, and MNB among τM−BAER and τNASAτCMAQ and τAERONET

were analyzed in Table 3. Although the largest differences appeared in the fall15

episode, τCMAQ, τM−BAER, and τNASA and τAERONET exhibited good agreements in the

other three seasons. Again, the large differences in fall were partly caused by the

scarcity of τAERONET during the fall episode. Importantly, no significant positive biases

(τMODIS≫τAERONET) were reported, which have been typical in the analyses of τMODIS

vs. τAERONET (Chin et al., 2004; Remer et al., 2005; Levy et al., 2007). This may20

indicate that both τM−BAER and τNASA can capture the spatial and seasonal aerosol

characteristics in East Asia better than τNASA (C004).

5 Summary and conclusions

The spatio-temporal and seasonal distributions of τMODIS (τM−BAER and τNASA) were

compared with those of aerosol column mass loading (Mcolumn) and τCMAQ for the four25

seasonal episodes in East Asia. Although τMODIS can provide information on spatial

aerosol mass distributions, they can not provide aerosol chemical composition. There-
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fore, in order to estimate the aerosol chemical composition over East Asia, the US EPA

Models-3/CMAQ v4.3 model was utilized, together with the PSU/NCAR MM5 meteo-

rological model and the ACE-Asia/TRACE-P official emission inventory for East Asia.

In this study, τCMAQ was calculated using a reconstructed extinction coefficient-based

method, whereas τMODIS was retrieved from MODIS Level-1B (L1B) radiance data us-5

ing a modified Bremen Aerosol Retrieval Algorithm (M-BAER algorithm) and NASA

Collection 5 (C005) algorithm. In addition, τAERONET from several AERONET sites in

East Asia was obtained and used as the “ground true value” in this study.

Both τMODIS and τCMAQ showed high values around Chinese urban and industrial

centers, such as Sichuan Basin, Bohai Bay and Yangtze Delta areas, as well as over10

active agriculture and livestock farming areas due to their high NH3 emissions. For

the four season episodes selected in this study, the CMAQ model generated similar

levels of τCMAQ to those of τMODIS throughout the domain, with R ranging between 0.45

and 0.68, RMSE between 0.23 and 0.30, MNGE between 39.7% and 70.5%, MB be-

tween −0.15 and 0.10, and MNB between −19.9% and 40.3%. In particular, τMODIS15

and τCMAQ exhibited good agreement in the probability distributions over the domain.

However, during the spring episode, τCMAQ was significantly under-predicted compared

to τMODIS, thereby showing negative biases, particularly over the areas where a dust

storm had traveled. This may have arisen due to the cloud pixel screen-out procedure

used in retrieving τMODIS. Except for the spring episode, the levels of τCMAQ were gen-20

erally comparable to or slightly higher than those of τMODIS. Through US EPA Models-

3/CMAQ modeling, the contribution of each particulate chemical species to τMODIS and

τCMAQ was investigated. During the summer episode, the high levels of both τMODIS

and τCMAQ may have been caused mainly by the high concentrations of (NH4)2SO4

produced over the Chinese urban and industrial centers. In contrast, the high τMODIS25

and τCMAQ plumes during the winter episode were related to NH4NO3 concentrations

over the urban and industrial centers, as well as over Chinese agricultural and live-

stock farming areas. Finally, τMODIS was greatly correlated with τAERONET, indicating

the promising potential of the application of the M-BAER algorithm to East Asian air
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quality and satellite-based monitoring studies.

In future analysis, given the recent capability for aerosol optical products to be re-

trieved with very fine resolutions (e.g., 13×24 km
2
-resolved τ from NASA/AURA OMI

platform), 3-D photochemistry-aerosol modeling should be conducted with matching

fine resolutions, possibly by employing a nested-grid technique (Byun and Ching,5

1999). In addition, US EPA has released a ‘spin-off’ version of the CMAQ model, called

the CMAQ-MADRID (Model of Aerosol Dynamics, Reaction, Ionization, and Dissolu-

tion) model (Zhang et al., 2002, 2004; Pun et al., 2005). The CMAQ-MADRID model

still uses the US EPA Models-3/CMAQ frame, but includes alternative aerosol dynamic,

microphysical, and chemical processes. As the CMAQ-MADRID model has a more so-10

phisticated SOA formation scheme than the CMAQ model (Zhang et al., 2004; Pun et

al., 2002, 2005), the use of the former may produce a different particulate chemical

composition and therefore different τCMAQ−MADRID.

In the remote sensing of aerosol optical properties, various types of aerosol optical

properties (such as τ, ωo, FMF, and reff) are becoming available at higher qualities. For15

example, FMF was not considered in this study because it has not yet been included in

the M-BAER algorithm. However, future studies should consider and attempt to iden-

tify the changes in the aerosol size-distribution by using satellite-derived FMF and/or

reff. Furthermore, although satellite remote sensing has a serious limitation in obtaining

vertical aerosol extinction profiles, space-borne lidar systems such as CALIPSO have20

released vertically resolved, spectral aerosol extinction profiles since 2006. The avail-

ability of such data will provide further opportunities for atmospheric modelers and the

monitoring community to investigate aerosol formation and transport characteristics on

both regional and global scales.
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Table 1. Parameters of the best-fit Eq. (6) relating f (RH) to relative humidity (RH) in the four

seasons.

b0 b1 b2

Spring −0.01097 0.78095 0.08015

Summer 0.18614 0.99211 –

Fall −0.24812 1.01865 1.01074

Winter 0.34603 0.81984 –

Annual 0.33713 0.58601 0.09164
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Table 2. Statistical values among τCMAQ, τM−BAER, and τNASA over East Asia.

RMSE MNGE MB MNB

τCMAQ vs. τM−BAER τNASA τM−BAER τNASA τM−BAER τNASA τM−BAER τNASA

Spring 0.27 0.30 39.70 36.05 −0.10 −0.15 −11.26 −19.86

Summer 0.26 0.26 65.49 47.56 0.09 0.07 42.15 23.31

Fall 0.24 0.26 57.46 70.51 0.01 0.10 15.08 40.34

Winter 0.23 0.23 41.30 40.28 0.03 0.02 12.37 11.95
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Table 3. Statistical values among τCMAQ, τM−BAER, τNASA and τAERONET at the AERONET sites

in East Asia.

RMSE MNGE MB MNB

τCMAQ vs.
1 τM−BAER τNASA τAERONET τM−BAER τNASA τAERONET τM−BAER τNASA τAERONET τM−BAER τNASA τAERONET

Spring 0.25 0.24 0.29 45.51 41.88 61.95 −0.11 −0.10 −0.11 −21.67 −18.11 −31.44

Summer 0.39 0.65 0.52 82.23 83.57 78.85 −0.06 −0.21 −0.16 −9.90 −20.06 −22.29

Fall 0.30 0.26 0.26 78.63 119.04 96.55 −0.10 0.02 −0.05 10.10 73.68 11.73

Winter 0.21 0.26 0.27 49.63 54.31 54.67 −0.01 −0.06 −0.11 −1.17 −12.09 −29.05

vs. τAERONET
2

Spring 0.14 0.14 – 30.84 27.88 – 0.03 –0.03 – 13.67 0.02 –

Summer 0.32 0.38 – 65.75 62.77 – −0.09 −0.00 – 33.99 39.71 –

Fall 0.13 0.29 – 153.54 20.29 – 0.02 −0.03 – 109.08 −0.72 –

Winter 0.17 0.17 – 43.69 62.50 – −0.01 0.04 – 23.96 47.79 –

1
indicates that τCMAQ was used as the test variable in Eqs. (10–13).

2
indicates that τAERONET was used as the reference variable in Eqs. (10–13).
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Fig. 1. Modeling domain in this study.
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Fig. 2. Emissions in East Asia: (a) SO2, (b) NOx, (c) NH3, (d) NMVOCs, (e) BC, and (f) OC.
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Fig. 3. MODIS AOD retrieval through the M-BAER algorithm. DEM, SST, and LUT represent

the digital elevation model, sea surface temperature, and look-up table, respectively.
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Fig. 4. Spatial distributions of episode-average τM−BAER (top panels), τNASA (panels in the sec-

ond row), τCMAQ (panels in the third row), and CMAQ-derived, aerosol column loading (panels

in the fourth row) for the four seasons.
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(a)

(b)

(c)

Fig. 5. Snapshots of the infrared difference dust index (IDDI) with clouds from the NOAA

satellite: (a) 7 April, (b) 8 April, and (c) 9 April 2002. The yellow and white colors represent

dust plumes and clouds, respectively.
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Fig. 6. Spatial and temporal distributions of TOMS AI (top panels) and model-predicted, column

mass loading (bottom panels) during a dust storm period (from 7 to 9 April 2002) in East Asia.

8705

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/8661/2008/acpd-8-8661-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/8661/2008/acpd-8-8661-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 8661–8713, 2008

Seasonal and

regional aerosol

characteristics in

East Asia

C. H. Song et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fall

Spring

Summer

Winter

Nitrate Sulfate Dust BBC

Figure 7

SOA

Fig. 7. Species-wise, spatial distributions of particulate components for the four seasons. Ni-

trate and sulfate concentrations in the first and second columns are associated with ammo-

nium (NH
+

4 ) in fine-mode particles. BC and SOAs denote black carbon and secondary organic

aerosols, respectively.
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Fig. 9. Probability distribution function (PDF) of τMODIS (τM−BAER and τNASA) and τCMAQ in the

modeling domain for the four seasons: (a) Spring, (b) Summer, (c) Fall, (d) Winter, and (e) all
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Fig. 11. Daily variations of τAERONET, τCMAQ, τM−BAER, and τNASA upper panels) and daily vari-

ations of CMAQ-derived particulate composition (bottom panels) in several AERONET sites in

East Asia for the four seasons. At the upper panel of each figure, the black bars, solid lines,

red circles, and blue squares represent τAERONET, τCMAQ, τM−BAER, and τNASA, respectively. In

each season, the four sites with the largest number of τAERONET were selected.
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Figure 11 (continued)
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Fig. 11. Continued.
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Fig. 12. Correlations between τAERONET and τMODIS in the four seasons: (a) Spring, (b) Summer,

(c) Fall, and (d) Winter.
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