Uncertainties and assessments of chemistry-climate models of the stratosphere

To cite this version:

HAL Id: hal-00303824
https://hal.archives-ouvertes.fr/hal-00303824
Submitted on 31 Jul 2002

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Uncertainties and assessments of chemistry-climate models of the stratosphere

J. Austin¹, D. Shindell², S. R. Beagley³, C. Brühl⁴, M. Dameris⁵, E. Manzini⁶, T. Nagashima⁷, P. Newman⁸, S. Pawson⁸, G. Pitari⁹, E. Rozanov¹⁰, C. Schnadt⁵, and T. G. Shepherd¹¹

¹Meteorological Office, London Rd., Bracknell, Berks., RG12 2SZ, UK
²NASA-Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
³York University, Canada
⁴Max Planck Institut für Chemie, Mainz, Germany
⁵DLR, Oberpfaffenhofen, Weßling, Germany
⁶Max Planck Institut für Meteorologie, Hamburg, Germany
⁷Center for Climate System Research, University of Tokyo, Japan
⁸Goddard Earth Sciences and Technology Center, NASA/Goddard Space Flight Center Code 916, Greenbelt, MD 20771, USA
⁹Dipartamento di Fisica, Università de L'Aquila, 67010 Coppito, L'Aquila, Italy
¹⁰PMOD-WRC/ IAC ETH, Dorfstrasse 33, Davos Dorf CH-7260, Switzerland
¹¹Department of Physics, University of Toronto, Toronto, Ontario, Canada

Received: 28 May 2002 – Accepted: 12 July 2002 – Published: 31 July 2002
Correspondence to: J. Austin (john.austin@metoffice.com)
Abstract

In recent years a number of chemistry-climate models have been developed with an emphasis on the stratosphere. Such models cover a wide range of timescales of integration and vary considerably in complexity. The results of specific diagnostics are here analysed to examine the differences amongst individual models and observations, to assess the consistency of model predictions, with a particular focus on polar ozone. For example, many models indicate a significant cold bias in high latitudes, the ‘cold pole problem’, particularly in the southern hemisphere during winter and spring. This is related to wave propagation from the troposphere which can be improved by improving model horizontal resolution and with the use of non-orographic gravity wave drag. As a result of the widely differing modeled polar temperatures, different amounts of polar stratospheric clouds are simulated which in turn result in varying ozone values in the models.

The results are also compared to determine the possible future behaviour of ozone, with an emphasis on the polar regions and mid-latitudes. All models predict eventual ozone recovery, but give a range of results concerning its timing and extent. Differences in the simulation of gravity waves and planetary waves as well as model resolution are likely major sources of uncertainty for this issue. In the Antarctic, the ozone hole has probably reached almost its deepest although the vertical and horizontal extent of depletion may increase slightly further over the next few years. According to the model results, Antarctic ozone recovery could begin any year within the range 2001 to 2008. For the Arctic, most models indicate that small ozone losses may continue for a few more years and that recovery could begin any year within the range 2004 to 2019. The start of ozone recovery in the Arctic is therefore expected to appear later than in the Antarctic in most models. Further, interannual variability will tend to mask the signal for longer in the Arctic than in the Antarctic, delaying still further the date at which ozone recovery may be said to have started. In the longer term, the model results suggest that full recovery of ozone to 1980 levels is not expected in the Antarctic until about
the year 2050. Earlier recovery to 1980 levels may be possible in the Arctic, but model differences are too large compared with the simulated changes to obtain a reliable date.

1. Introduction

Despite considerable research on the topic, the extent to which stratospheric change can influence climate is only beginning to be understood. Before the discovery of the Antarctic ozone hole (Farman et al., 1985) it was thought that increases in the concentration of CO$_2$ would cool the stratosphere and increase ozone (e.g. Groves and Tuck, 1980). More generally it is recognised that increases in the so-called well-mixed greenhouse gases (WMGHGs), which include CO$_2$, CH$_4$, N$_2$O and chlorofluorocarbons, cool the stratosphere, although the vast majority arises through increases in CO$_2$ amounts. In polar regions, an increase in WMGHGs may increase Polar Stratospheric Clouds (PSCs) and decrease ozone (Austin et al., 1992) via the same processes leading to the ozone hole (Solomon, 1986). Changes to the thermal structure of the stratosphere also affect the wind fields which determine the transport of ozone and the long-lived species that chemically control ozone. Decreases in stratospheric ozone change tropospheric chemistry by increasing the amount of UV radiation reaching the troposphere, and also cool the troposphere as ozone is itself a greenhouse gas. Consequently, atmospheric chemistry and climate are coupled in important ways. Possibly one of the most extreme examples of this coupling is the effect of increasing WMGHGs on Arctic ozone. Using a mechanistic model with reasonably comprehensive chemistry Austin et al. (1992) showed that a doubling of CO$_2$ concentrations, expected towards the end of the 21st century, could lead to severe Arctic ozone loss if large halogen abundances persisted until that time. On the other hand, the calculations of Pitari et al. (1992) showed only a slight reduction in Arctic ozone due to a CO$_2$ doubling, while again keeping halogen amounts fixed.

Since the early 1990s, the amendments to the Montreal protocol have resulted in
a considerable constraint on the evolution of halogen amounts and more recent calculations have been able to take this into consideration. For example, in a coupled chemistry-climate simulation, (Shindell et al., 1998a) specified currently projected concentrations of halogens and WMGHGs and calculated much increased ozone depletion over the next decade or so, with severe ozone loss in the Arctic in some years. In contrast, recent results from other models (Austin et al., 2000; Brühl et al., 2001; Nagashima et al., 2002; Schnadt et al., 2002) indicate a relatively small change in Arctic ozone over the next few decades. The net effect on ozone and temperature is that due to both the increased radiative cooling from WMGHG increases and due to changes in downwelling (and adiabatic warming) from planetary wave drag. The latter changes could decrease ozone if planetary wave activity decreases, thus enhancing the radiative signal, or if planetary wave activity increases, the radiative signal could be damped or even reversed causing an increase in ozone. This illustrates one of the problems concerning future predictions: the simulation of the north polar stratospheric temperature, and thus ozone, is complicated by the models’ ability to reproduce realistically the dynamical activity of this region. The model results therefore crucially depend on the length of the numerical simulation and model configuration, such as spatial resolution, position of the model upper boundary, gravity wave drag scheme and the degree of coupling between the chemically active species and the radiation scheme. The fact that the results are model dependent emphasises that the various dynamical-chemical feedback mechanisms in the atmosphere, as well as the dynamical coupling between troposphere and stratosphere, are not yet fully understood. These mechanisms are here explored by comparing specific diagnostics from a range of coupled chemistry-climate models. The primary interest is polar ozone and factors that control it, such as PSCs. Via transport, polar ozone also has an impact on middle latitudes which are also considered briefly.

In Sect. 2, the three-dimensional (3-D) coupled chemistry-climate models used in this comparison are described. The emphasis is on coupled models in which increases in WMGHGs give rise, directly or indirectly, to changes in the concentrations of con-
stituents, especially ozone. These changes then react back on the model climate via the model radiation scheme. In Sect. 3, several factors known to affect model predictions of ozone are investigated using, as indicated above, specific diagnostics designed to illustrate model differences and uncertainties. These diagnostics are compared amongst the models and with observations. Having established model strengths and weaknesses, their results are assessed in Sect. 4, to try to provide a consensus on the likely trend in future ozone. Conclusions are drawn in Sect. 5.

2. Models used in the comparisons

Climate models have in the past been run with fixed WMGHGs for both present and doubled CO$_2$ with the investigation of the subsequent ‘equilibrium climate’. Several coupled chemistry-climate runs have followed this route with multi-year ‘timeslice’ simulations applicable to WMGHG concentrations for specific years (e.g. Rozanov et al., 2001; Schnadt et al., 2002; Pitari et al., 2002; Steil et al., 2002). Other climate simulations have involved transient changes in the WMGHGs, and several coupled chemistry-climate simulations have followed this pattern (Shindell et al., 1998a; Austin 2002; Nagashima et al., 2002). The advantage of transient experiments is that the detailed evolution of ozone can be determined in the same way that it is likely to occur (in principle) in the atmosphere, albeit with some statistical error. The impact of interannual variability can be assessed by determining this variability over, e.g. a 10-year period. Comparisons with observations are more direct since both atmosphere and model cover the period when WMGHGs and halogens are changing to the same extent. Timeslice simulations need a sufficient duration (at least 10 and preferably 20 years) to allow the interannual variability to be determined but in principle, 20-year evaluations of the same conditions may have less variability than the atmosphere in which halogens may be changing rapidly. Timeslice runs also have the advantage that several realisations of the same year are available, from which future predictions can be assessed. However, in practice this may be of less value than examining the behaviour
of different models, since a given model will tend to have systematic errors. Both transient simulations and timeslice simulations are here used, to bring together the best of both sets of simulations.

The models used in the comparisons are indicated in Table 1, in order of decreasing horizontal resolution. All the models have a comprehensive range of chemical reactions except that in the GISS model the chemistry is parameterized. ULAQ is the only model with a substantial aerosol package and has diurnally averaged chemistry. This model has been run in timeslice mode. Of the other models run in this mode, CMAM and MAECHAM/CHEM have a high upper boundary (0.01 hPa and above), while UIUC and E39/C have a much lower upper boundary (1 hPa and below). UMETRAC, CCSR/NIES and GISS have been run in transient mode, although the extra cost of the UMETRAC model has reduced the total integration time compared with the other two models. Brief summaries of the models follow.

2.1. Model descriptions

UMETRAC

The Unified Model with Eulerian TRansport And Chemistry is based on the Meteorological Office’s Unified Model (UM), which has been used in the Intergovernmental Panel on Climate Change (IPCC) assessments (e.g. IPCC, 2001). UMETRAC has 64 vertical levels, from the ground to 0.01 hPa, and includes a coupled stratospheric chemistry scheme involving 13 advected tracers (O_3, HNO_3, N_2O_5, HNO_4, HCl(g+s), HOCl, ClONO_2, HOBr, HBr, BrONO_2, H_2O_2, H_2CO, Tracer-1). Tracer-1 is used to parameterize the long-lived species and families H_2O, CH_4, Cl_y, Br_y, H_2SO_4 and NO_y, where Cl_y = Cl + ClO + HCl(g+s) + HOCl + ClONO_2 + 2Cl_2O_2 + BrCl, Br_y = Br + BrO + HBr + BrONO_2 + HOBr + BrCl, and NO_y = NO + NO_2 + NO_3 + HNO_3(g+s) + 2N_2O_5 + HNO_4 + ClONO_2 + BrONO_2. In the above (g+s) is used to denote the sum of concentrations is the gas (g) and solid (s) phases. A simplified sedimentation scheme is included and the PSC scheme is based on liquid ternary solutions (LTS) and ice or nitric acid trihydrate (NAT) and water ice. The photochemistry therefore ex-
plicitly includes all the major processes affecting stratospheric ozone. Reaction rates are taken from DeMore et al. (1997) and Sander et al. (2000). Sea surface temperatures and sea ice are specified from observations or from simulations of a coupled ocean-atmosphere version of the model. The dynamics is available using Rayleigh friction as standard to decelerate the jet or with a non-orographic gravity wave drag (gwd) scheme. Halogen amounts are specified according to WMO (1999), Tables 1–2, and the greenhouse gas concentrations (CO$_2$, CH$_4$ and N$_2$O) are specified according to IPCC scenario IS92a (IPCC, 1992). Simulations have been completed for the periods 1979–2020 (Rayleigh friction) and 1975–2020 (non-orographic gwd). The results of the model for the Rayleigh friction calculations covering the period 1980–2000 are described in Austin (2002).

CMAM (Canadian Middle Atmosphere Model) is an extension of the Canadian Centre for Climate Modelling and Analysis (CCCma) spectral General Circulation Model up to 0.0006 hPa, roughly 100 km altitude (Beagley et al., 1997). The version used here has a T32 spectral truncation and 65 vertical levels. The model includes a full representation of stratospheric chemistry with all the relevant catalytic ozone loss cycles (de Grandpré et al., 1997). There are 31 non-advected species and 16 advected species and families HNO$_4$, HBr, CO, H$_2$, CH$_3$Br, CH$_4$, N$_2$O, H$_2$O, CFC-11, CFC-12, O$_x$ (= O(1D) + O(3P) + O$_3$), NO$_x$ (= NO + NO$_2$ + NO$_3$ + 2N$_2$O$_5$), ClO$_x$ (= ClO + OCIO + HOCl + Cl + ClONO$_2$ + 2Cl$_2$O$_2$ + 2Cl$_2$ + HCl(g+s)), BrO$_x$ (= Br + BrO + BrCl + BrONO$_2$ + HOBr), HO$_x$ (= OH + HO$_2$ + H + 2H$_2$O$_2$), and HNO$_3$ (g+s). Chemical transport is accomplished using spectral advection. Heterogeneous reactions are included for sulphate aerosols, LTS, and water ice, without sedimentation. There is currently no parameterization of NAT PSCs, or of any associated denitrification. PSC threshold temperatures are not adjusted to compensate for temperature biases. Chemical reaction rates follow DeMore et al. (1997) and Sander et al. (2000). The chemistry is fully interactive with the radiation code (de Grandpré et al., 2000). For these runs, gravity-wave drag is parameterized with the McFarlane orographic scheme and the Hines
non-orographic scheme (McLandress, 1998; Beagley et al., 2000). The time-slice experiments are performed for 12 years, with the first year discarded. For the 1980 and 2000 runs, WMGHGs (CO₂, CH₄ and N₂O) and halogens are specified from observations, and the sea surface temperatures and sea-ice distributions are taken from Shea et al. (1990). For the 2045 run, WMGHGs are taken from the IPCC IS92a scenario while the halogens are set to 1980 levels; sea-surface temperatures and sea-ice distributions are altered according to the anomalies predicted from a transient simulation with the CCCma coupled climate model (Boer et al., 2000).

MAECHAM/CHEM is a coupled chemistry-climate model based on the MA-ECHAM4 climate model. The chemistry module (Steil et al., 1998) adopts the ‘family’ technique allowing timesteps to be as large as 45 min and includes reactive chlorine, nitrogen and hydrogen, and methane oxidation. Photolysis rates are calculated on-line using the fast and accurate scheme of Landgraf and Crutzen (1998) to account for varying clouds and overhead ozone. Heterogeneous reactions on NAT and ice PSCs, and on sulphate aerosol are included, as well as sedimentation of ice PSC particles. Since it is assumed that ice grows on NAT particles, this accounts to some extent for denitrification if it is cold enough for ice. NAT PSCs are calculated from the model temperature, H₂O and HNO₃ using the formulae of Hanson and Mauersberger (1988), without assuming a nucleation barrier arguing that subgrid scale temperature fluctuations produce the required supercooling. The gravity wave parameterization consists of two parts, separately representing momentum flux deposition due to orographic gravity waves and a broad band spectrum of nonorographic gravity waves (Manzini and McFarlane, 1998). A modified version of the McFarlane (1987) parameterization is used to account for the orographic gravity wave drag. Chemical species are advected using the fluxform semi-Lagrangian transport scheme of Rasch and Lawrence (1998). For the time slice experiments the model is integrated about 22 years (including spinup) using fixed surface mixing ratios of source gases (WMO, 1999) and ten years average seasonal sea surface temperature distributions based on Hadley Centre data. For
the simulations of future conditions, the average sea surface temperatures have been taken from the transient climate simulation of Roeckner et al. (1999).

E39/C

A detailed description of the chemistry-climate model E39/C, also known as ECHAM4.L39(DLR)/CHEM, has been given by Hein et al. (2001), who also discussed the main features of the model climatology. The model horizontal resolution is T30 with a corresponding Gaussian transform latitude-longitude grid of mesh size 3.75° × 3.75° on which model physics, chemistry, and tracer transport are calculated. The model has 39 layers from the surface to the top layer centred at 10 hPa (Land et al., 1999) and has particularly high resolution near the tropopause. A parameterization for orographic gravity wave drag (Miller et al., 1989) is employed, but the effects of non-orographic gravity waves are not considered. The chemistry module CHEM (Steil et al., 1998, updated Hein et al., 2001) uses reaction rate coefficients from DeMore et al. (1997) and is based on the family concept, containing the most relevant chemical compounds and reactions necessary to simulate upper tropospheric and lower stratospheric ozone chemistry, including heterogeneous chemical reactions on PSCs and sulphate aerosol, as well as tropospheric NOₓ – HOₓ – CO – CH₄ – O₃ chemistry. The advected tracers are CH₄, HCl, H₂O₂, CO, CH₃O₂H, ClONO₂, Oₓ (= O(^1D) + O(^3P) + O₃), NOₓ (= N + NO + NO₂ + NO₃ + 2N₂O₅ + HNO₄), ClOₓ (= Cl + ClO + HOCl), HNO₃ + NAT and H₂O + ICE. Physical, chemical, and transport processes are calculated simultaneously at each time step, which is fixed to 30 min. The PSCs in the model are based on NAT and ice amounts depending on the temperature and the concentration of HNO₃ and H₂O (Hanson and Mauersberger, 1988). A nucleation barrier is prescribed to account for the observed super-saturation of NAT-particles (Schlager et al., 1990; Peter et al., 1991; Dye et al., 1992). A simplified scheme for the sedimentation of NAT and ice particles is applied. Stratospheric sulphuric acid aerosol surface areas are based on background conditions (WMO, 1992, Chapter 3) with a coarse zonal average. Sea surface temperature and sea ice distributions are prescribed for the various time slices.
according to the greenhouse gas driven transient climate change simulations of Roeckner et al. (1999).

UIUC (University of Illinois at Urbana-Champaign) is a global-scale grid-point General Circulation Model with interactive chemistry (Yang et al., 2000; Rozanov et al., 2001). The model horizontal resolution is 4° latitude and 5° longitude, with 24 layers spanning the atmosphere from the surface to 1 hPa. The chemical-transport part of the model simulates the time-dependent three-dimensional distributions of 42 chemical species (O₃, O(^1)D), N, NO, NO₂, NO₃, N₂O₅, HNO₃, HNO₄, N₂O, H, OH, HO₂, H₂O₂, H₂O, H₂, Cl, ClO, HCl, HOCI, ClONO₂, Cl₂, Cl₂O₂, CF₂Cl₂, CFCl₃, Br, BrO, BrONO₂, HOBr, HBr, BrCl, CBrF₃, CH₃Br, CO, CH₄, CH₃, CH₃O₂, CH₃OOH, CH₃O, CH₂O, and CHO), which are determined by 199 gas-phase and photolysis reactions. The model also takes into account 6 heterogeneous reactions on and in sulphate aerosol and polar stratospheric cloud particles. The chemical solver is based on the pure implicit iterative Newton-Raphson scheme (Rozanov et al., 1999). The reaction coefficients are taken from DeMore et al. (1997) and Sander et al. (2000). Photolysis rates are calculated at every chemical step using a look-up-table (Rozanov et al., 1999). The advective transport of species is calculated using the hybrid advection scheme proposed by Zubov et al. (1999). A simplified scheme is applied for the calculation of the PSC particles (NAT and ice) formation and sedimentation. Sea surface temperature and sea ice distributions are prescribed from the AMIP-II monthly mean distributions, which are the averages from 1979 through 1996 (Gleckler, 1996). The orographic scheme of Palmer et al. (1986) is used to parameterize gravity wave drag. In this paper the results of a 15-year long control run of the model will be considered. The climatology of this run has been presented by Rozanov et al. (2001).

CCSR/NIES
An overview of the CCSR/NIES (Center for Climate System Research/National Institute for Environmental Studies) GCM (General Circulation Model) with an interactive strato-
spheric chemistry module has been described in Takigawa et al. (1999), and some updates for the present integration are given by Nagashima et al. (2002). A horizontal resolution of T21 (longitude \times latitude \approx 5.6^\circ \times 5.6^\circ) is employed and the vertical domain extends from the surface to about 0.01 hPa with 34 layers. Orographic gwd is parameterized following McFarlane (1987), but non-orographic gwd is not included. In the model, 19 species and 5 chemical families are explicitly transported: CH_4, N_2O, H_2O_2, H_2O(g+s), HNO_3 + NAT, HNO_4, N_2O_5, CINO_2, HCl, HOCl, Cl_2, ClNO_2, CCl_4, CFC11, CFC12, CFC113, HCFC22, CH_3Cl, CH_3CCl_3, O_x, HO_x (\approx H + OH + HO_2), NO_x (= N + NO + NO_2 + NO_3), ClO_x (= Cl + ClO + ClOO + Cl_2O_2), NO_y and Cl_y. The amount of NAT and ice PSCs are calculated using the relationship of Hanson and Mauersberger (1988) and of Murray (1967), respectively. As in E39/C, a nucleation barrier is also assumed. Reaction rate coefficients are taken primarily from DeMore et al. (1997) and Sander et al. (2000). A 65-year transient integration was performed for the period 1986–2050 including the trends of chlorine-containing substances (WMO, 1999, Table 12-2) and those of greenhouse gases (Also WMO, 1999, Table 12-2, very similar to IPCC scenario IS92a, IPCC, 1992). The expected sea surface temperature variation, separately calculated by the CCSR/NIES coupled ocean-atmospheric GCM, is also applied.

GISS
The model used here is a version of the Goddard Institute for Space Studies (GISS) stratospheric climate model which has 8^\circ \times 10^\circ horizontal resolution, and 23 vertical layers extending up into the mesosphere (top at 0.002 hPa, \sim 85 km) (Rind et al., 1988a, b). This atmospheric model is coupled to a mixed-layer ocean, allowing sea surface temperatures to respond to external forcings. A gravity wave parameterization is employed in the model in which the temperature and wind fields in each grid box are used to calculate gravity wave effects due to wind shear, convection, and topography. For the runs described here, the mountain drag was set to one quarter the original value which gives a better reproduction of observed temperatures in the polar lower stratosphere of
each hemisphere during their respective winter and spring periods. The model includes a simple parameterization of the heterogeneous chemistry responsible for polar ozone depletion (Shindell et al., 1998a). Chlorine activation takes place whenever temperatures fall below 195 K. Ozone depletion is then calculated at each location with active chlorine and sunlight using the reaction rates of DeMore et al. (1997). An additional contribution of 15% from bromine chemistry is also included. When heterogeneous processing ceases, chlorine deactivation follows two-dimensional model-derived rates (Shindell et al., 1998b). Ozone recovery rates are parameterized so that ozone losses are restored based on the photochemical lifetime of ozone at each altitude. Changes in ozone transport are not included interactively, but are calculated after the model runs and included in the results shown here. The model was run with increasing greenhouse gases starting in 1959 and continuing until 2067. Greenhouse gas trends were based on observations through 1985, and subsequently followed the IPCC projections IS92a (IPCC, 1992), though the observed trends since 1985 have shown somewhat slower increases.

ULAQ
The University of L'Aquila (ULAQ) model is a low-resolution coupled chemistry-climate model, which has been extensively used in the IPCC assessment (IPCC, 2001). The chemical-transport module has a resolution of 10° × 20° in latitude-longitude. There are 26 log-pressure levels, from the ground to about 0.04 hPa, giving an approximate vertical resolution of 2.8 km. Dynamical fields (streamfunction, velocity potential and temperature) are taken from the output of a spectral GCM (Pitari et al., 2002). Vertical diffusion is used to simulate those processes not explicitly included in the model such as the effect of breaking gravity waves. See Pitari et al. (1992) and Pitari et al. (2002) for further details of the model. The Chemical Transport Model (CTM) and GCM are coupled via the dynamical fields and via the radiatively active species (H$_2$O, CH$_4$, N$_2$O, CFCs, O$_3$, NO$_2$, and aerosols). All chemical species are diurnally averaged. The medium and short-lived chemical species are grouped into families: O$_x$, NO$_x$, NO$_y$...
(\(= \text{NO}_x + \text{HNO}_3\)), \(\text{HO}_x\), \(\text{CHO}_x\), \(\text{Cl}_y\), \(\text{Br}_y\), \(\text{SO}_x\) and aerosols. The long-lived and surface-flux species in the model are \(\text{N}_2\text{O}\), \(\text{CH}_4\), \(\text{H}_2\text{O}\), \(\text{CO}\), \(\text{NMHC}\), \(\text{CFCs}\), \(\text{HCFCs}\), halons, \(\text{OCS}\), \(\text{CS}_2\), \(\text{DMS}\), \(\text{H}_2\text{S}\), \(\text{SO}_2\) for a total of 40 transported species (plus 57 aerosol size categories) as well as 26 species at photochemical equilibrium. All photochemical data are taken from DeMore et al. (1997), including the most important heterogeneous reactions on sulphate and PSC aerosols. The ULAQ model also includes the most important tropospheric aerosols. The size distribution of sulphate (both tropospheric and stratospheric) and PSC aerosols, treated as NAT and water ice, are calculated using a fully interactive and mass conserving microphysical code for aerosol formation and growth. Denitrification and dehydration due to PSC sedimentation are calculated explicitly from the NAT and ice aerosol predicted size distribution. WMGHG and halogen scenarios are taken from WMO (1999). Changes in surface fluxes of \(\text{CO}\), \(\text{NO}_x\), non-methane hydrocarbons, \(\text{SO}_x\) and carbonaceous aerosols are taken from IPCC (2001). Climatological sea surface temperatures (SSTs) are used for present day conditions, and a simple heat source model is used to estimate the change in SSTs for future conditions.

2.2. Model ozone climatologies for the current atmosphere

To put the subsequent model results into context, we first compare the ozone climatologies from the different models during spring with the corresponding satellite observations for the years 1993–2000 (see Rozanov et al., 2001 for a description of the data included). The geographical distribution of the monthly mean total ozone over the northern hemisphere in March and over the southern hemisphere in October are presented in Figs. 1 and 2 for the data and participating models. The hemispheric area weighted total ozone and pattern correlation coefficients between the observed and simulated total ozone fields are presented in Table 2. The GISS model results are not shown in this section, as the chemistry parameterization is a perturbation from the observed climatology.

In the northern hemisphere (Fig. 1), all the models simulate the position and in-
tensity of the primary total ozone maximum reasonably well. However, UMETRAC, CCSR/NIES, E39/C and CMAM models slightly overestimate the extension of the ozone maximum area. In these models the area where total ozone is higher than 425 DU covers a substantial part of Siberia and spreads to northern Canada. Total ozone in MAECHAM/CHEM is higher than observed values over the entire hemisphere. The area of ozone maximum in the UIUC and ULAQ models extends to the Pacific sector, which implies an underestimated intensity of the Aleutian highs in the stratosphere. This dynamical feature also leads to the equatorward shift of the area with elevated total ozone in the Pacific sector. The CCSR/NIES model simulates very well the magnitude of the primary maximum, although its position is slightly shifted to the west. This shift, and the shape of the 400 DU contour imply that the intensity of the Aleutian maximum in the CCSR/NIES model is overestimated. The simulated position and magnitude of the elevated total ozone over northern Canada are in good agreement with observations. However, in most of the participating models this area is shifted to the north and its magnitude is slightly overestimated, while the UIUC and ULAQ models tend to shift this area to the south. In agreement with the observations the area with rather low total ozone appears in UIUC, CCSR/NIES, MAECHAM/CHEM and E39/C models just over the North Pole reflecting the position of the Polar vortex. However, this feature is not present in the UMETRAC, ULAQ and CMAM total ozone maps. Table 2 shows that the overall performance of all the models in March over the northern hemisphere is reasonably good. The pattern correlation with observed data is very high for UMETRAC, CCSR/NIES, E39/C, CMAM and MAECHAM/CHEM models ($R^2 > 0.95$) but a lower correlation occurs for the UIUC and ULAQ models partially because of the underprediction in the strength of the Aleutian high. All the models overestimate the area weighted hemispheric total ozone, by on average 7.2%.

In the southern hemisphere (Fig. 2), the overall agreement between simulated and observed total ozone in October is similar as in the northern hemisphere, as indicated by the pattern correlations (Table 2). UMETRAC, CCSR/NIES, MAECHAM/CHEM, ULAQ and CMAM models noticeably overestimate the area weighted total ozone. This
total ozone surplus comes from slightly higher total ozone in the tropics and from sub-
stantial overestimation of the magnitude of the total ozone maximum over the middle
latitudes. For example the total ozone exceeds 475 DU in the UMETRAC results, 450
DU in MAECHAM/CHEM and 425 DU in the CCSR/NIES, and CMAM results, while in
the observations the total ozone peak just exceeds 375 DU. From these results we can
conclude that the meridional transport and wave forcing are overestimated by these
models. In contrast the E39/C and UIUC models, which are the two models with the
lowest upper boundary, match the observed total ozone very closely. The position
of the total ozone maximum over middle-latitudes is also shifted from the Australian
sector to the Indian Ocean sector in UMETRAC and CCSR/NIES models and to the
Pacific Ocean sector in the UIUC model. The position and magnitude of the ozone
hole over the South Pole is well reproduced by the models, implying that the amount
of PSCs during the spring season and chemical ozone destruction are reasonably well
captured by the chemical routines. This is discussed further in Sects. 3.2 and 4.4.

3. Model uncertainties

3.1. Temperature biases

Many climate models without chemistry but with a fully resolved stratosphere have a
cold bias of the order of 5–10 K in high southern latitudes in the lower stratosphere,
suggesting that the residual circulation is too weak (Pawson et al., 2000), i.e. there is
too little downwelling in polar latitudes and too little upwelling in lower latitudes. This
temperature bias could have a significant impact on model heterogeneous chemistry,
and enhance ozone destruction. The ‘cold pole problem’ extends to higher levels in
the stratosphere and by the thermal wind relation gives rise typically to a polar night
jet that is too strong and which has an axis that does not slope with height, whereas
in the observations the polar night jet axis slopes with height towards the equator in
the upper stratosphere. The weaker jet and slope of the axis allow waves to propagate
into higher latitudes and maintain higher polar temperatures. A potentially important component of climate change is whether these waves increase in amplitude with time since this will likely affect the evolution of ozone: see Sect. 3.4. A practical solution for those models with a cold bias is to adjust the temperatures in the heterogeneous chemistry (e.g. Austin et al., 2000) so that the heterogeneous chemistry is calculated using realistic temperatures. The strong polar night jet is also associated with a vortex that breaks down later in the spring, particularly in the southern hemisphere. In a chemistry-climate model this can lead to a longer lasting ozone hole. Adjusting model PSC threshold temperatures to allow for model temperature bias cannot solve this problem.

Recently the development of non-orographic gravity wave drag (gwd) schemes for climate models (Medvedev and Klaassen, 1995; Hines, 1997; Warner and McIntyre, 1999) has resulted in a significant reduction in the cold pole problem relative to simulations that rely on Rayleigh friction to decelerate the polar night jet (e.g. Manzini and McFarlane, 1998). Two of these schemes have also been shown to produce a quasi-biennial oscillation (QBO) when run in a climate model (Scaife et al., 2000). The latest versions of several coupled chemistry-climate models now employ such schemes: CMAM uses the Medvedev-Klaassen scheme (Medvedev et al., 1998) or the Hines scheme (McLandress, 1998); the latest version of UMTRAC uses the Warner and McIntyre scheme; and MAECHAM/CHEM uses the Hines scheme (Manzini et al., 1997). The GISS GCM has used a non-orographic gravity wave drag scheme for many years (Rind et al., 1988a, b), which is able to reproduce high latitude temperatures reasonably well (Shindell et al., 1998b) but does not simulate a QBO in the tropics.

Figure 3 shows model temperature biases as a function of height for 80° N and 80° S for the winter and spring seasons. To determine the biases, a 10-year temperature climatology determined from data assimilation fields (Swinbank and O’Neill, 1994) was subtracted from the mean model temperature profiles applicable to the 1990s. The UKMO temperatures are considered to be about 2 K too high at low temperatures (e.g. Pullen and Jones, 1997) but this is somewhat smaller than typical model biases.
The upper stratospheric cold pole problem is particularly noticeable in the south in the UMETRAC (with Rayleigh friction), CCSR/NIES and E39/C (which also use Rayleigh friction) and MAECHAM/CHEM results. With a non-orographic gwd scheme the temperature biases reduce considerably and both CMAM and UMETRAC have very similar results in the seasons analysed. In the UIUC, GISS and ULAQ models a warm bias is present in the middle stratosphere in winter. For the latter models, which have lower horizontal resolution than the other five, the biases may be a result of the need to adjust physical parameterizations to obtain improved climatologies and that such adjustments are not always suitable for all seasons. The ULAQ model, for example, includes vertical diffusion, in addition to Rayleigh friction. The results of the MAECHAM/CHEM model, which uses the Hines non-orographic gwd scheme, are only a slight improvement on the Rayleigh friction results of UMETRAC and CCSR/NIES and are similar to the results of E39/C which has equivalent physics, but does not have a non-orographic gwd scheme. Nonetheless, Manzini et al. (1997) indicated that the temperature biases in the core climate model are larger when non-orographic gwd is not included.

At 80° N temperature biases are generally somewhat smaller than at 80° S and for some models are positive at some levels. The northern lower stratospheric temperature biases would generally lead to insufficient heterogeneous ozone depletion in early winter but excessive ozone depletion in the more important spring period. In the southern hemisphere, spring cold biases could lead to more extensive PSCs than observed and delayed recovery in Antarctic ozone.

Newman et al. (2001) showed that the lower stratospheric temperature is highly correlated with the lower stratospheric heat flux $\nu' T'$ slightly earlier in the year. The heat flux provides a measure of the wave forcing from the troposphere, and in Fig. 4, the heat flux at 100 hPa averaged over the domain 40°–80° N for January and February is plotted against temperature averaged over the domain 60°–90° N at 50 hPa for February and March. Similar results for the southern hemisphere are shown in Figure 5. Newman et al. choose the period of the temperature average as 1–15 March, which maximises the correlation coefficient between the two variables at 0.85. However, here
we choose a longer period for the temperature average to smooth over any model and atmospheric transients. This reduces the correlation coefficient for NCEP data only slightly, to 0.77 (0.78 in the south). Table 3 shows the correlation coefficient (R) between the two variables. β is the gradient of the lines in Figs. 4 and 5, and T_0 is the temperature intercept at zero flux. T_0 indicates the radiative equilibrium temperature, including a contribution from small scale waves not represented in the heat flux (e.g. Newman et al., 2001).

In the north (Fig. 4), the model results are for the most part in reasonable agreement with the observations, although the model correlation coefficients vary in the range 0.52 to 0.79. Model horizontal resolution may have significantly affected the results: in general the model regression lines are less steep (smaller β in Table 3) as the model resolution decreases. This could be because while low-resolution models can capture the low-amplitude wave, small heat flux case, they may have more difficulty capturing the large heat flux case with its possibly significant potential enstrophy cascade to larger wavenumbers. However, this covers a broad spectrum of results. For example, CMAM simulates a wide range of heat fluxes consistent with observations but the functional relationship with temperature is highly sensitive to a single year’s data. Removal of the single point corresponding to the highest heat flux, increases the correlation coefficient to 0.71 and increases β to 1.12, much closer to that expected on the basis of the model resolution. This implies that the 10-year CMAM run is too short to give fully meaningful results in the northern hemisphere for this diagnostic. The performance of the models might also depend on the dissipation that the models have at short spatial scales, although this is more difficult to compare.

In the southern hemisphere (Fig. 5) the correlation coefficients cover the range 0.48 to 0.86, wider than in the north. T_0 is considerably lower, probably due to lower ozone amounts, and all the models agree well with the observed T_0. For the timeslice experiments (e.g. MAECHAM/CHEM) T_0 decreased from the 1960 results (not shown) to the 1990 results due to the WMGHG increase and ozone depletion. The values of β are also generally much smaller in the southern hemisphere, except for the CCSR/NIES
and CMAM models. For the CCSR/NIES model, the heat fluxes are much lower than observed, as they are in the northern hemisphere, consistent with a very strong polar vortex. The CMAM results are in reasonable agreement with observation for the value of β and the comparison with the northern hemisphere reflects the shortness of the record, as indicated above. Comparison of the UMTRAC results with Rayleigh friction and with non-orographic gwd indicate that the latter can significantly improve the temperature-heat flux relationship.

3.2. The simulation of polar stratospheric clouds

During the last few years, considerable progress has been made regarding the understanding of PSCs and the associated heterogeneous chemical reactions. Some of these developments are discussed in Carslaw et al. (2001) and WMO (2002), Chapter 3. They include the observation of many different types of PSCs, both liquid and solid forms, and the laboratory measurement of a wide range of chemical reaction rates as summarised in Sander et al. (2000). Coupled chemistry-climate models have a variety of PSC schemes with and without sedimentation, but as indicated in Sect. 3.1, some models have large climatological biases in the polar regions. If the models are to produce accurate simulations of ozone depletion, the temperature field must give realistic distributions near the PSC temperature threshold. So that common ground can be established between models, we here use the temperature at 50 hPa as an indicator, hence ignoring the impact of HNO$_3$ and sulphate concentrations on the determination of PSC surface areas.

Following Pawson and Naujokat (1997) and Pawson et al. (1999), Fig. 6 shows for each of the participating models and observations the time integral throughout the winter of the approximate PSC area at 50 hPa, as given by the areas within the 195 K and 188 K temperature contours. This is the quantity \tilde{A}_t indicated in Fig. 9 of Pawson et al. (1999), but without the normalisation factor of 1/150, for $\tau_{NAT} = 195$ K and $\tau_{ICE} = 188$ K. \tilde{A}_t is here measured in terms of the fraction of the hemisphere covered in the ice amount in the Arctic, \tilde{A}_t varies dramatically between zero (ULAQ and CMAM models,
not shown) and 70 in units of % of the hemisphere times days and the models have large interannual variability. Arctic NAT also covers a large range, both for different models and in the interannual variability for each simulation. In accordance with their temperature biases, several models have larger areas of NAT than are typically derived from observations. The ULAQ PSCs are in good agreement with observations, despite a slight temperature bias, while UMTRAC and CMAM have lower PSCs than are derived from observations. In the Antarctic most models have much lower fractional interannual variation, but again the results for separate models cover an exceedingly large range for the ice amount. The implications for ozone on the differences between the models is discussed further in Sect. 4.4.

The sedimentation of PSC particles is now thought to be important in polar ozone depletion (e.g. Waibel et al., 1999), but is absent from many coupled chemistry-climate models. Using a 3-D model without transport, Waibel et al. (1999) suggested that cooling associated with greenhouse gas increases may lead to higher ozone depletion than if sedimentation were ignored. There are many practical difficulties associated with incorporating sedimentation in climate models. The full details, including dividing the particles into different sized bins (e.g. Timmreck and Graf, 2000), cannot be readily simulated in most models as this would require the transport of particles covering a large number of size ranges, which may exceed the total number of tracers transported. While the ULAQ model (Pitari et al., 2002) is able to simulate this level of complexity, the model resolution is somewhat coarse (see Table 1). Most models therefore adopt some extremely simplified procedures. For example in the UMTRAC model (Austin, 2002) sedimentation is assumed to occur for NAT or ice particles of fixed size. The vertical transport equation is solved locally to give a sedimented field which is not explicitly advected horizontally but is tied to the field of a conserved horizontal tracer. Other models (e.g. Egorova et al., 2001; Hein et al., 2001; Pitari et al., 2002) transport the sedimented field in more detail, but the accuracy of this transport may be limited by model spatial resolution, and whether it can treat small scale features with high enough precision. Recently, the presence of large, nitric acid containing parti-
icles exceeding 10 \(\mu m \) in diameter has been detected (Fahey et al., 2001) in the lower stratosphere. However, models have only just started to take the production of these particles into account (Carslaw, personal communication, 2002), although they may have an important impact on ozone depletion.

3.3. The transport of constituents

There is strong evidence from a number of modelling studies (Garcia and Boville, 1994; Shepherd et al., 1996; Lawrence, 1997; Austin et al., 1997; Rind et al., 1998; Beagley et al., 2000) that the position of the model upper boundary can play a significant role in influencing transport and stratospheric dynamics due to the ‘downward control principle’ (Haynes et al., 1991). The sensitivity of the dynamical fields to the position of the upper boundary may be more when using non-orographic gwd schemes than when Rayleigh friction is used, although if all the non-orographic gwd that is produced above the model boundary is placed instead in the top model layer, assuming that the upward propagating waves are not simply absorbed in the top layer, this sensitivity reduces (Lawrence, 1997). Model simulations with an upper boundary as low as 10 hPa have been completed (e.g. Hein et al., 2001; Schnadt et al., 2002; Dameris et al., 1998). Schnadt et al. (2002) show the meridional circulation of the DLR model and this gives the expected upward motion from the summer hemisphere and downward motion over the winter hemisphere, although modeled meridional circulations are known to extend into the mesosphere (e.g. Butchart and Austin, 1998). Schnadt et al. (2002) argue that it is less important for total ozone to have a high upper boundary, but more important to have high resolution in the vicinity of the tropopause. At present the evidence appears ambiguous: for example in the total ozone presented by Hein et al. (2001) insufficient ozone is transported to the North Pole, but there is excessive subtropical ozone transport. This could be related to the cold pole problem, rather than the position of the upper boundary. While the transport effect on ozone is direct, other considerations are the transport of long-lived tracers such as NO\(_x\) and water vapour which have a photochemical impact on ozone. Consequently, it is generally recognised that the upper
boundary should be placed at least as high as 1 hPa (e.g. Rozanov et al., 2001; Pitari et al., 2002) with many models now placing their boundary at about 0.01 hPa (e.g. Shindell et al., 1998a; Austin et al., 2001; Steil et al., 2002; Nagashima et al., 2002). In comparison, CMAM (de Grandpré et al., 2000) has an upper boundary somewhat higher (c. 0.0006 hPa) to allow a more complete representation of gwd to reduce the cold pole problem (Sect. 3.1) and to simulate upper atmosphere phenomena.

The differences in transport can be assessed by investigating the Brewer-Dobson circulation computed for the individual models. An indicator of the circulation is given by the residual mean meridional circulation

$$\overline{\mathbf{v}} = \overline{\mathbf{v}} - \frac{\partial}{\partial p} \left(\frac{\mathbf{v}' \theta'}{\partial \theta / \partial p} \right) ,$$

$$\overline{\omega} = \overline{\omega} + \frac{1}{a \cos \phi} \frac{\partial}{\partial \phi} \left(\cos \phi \frac{\mathbf{v}' \theta'}{\partial \theta / \partial p} \right)$$

For details of the notation see Edmon et al. (1980). The residual circulation ($\overline{v}^*, \overline{\omega}^*$) is then used to compute the residual streamfunction Ψ, defined by

$$\frac{\partial \Psi}{\partial \phi} = -a \cos \phi \overline{\mathbf{v}}^*, \quad \frac{\partial \Psi}{\partial p} = \cos \phi \overline{\mathbf{v}}^*$$

Figure 7 shows the mass streamfunction $F_m = 2\pi a^2 \Psi / g$ at 50 hPa as a function of latitude for the participating models, computed by integrating the second equation downwards with $\Psi = 0$ at $p = 0$. The observations in the figure are based on ERA-15 for the period 1979 to 1993 (Gibson et al., 1997). The spatial resolution of the original fields was T106 with 31 vertical hybrid levels, equivalent to a grid resolution of 1.125° or about 125 km. The temporal resolution is 6 h. Note that the ERA data were computed using a GCM with an upper boundary at 10 hPa which may be a limiting factor in representing real variability at 30 hPa and above. The ERA mass streamfunction is a climatological mean over the 15 analysis years.
For the solstice periods, all the models have the same qualitative shape as the observations with a peak in absolute values occurring in the subtropics of the winter hemisphere. In the northern winter, the results of E39/C agree well with observations between 0° and 45° N but farther north the streamfunction reduces significantly, implying less downward transport. The MAECHAM/CHEM results agree better with observations in high northern latitudes, but there is no indication that this is a result of the higher boundary since the other models are more consistent with the values of the E39/C model in this regard. In the extra-tropics of the northern summer, the E39/C results are higher than observations and the other models, implying too much transport. Most models have the same problem, but to a varying extent in the southern summer. As in the northern winter, the streamfunctions of most models are smaller than observed in the southern winter, again indicating insufficient transport. Once more, the impact of the position of the upper boundary appears to be a secondary factor. During the equinox periods, the models are broadly consistent with each other. The E39/C model has slightly higher values of the streamfunction in mid-latitudes than other models, but this may be related to an extended winter regime in the model rather than direct effects of the upper boundary.

For the results presented here, it therefore appears that the impact of the upper boundary position for low top models is smaller than the impact of for example non-orographic gwd schemes which simulate the whole stratosphere. It therefore might be concluded that total ozone in the current atmosphere can be reasonably simulated by low top models. However, low top models need higher dissipation immediately below their top than the equivalent higher top models, and this additional dissipation may lead to a reduced response to climate change. Further, low top models are unable to accommodate non-orographic gwd schemes and partly artificial constructs, such as a nucleation barrier for PSC formation, need to be included to compensate for the cold bias.
3.4. Future predictions of planetary waves and heat fluxes

In some GCMs, there is a significant trend in planetary wave propagation with time. In the GISS GCM, planetary waves are refracted equatorward as greenhouse gases increase (Shindell et al., 2001) while in the ULAQ model there is a marked reduction in the propagation of planetary waves 1 and 2 to high northern latitudes in the doubled CO$_2$ climate simulated by Pitari et al. (2002). The latest results of the ULAQ model are different to the earlier results based on a much simpler model. It is probable that the model results are sensitive to the changes in static stability in the middle and lower troposphere with an increase in stability from increases in WMGHGs giving rise to an Arctic vortex that is less vulnerable to stratospheric warmings. In the GISS model the impact of changed planetary wave drag is largest during winter when the polar night jet is enhanced (Shindell et al., 1998a; Rind et al., 1998). Planetary wave refraction is governed by wind shear, among other factors, so that enhanced wave refraction occurs as the waves coming up from the surface approach the area of increased wind. They are refracted by the increased vertical shear below the altitude of the maximum wind increase. Equatorward refraction of planetary waves at the lower edge of the wind anomaly leads to wave divergence and hence an acceleration of the zonal wind in that region. Over time, the wind anomaly itself thus propagates downward within the stratosphere (cf. Baldwin and Dunkerton, 2001) and subsequently, from the tropopause to the surface in this model.

At high latitudes in the lower stratosphere the direct radiative cooling by greenhouse gases and less radiative heating by ozone due to chemical depletion causes an increase in the strength of the polar vortex. Planetary wave changes may be a feedback which strengthens this effect. One proposed planetary wave feedback mechanism (Shindell, 2001) works as follows: tropical and subtropical SSTs increase, leading to a warmer tropical and subtropical upper troposphere via moist convective processes. This results in an increased latitudinal temperature gradient at around 100–200 hPa, leading to enhanced lower stratospheric westerly winds, which refract upward propa-
gating tropospheric planetary waves equatorward. This results in a strengthened polar vortex.

Other model simulations show qualitatively similar effects on planetary wave propagation (Kodera et al., 1996; Perlwitz et al., 2000). Also, the E39/C results (Schnadt et al., 2002) show a small decrease in planetary wave activity for the period 1960 to 1990. However, results for future simulations differ depending on the model. Without chemical feedback, the UM (N. Gillett, personal communication, 2001) predicts a future increase in overall generation of planetary waves, which leads to a greater wave flux to the Arctic stratosphere, and is even able to overcome the radiatively induced increase in the westerly zonal wind so that the overall trend is to weaker westerly flow. This also occurs in E39/C with chemical feedback (Schnadt et al., 2002). Thus E39/C planetary wave activity follows that of the ozone change with decreases in the past and an increase into the future. In the UM with chemical feedback (UMETRAC) the high latitude heat flux (a measure of the wave activity) is apparently downward throughout the period 1975–2020 (Fig. 8), giving a trend of $-2.2 \pm 3.7\%$/decade, which is not statistically significant. The CCSR/NIES model, of lower resolution than UMETRAC, has systematically lower heat fluxes and also shows a downward trend during the period 1986–2050 of $-3.0 \pm 3.0\%$/decade, which is marginally statistically significant. For the shorter period 1986–2001, the trend is much larger ($-6.7 \pm 13.5\%$/decade), but the short model record reduces the statistical significance. In the timeslice experiments CMAM and MAECHAM/CHEM show a decrease in high latitude heat flux throughout the periods 1980–2045 and 1960–1990 of $1.0 \pm 2.1\%$/decade and $1.2 \pm 3.4\%$/decade, respectively, but this is not statistically significant for either model. In general, the degree of strengthening of the polar vortex is critically dependent upon the model used and whether coupled chemistry is incorporated.

Observations suggest that in the past twenty years the Arctic vortex has strengthened (Tanaka et al., 1996; Zurek et al., 1996; Waugh et al., 1999; Hood et al., 1999). Likewise, a trend toward equatorward wave fluxes has also occurred in observations (Kodera and Koide, 1997; Kuroda and Kodera, 1999; Ohhashi and Yamazaki, 1999;
Baldwin and Dunkerton, 1999; Hartmann et al., 2000) and the total amount of wave activity entering the stratosphere has decreased over the past 20 years (Newman and Nash, 2000; Randel et al., 2002). The trend in the heat flux for the period 1979–2001, shown in Fig. 8 is $-6.8 \pm 6.7\%$/decade, just statistically significant but somewhat larger than all the model results presented here. However, in view of the large error bars extrapolation of those trends to the future must remain uncertain.

3.5. Uncertainties in the H$_2$O rate of increase

Global satellite observations of the middle and upper stratosphere, for the period 1991–1997, supported by coincident ground-based data (Nedoluha et al., 1998; Randel et al., 1999), and lower stratospheric measurements over Boulder, Colorado and Washington, D. C., covering a longer period 1964–2000 (Oltmans and Hofmann, 1995; Oltmans et al., 2000) all show very large increases of water vapour, in the range of 8–20% per decade. Based on ten datasets incorporating satellite, balloon, aircraft, and ground-based measurements over the period 1954–2000, Rosenlof et al. (2001) reported an overall increase of 1% yr$^{-1}$ in stratospheric water vapour concentrations. Some aircraft observations, however, give conflicting indications of trends in the lower stratosphere (Peter, 1998; Hurst et al., 1999). The evidence largely supports a significant trend in the past, suggesting that a similar trend may take place over the coming decades.

The calculated enhanced rate of water vapour production due to methane increases is sufficient to account for less than half the observed water vapour increase. It is therefore suspected that there has been increased transport from the troposphere to the stratosphere. This is governed largely by tropical tropopause temperatures (e.g. Mote et al., 1996), and could be greatly altered by changes as small as a few tenths of a degree (Evans et al., 1998). Observations do not indicate an overall warming trend at the tropical tropopause (Simmons et al., 1999). However, water vapour fluxes as a function of season and geographic location have not been precisely quantified (SPARC, 2000), so that it is difficult to determine the reason for any increased flux to the stratosphere. For example, a very small shift away from the equator could raise the minimum tem-
temperatures encountered sufficiently to allow a significantly greater upward flux. Thus, an increase in tropospheric water vapour, predicted by most climate models, could lead to increased stratospheric water even without a warmer tropopause. Hartmann et al. (2001) have described a possible mechanism whereby lowering tropopause temperatures can lead to increased flux of water into the stratosphere. This results from the increased formation and transport of ice particles into the lower stratosphere. Whether any of these or further unidentified processes are responsible for the observed water vapour increase needs further investigation.

Increased water vapour affects ozone chemistry indirectly by decreasing local temperatures via radiative cooling, which slows down the reaction rates of ozone depletion chemistry. Increased water vapour also generates OH radicals which chemically deplete ozone. The effects on homogeneous chemistry have been studied in 2- and 3-D models by Evans et al. (1998), Dvortsov and Solomon (2001), and Shindell (2001). The models all show that the net effect of an increase in water vapour is to reduce ozone in the upper and lower stratosphere, and to increase ozone in the middle stratosphere. The model results differ most in the lower stratosphere where the largest impact on the total ozone column occurs. In the model of Evans et al. (1998), lower stratospheric ozone is reduced only in the tropics when water vapour increases, while in the models, ozone reductions extend to mid-latitudes or to the poles. Thus the models of Dvortsov and Solomon (2001) and Shindell (2001) predict a delay by about 10–20 years in ozone recovery. During the next 50 years, ozone is expected to decrease by 1–2% due to the water vapour increase.

Water vapour increases also affect heterogeneous chemistry, enhancing the formation of PSCs. Kirk-Davidoff et al. (1999) calculated a significant enhancement in Arctic ozone loss in a more humid atmosphere. Much of this effect was based on a very large estimate of 6 to 9 K cooling per ppmv of water vapour increase (Forster and Shine, 1999). However, recent modelling suggests that the true value may be much smaller, about 1.5 to 2.5 K cooling per ppmv of water vapour increase (Oinas et al., 2001). This would in turn imply a reduced overall role for water vapour in enhancing PSC formation.
Tabazadeh et al. (2000) showed that the enhancement of PSC formation due to the addition of 1 ppmv of water vapour is approximately the same as the PSC enhancement due to cooling of about 1 K. This suggests that the radiative impact of water vapour is larger than its effects on chemistry or microphysics, but that all these processes should be considered in numerical models. Given the potential for denitrification in the Arctic, and the large ozone losses that could result from a slight cooling there (Tabazadeh et al., 2000), it is important both to understand trends in stratospheric water vapour, and to resolve model differences in the radiative impact of those trends.

Model simulations of past water vapour trends do not agree well with observations. In UMETRAC (Austin, 2002), water vapour increases by only about 1% per decade in the stratosphere, despite the inclusion of a methane oxidation scheme. In UMETRAC the tropical tropopause temperature decreases slightly, counteracting the methane impact. In E39/C (Schnadt et al., 2002), water vapour increases in the lower stratosphere are significantly larger (about 3% per decade) but are still about a factor of 2–3 lower than observed. Similar results are also obtained in the GISS model. Thus in the models the water vapour trend tends to be driven by methane oxidation and the cold trap mechanism, suggesting the need to investigate the microphysics of dehydration and how this is represented in models.

4. Model assessments

In the Arctic the processes leading to stratospheric ozone depletion may undergo too much natural variability to provide a definite answer of how ozone will actually evolve. Each model may be considered as supplying a single simulation (or range of simulations in the case of the timeslice experiments) of a larger ensemble. While the mean of the ensemble can be readily computed, the atmosphere may in practice evolve in a manner anywhere within, or even outside, the envelope of the model simulations. In the Antarctic, the dominant processes are less dependent on interannual variability and hence the ozone evolution is in principle more predictable.
One of the emphases here is on spring ozone recovery. In view of the range of results obtained, it is important to define this term carefully and it is here used in two senses: (i) the start of ozone recovery, defined as the date of the minimum spring column ozone in the decadally averaged results, (ii) full ozone recovery, defined as the date of the return of the decadally averaged spring column ozone to the value in 1980.

As is well established from observations (e.g. WMO, 2002, Chapter 3), polar ozone has been decreasing over this time frame. Figure 9 shows the minimum daily ozone throughout the latitudes 60°–90° N for the range of models of Table 1 together with TOMS data. For clarity, the models are separated into two panels according to their mode of simulation (transient or timeslice). For the transient models, a gaussian filter is fitted through the results for the individual years and the error bars denote two standard deviations from the gaussian mean curve. For the timeslice experiments, the mean and two standard deviations are plotted and the dotted lines give an indication of the temporal behavior of the model results. Each model has a large interannual variability, similar to that of the observations, and hence detecting a signal is difficult. All the models indicate a slight high bias relative to observations. The trends in the minimum (Table 4) are consistent with the observations, although only E39/C and the observations have statistically significant trends. Averaging the six model results obtained gives an Arctic trend which is statistically significant and agrees with observations.

In the Antarctic (Fig. 10, upper panel), the model runs typically agree reasonably well with observations for the past and show the steady development of the ozone hole during the period. While the interannual variability of most of the models is similar to that observed, both CMAM and UM ET RAC have larger interannual variability, consistent with the large variability seen in the polar temperatures in Fig. 5. For the 1980 atmosphere, CMAM has relatively low minimum Antarctic ozone and this is reflected in the small 1980–2000 trend in Table 4. The CCSR/NIES results cover a limited range (1986–2000) and this gives rise to a lower trend, as the ozone hole was already well
developed by 1986. The TOMS results for the same period indicate a trend in the ozone minimum of \(-47 \pm 22\), very similar to the CCSR/NIES results. The lower variability of the other models may be an artifact of their cold biases (see Fig. 5), but there is no doubt that CMAM and UMETRAC have more interannual variability than observations. This enhanced variability may be the indirect product of the non-orographic gwd schemes in these two models.

The maximum size of the Antarctic ozone hole during each spring, as given by the area within the 220 DU total ozone contour, is shown in Fig. 10 (lower panel). The results for GISS, E39/C and CCSR/NIES are in good agreement with observations, but may indicate a slight underprediction. A much smaller ozone hole is simulated by UMETRAC, CMAM and MAECHAM/CHEM, related in part to the model high biases in mid-latitudes. Further model runs of UMETRAC (H. Struthers, personal communication, 2001) with a revised NO\(_y\) distribution consistent with observations show an ozone hole about 50% larger for 1995, which is in close agreement with observations. Errors in the modelling of the size of the ozone hole can have important implications. Firstly, comparisons between models and observations for ozone amounts near 60° S will give poor agreement if the ozone hole is too small, even though the underlying physics of the model may be correct. Secondly, a model with a small ozone hole may evolve differently from the atmosphere due to transport and chemistry effects arising from the radiative perturbation.

4.2. The 2000–2020 time frame: the start of ozone recovery

The first signs of ozone recovery are expected within the next two decades (Shindell et al., 1998a; Austin et al., 2000; Schnadt et al., 2002; Rosenfield et al., 2002; Nagashima et al., 2002). Two-dimensional model simulations (e.g. Rosenfield et al., 2002) indicate a slight delay in Arctic and Antarctic spring ozone recovery following the maximum values in halogen loading. The GISS model has a larger response than the other models in the Arctic with the simulation indicating a minimum in the smoothed results of below 175 DU compared with 100 DU or more higher in the other transient runs. The
date of the minimum in the decadally averaged Arctic ozone, varies from 2004 for the CCSR/NIES model to 2019 for the GISS model. UMETRAC indicates a minimum at about the year 2015, but the simulation ends shortly afterwards and the results do not change substantially in the final decade. All three transient runs indicate some delay in the onset of ozone recovery, due to increases in WMGHGs, although such a result is subject to considerable uncertainty because of the large interannual variability. Although the timeslice experiments do not have the temporal resolution to give a precise indication of the timing of future ozone recovery, the E39/C model results (Schnadt et al., 2002) may go against the transient model results by suggesting that increases in planetary waves will occur in the Arctic, speeding up ozone recovery. This may be considered the ‘dynamical effect on chemistry’: increases in planetary waves transport more ozone as well as raise temperatures and decrease heterogeneous chemistry. Therefore, the net effect on ozone is that of the two potentially competing processes of dynamics and radiation. If planetary waves increase, the ‘dynamical’ effect increases ozone and the ‘radiative’ effect decreases ozone, giving a relatively small response. If planetary waves decrease, both the ‘dynamical’ and ‘radiative’ effects are negative, leading to enhanced ozone depletion. To determine from timeslice experiments, whether increases in WMGHGs are delaying the onset of ozone recovery, more simulations are required for the period 1990 to 2015.

In the Antarctic, the runs are all in fairly good agreement. Of the transient runs, as in the Arctic, the CCSR/NIES model indicates the earliest start of ozone recovery (2001) followed by UMETRAC (2005) and GISS (2008). The minima in the decadally averaged results are all comparable (109, 86 and 98 DU respectively). On the basis of the decadally averaged model results, this would appear to indicate that ozone recovery will begin earlier in the Antarctic than in the Arctic. Such an earlier start to recovery would also be detectable earlier in observations in Antarctica, because of the smaller interannual variability. Observations of the size of the ozone hole (Fig. 10) do not indicate any clear recovery by October 2001. For the GISS model the maximum ozone hole is in 2015, while for UMETRAC the maximum occurs in 2007, although any
systematic variation is obscured by the large interannual variability noted previously. In contrast the CCSR/NIES results peak as early as the year 2002.

4.3. The 2020–2060 time frame: complete ozone recovery

Those models that have run beyond the year 2020 indicate some recovery in ozone. Of particular importance is the return to ‘1980-like conditions’, when anthropogenic halogen concentrations were negligible. As noted in WMO (1999), Chapter 12, this recovery would be to a different vertical distribution of ozone, with higher middle and upper stratospheric ozone. Using a 2-D model, Rosenfield et al. (2002) determined the date for the recovery of total ozone to 1980 levels as a function of day of year and latitude. In the Arctic, this recovery was latest at the end of spring (after 2050) and earliest in autumn (before 2035). Further, the impact of CO$_2$ increases was shown to accelerate the recovery due to increased downwelling, particularly in the Arctic. On the other hand, if CH$_4$ amounts do not increase at the current rate, ozone recovery could be slowed down in the future by the increased importance of NO$_x$ chemistry (Randeniya et al., 2002).

The results of Fig. 9 and 10 show similar results for the spring for 3-D models. However, in the Arctic, most models do not show substantial ozone change throughout the period 2020 to 2050, while the low values of the GISS model for the decade 2010 to 2020 are no longer present after 2030. In the Antarctic, the recovery of spring ozone, already underway by 2020, continues in the simulations completed (Fig. 10). Recovery to 1980-like conditions occurs in the CCSR/NIES and GISS models by about 2045, and perhaps a decade later in the UMETRAC snapshot results (Austin et al., 2001). The CCSR/NIES and GISS transient model results suggest a near monotonic recovery of ozone, but the UMETRAC snapshot results suggest that ozone could undergo further loss over the period 2025 to 2045. This was identified as due to increases in ice PSCs as the lower stratospheric climate cools (Austin et al., 2001), but would need to be confirmed by model simulations with more detailed PSC schemes.

Of the timeslice experiments, MAECHAM/CHEM and CMAM models indicate a sig-
significant long-term Antarctic recovery, consistent with the transient experiments. The MAECHAM/CHEM model also simulates full or near full recovery in the Arctic by 2030, but CMAM shows little variation there in the integrations completed.

4.4. Attribution of model Arctic ozone trends

In a coupled chemistry-climate model the attribution of ozone trends to dynamical and chemical processes may be ambiguous since the dynamical changes themselves may have been caused by chemical changes to the ozone amounts. Figure 6, illustrating the approximate amounts of PSCs in the model simulations, should in principle reflect the amount of chemical ozone depletion, providing the temporal distributions are not skewed too far towards winter when there may be insufficient sunlight to drive the photochemistry. This would suggest for example that UMETRAC and CMAM have less Arctic ozone depletion than observed and this is suggested in the Arctic ozone trend (Fig. 9, Table 4) which is smaller than observed, although the difference is not statistically significant. Similar results apply in the Antarctic. Here many of the models have similar ozone, similar amounts of PSCs (Fig. 6) and similar ozone trends (Fig. 10, Table 4), when allowance is made for the different periods under consideration. The exceptions are the GISS model, for which PSC diagnostics are not available, and the CMAM, which has lower ozone values than observed in 1980.

Both MAECHAM/CHEM and E39/C results for PSCs in Fig. 6 suggest that their chemical ozone depletion is larger than observed in the Arctic, although the net ozone trend is similar to observations. One possible implication is that transport into the polar regions is enhanced to compensate. However, this does not appear to be consistent with earlier results (Hein et al., 2001) which if anything indicates reduced transport into the polar regions in the E39/C model. Another difference is in the treatment of local model temperatures. UMETRAC, CMAM, MAECHAM/CHEM and ULAQ do not assume any nucleation barrier for PSC formation, so that the areas indicated in Fig. 6 should be a good indication of PSC impact on chemistry. However, the E39/C and CCSR/NIES models assume a nucleation barrier and therefore the amount of chemical
ozone depletion is smaller than might be implied from Fig. 6 (E39/C results). While this is justified on the basis of the physics (see Sect. 2.1/E39/C) an alternative argument is that small scale processes unrepresented by the model large scale fields provides the necessary nucleation barrier (see Sect. 2.1/ECHAM/CHEM). Clearly, the first priority of a model is to produce physically realistic results which are only achievable given small temperature biases. If the biases are larger, adjustments in the temperatures may be necessary either by the introduction of a nucleation barrier (E39/C model), or a simple temperature addition as in earlier results from UMETRAC with Rayleigh friction. In the short term therefore uncertainties in the PSC representations are of secondary importance in coupled chemistry-climate models.

4.5. Ozone changes in mid-latitudes

The minimum spring ozone columns in mid-latitudes are indicated in Fig. 11. These show a similar behaviour as for the Arctic and Antarctic. In northern mid-latitudes the CCSR/NIES model results are almost constant throughout the integration while the E39/C results indicate a slight reduction from 1960 to 1990 and with some recovery by 2015. In UMETRAC, the decadally smoothed results decrease steadily until the end of the integration (2020). The model results generally show a high bias relative to observations. Further analysis of the UMETRAC results shows a high bias, exceeding 30% in the lower stratosphere, due possibly to the underprediction of NOx (e.g. Pierce et al., 1999). MA-ECHAM total ozone in midlatitudes is high because stratosphere-troposphere exchange is overestimated, a numerical problem largest in midlatitude spring. The absolute changes with time are, however, consistent with the other models. In southern mid-latitudes, all the model results are again biased high compared with TOMS observations. In the decadally smoothed results, the lowest values occur in 1999 (UMETRAC) and 2002 (CCSR/NIES) but the smoothed curve is flat from about the year 1995 onwards and hence the date of the start of ozone recovery is very dependent on the method used to diagnose that recovery.
5. Conclusions

In this paper the results from a number of 3-D chemistry-climate models have been compared amongst themselves and with observations, covering a range of diagnostics for processes influencing ozone, with a particular emphasis on the polar regions. The work brings together models, mostly with detailed stratospheric chemistry schemes, with a range of spatial resolution. In addition, the models have been run in two different modes: timeslice and transient. In the former, the greenhouse gas concentrations and halogen amounts are fixed at concentrations specific to a given year; in the latter, the concentrations evolve in accordance with observations and future anticipated values. By comparing the model results an indication of the future evolution of ozone is obtained, together with an indication of the likely uncertainties.

The main uncertainties of 3-D coupled chemistry-climate models stem from the performance of the underlying dynamical model. Cold biases have been found to exist in the stratosphere of many of the models, consistent with that previously found for models without chemistry (Pawson et al., 2000). The temperature is correlated with the lower stratospheric heat flux, which is a measure of wave propagation from the troposphere. Consequently, temperature bias comes from insufficient wave propagation or a failure to represent the heat flux-temperature relationship, or both (Newman et al., 2001). The results here suggest that the incorporation of non-orographic gravity wave drag can reduce the temperature bias, particularly in the southern hemisphere, consistent with Manzini and McFarlane (1998), while increased horizontal resolution can also improve the heat flux-temperature relationship. In the lower stratosphere, most models have a cold bias in the Antarctic spring, but a warm bias in the Arctic in late winter. The impact of the temperature biases is to create possible biases in the simulation of PSCs relative to those which are observed. Some models introduce a nucleation barrier, which help to reduce the impact on ozone, while other models do not, arguing that small scale processes achieve the desired low temperatures sufficient to trigger nucleation. In consequence, at the current stage of model development, uncertainties
in the details of PSC formation and sedimentation are probably less important than the model temperature biases in simulating accurate ozone amounts. However, the timing of the temperature biases can change the timing of ozone depletion relative to that observed, and affect the conclusions regarding the timing of ozone recovery.

Model chemical transport influences the performance of coupled chemistry climate models. Firstly, the model results suggest, at least for the current atmosphere, that chemical transport in the lower stratosphere is not sensitive to the position of the upper boundary, providing sufficient vertical resolution is present. However, there is a tendency for models to underestimate transport in winter, because of the strong vortex, and overestimate transport in summer. This issue can again be addressed with a non-orographic gwd scheme. Secondly, a major issue for future Arctic ozone amounts is whether wave propagation will increase or decrease in the future. If wave propagation decreases, less ozone is transported into the polar regions and by the noted relationship between heat flux and temperature, the lower stratosphere cools and ozone depletion increases. The opposite occurs for an increase in wave propagation. Models are qualitatively consistent with observations in showing a decreasing trend in wave propagation for the past. However, the observed trend is only just statistically significant and the model results presented here have trends which are lower than observed by at least a factor of two and are not statistical significant. Future predictions are much more uncertain, with most models showing a continuing downward trend into the future, but at least one other model indicating an increase.

The behaviour of the long-lived species could be equally important in controlling ozone. The issue of water vapour changes has been discussed in Sect. 3. In summary, climate models have been unable to simulate the observed increase in water vapour concentrations. In the models the water vapour trend tends to be driven by the cold trap mechanism and methane oxidation, which together contribute less than half the observed trend in the stratosphere. However, model simulations with imposed water vapour increases show that these may lead to a significant cooling of the polar lower stratosphere, with the potential to enhance PSC formation and hence ozone
loss. Another uncertainty is the amount of aerosol present due to future unpredictable volcanic eruptions. For a large eruption such as that of Mt. Pinatubo, sufficient aerosol would be present to provide additional sites for heterogeneous chemistry and possibly severe ozone loss for a period of a few years.

The completion of these 3-D coupled chemistry-climate model simulations now provides a better indication of likely future changes than was previously possible. For the transient model simulations the start of ozone recovery, as defined in Sect. 4, occurs in the Antarctic in the range 2001 to 2008, depending on the model, and in the Arctic occurs in the range 2004 to 2019. In the Antarctic, however, the vertical and horizontal extent of the ozone hole may increase slightly further over the next few years. Thus, the results here suggest that the start of ozone recovery will occur slightly later in the Arctic than in the Antarctic and that the start of ozone recovery in the Arctic may be delayed by a few years by greenhouse gas increases. While the statistical basis of this result is not high, a plausible explanation would be that in the Antarctic, the depth of the ozone hole (but not its area) depend strongly on halogen loading, with climate change a minor contributor. In the Arctic, it is the cold winters, which are affected by climate change, that determine more the ozone depletion rather than the amount of halogen loading. The results for mid-latitudes indicate a similar timing for ozone recovery, due probably to the high importance of transport from high latitudes for the diagnostics used here. These results are generally in agreement with the timeslice experiments, which by their nature have a lower temporal resolution. It should also be recognised that interannual variability on the sub-decadal timescale may still lead to ozone extremes. In the worst case scenario, therefore, it may take until at least the end of the 2020's before we can be certain that ozone recovery has started in the Arctic. To put this into perspective, most models predict relatively modest changes in future spring Arctic column ozone (under 10%).

On the longer timescale, to the middle of the 21st century, model predictions appear to be more uncertain. Hence, although recovery of ozone to 1980-like conditions is to be expected by about 2050 (e.g. Rosenfield et al., 2001), models will need to have
a better representation of the water vapour increase than has hitherto been possible for full confidence in their predictions. In this work, the few models which have been integrated to this time also indicate a full ozone recovery in the Antarctic by about 2050. Definitive information for the Arctic is even less certain, but because of the relatively modest change in ozone indicated, it is possible that ‘full recovery’ may occur somewhat earlier there.

Acknowledgements. JA was supported by the European Community, under the EuroSPICE project and by the UK Government Meteorological Research Programme. CMAM research is supported by the Natural Sciences and Engineering Research Council, the Meteorological Service of Canada, and the Canadian Foundation for Climate and Atmospheric Sciences. The ECHAM simulations were carried out within the KODYACS and MEDEC projects (AFO 2000 programme), funded by the German government. The ERA streamfunction analyses were kindly supplied by Christine Land (MPI Hamburg). Development and application of UIUC model were supported by the U.S. National Science Foundation (NSF) and the Carbon Dioxide Research Program, Environmental Sciences Division of the U.S. Department of Energy under grant ATM 95-22681, and by the NSF under grant ATM 00-0084270.

References

Pawson, S. and Naujokat, B.: Trends in daily wintertime temperatures in the northern strato-
Rind, D., Suozzo, R., Balachandran, N. K., Lacis, A., and Russell, G.: The GISS global cli-
Table 1. Models used in the comparisons. All the models use scenario IS92a of IPCC (1992) for the WMGHGs and WMO (1999), Chapter 12, for the halogen amounts except the CMAM, ULAQ and CCSR/NIES models. CMAM uses observations for the past, and the 2045 run used the same halogen amounts as were present in 1980. ULAQ and CCSR/NIES use WMO (1999) for both the halogens and the WMGHGs. For the transient runs the length of the runs is indicated by a range of years. For the timeslice runs, the date is given first, and the length is given second. Thus 1980 × 15 is understood to be 1980 conditions for 15 years. Dates and times include any spinup period

<table>
<thead>
<tr>
<th>Name</th>
<th>Horizontal Resolution</th>
<th>No. of Levels/Upper boundary</th>
<th>Length of Simulations</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMETRAC</td>
<td>2.5° × 3.75°</td>
<td>64/0.01 hPa</td>
<td>1979–2020</td>
<td>Austin (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1975–2020</td>
<td>(Non-orographic gwd)</td>
</tr>
<tr>
<td>CMAM</td>
<td>T32</td>
<td>65/0.0006 hPa</td>
<td>1980, 2000 × 12, 2045 × 12</td>
<td>de Grandpré et al. (2000)</td>
</tr>
<tr>
<td>CHEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIUC</td>
<td>4° × 5°</td>
<td>25/1 hPa</td>
<td>1995 × 15</td>
<td>Rozanov et al. (2001)</td>
</tr>
<tr>
<td>CCSR/NIES</td>
<td>T21</td>
<td>34/0.01 hPa</td>
<td>1986–2050</td>
<td>Takigawa et al. (1999), Nagashima et al. (2002)</td>
</tr>
<tr>
<td>GISS</td>
<td>8° × 10°</td>
<td>23/0.002 hPa</td>
<td>1959–2067</td>
<td>Shindell et al. (1998a)</td>
</tr>
<tr>
<td>ULAQ</td>
<td>10° × 20°</td>
<td>26/0.04 hPa</td>
<td>1990 × 20, 2030 × 5</td>
<td>Pitari et al. (2002)</td>
</tr>
</tbody>
</table>
Table 2. Simulated and observed area weighted total ozone and pattern correlation coefficients between total ozone fields

<table>
<thead>
<tr>
<th>March, NH</th>
<th>Total Ozone</th>
<th>Δ (%)</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>318.0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>UMETRAC</td>
<td>339.9</td>
<td>+6.9</td>
<td>0.98</td>
</tr>
<tr>
<td>CMAM</td>
<td>338.0</td>
<td>+6.3</td>
<td>0.97</td>
</tr>
<tr>
<td>MAECHAM/CHEM</td>
<td>371.8</td>
<td>+16.9</td>
<td>0.95</td>
</tr>
<tr>
<td>E39/C</td>
<td>351.2</td>
<td>+10.4</td>
<td>0.98</td>
</tr>
<tr>
<td>UIUC</td>
<td>322.6</td>
<td>+1.4</td>
<td>0.84</td>
</tr>
<tr>
<td>CCSR/NIES</td>
<td>326.1</td>
<td>+2.5</td>
<td>0.98</td>
</tr>
<tr>
<td>ULAQ</td>
<td>337.6</td>
<td>+6.2</td>
<td>0.85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>October, SH</th>
<th>Total Ozone</th>
<th>Δ (%)</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>291.1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>UMETRAC</td>
<td>337.8</td>
<td>+16.0</td>
<td>0.86</td>
</tr>
<tr>
<td>CMAM</td>
<td>324.3</td>
<td>+11.4</td>
<td>0.97</td>
</tr>
<tr>
<td>MAECHAM/CHEM</td>
<td>349.0</td>
<td>+19.9</td>
<td>0.98</td>
</tr>
<tr>
<td>E39/C</td>
<td>301.7</td>
<td>+3.6</td>
<td>0.97</td>
</tr>
<tr>
<td>UIUC</td>
<td>277.2</td>
<td>-4.8</td>
<td>0.97</td>
</tr>
<tr>
<td>CCSR/NIES</td>
<td>318.2</td>
<td>+9.3</td>
<td>0.95</td>
</tr>
<tr>
<td>ULAQ</td>
<td>314.8</td>
<td>+8.1</td>
<td>0.94</td>
</tr>
</tbody>
</table>
Table 3. Statistical analysis of the linear regression between the area averaged temperature (K) at 50 hPa polewards of 60° N for February and March, and the heat flux (Kms⁻¹) at 100 hPa between 40° and 80° N for January and February (Northern Hemisphere). The Southern Hemisphere results are for the months August and September and July and August, respectively. R is the correlation coefficient between the variables, T_0 is the intercept of the line at zero heat flux, and β is the gradient of the line.

<table>
<thead>
<tr>
<th>Model/Observations</th>
<th>N’ern Hemi.</th>
<th>S’ern Hemi.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>T_0</td>
</tr>
<tr>
<td>NCEP (Observations)</td>
<td>0.77</td>
<td>195.1</td>
</tr>
<tr>
<td>UMETRAC Non-orographic gwd Rayleigh Friction</td>
<td>0.74</td>
<td>196.9</td>
</tr>
<tr>
<td>CMAM 2000</td>
<td>0.67</td>
<td>196.2</td>
</tr>
<tr>
<td>MAECHAM/ CHEM 1990</td>
<td>0.52</td>
<td>204.5</td>
</tr>
<tr>
<td>MAECHAM/ CHEM 1990</td>
<td>0.79</td>
<td>196.3</td>
</tr>
<tr>
<td>E39/C</td>
<td>0.62</td>
<td>198.3</td>
</tr>
<tr>
<td>CCSR/NIES</td>
<td>0.74</td>
<td>199.4</td>
</tr>
<tr>
<td>ULAQ</td>
<td>0.58</td>
<td>203.0</td>
</tr>
</tbody>
</table>
Table 4. Past trends (nominally 1979–1999) in minimum ozone (DU/decade) with 2σ error bars for participating models and TOMS. The results for the CCSR/NIES model cover the period 1986–2000, the E39/C and MAECHAM/CHEM results cover the period 1960 to 1990

<table>
<thead>
<tr>
<th>Model/Observations</th>
<th>Arctic trend</th>
<th>Antarctic trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMETRAC Non-orographic gwd</td>
<td>-6 ± 22</td>
<td>-80 ± 31</td>
</tr>
<tr>
<td>CMAM</td>
<td>-8 ± 17</td>
<td>-14 ± 17</td>
</tr>
<tr>
<td>MAECHAM/CHEM</td>
<td>-16 ± 15</td>
<td>-45 ± 7</td>
</tr>
<tr>
<td>E39/C</td>
<td>-16 ± 14</td>
<td>-64 ± 7</td>
</tr>
<tr>
<td>CCSR/NIES</td>
<td>-33 ± 38</td>
<td>-41 ± 21</td>
</tr>
<tr>
<td>GISS</td>
<td>-21 ± 34</td>
<td>-34 ± 12</td>
</tr>
<tr>
<td>Mean (All models)</td>
<td>-16 ± 11</td>
<td>-47 ± 8</td>
</tr>
<tr>
<td>TOMS (Observations)</td>
<td>-21 ± 16</td>
<td>-59 ± 12</td>
</tr>
</tbody>
</table>
Fig. 2. As in Fig. 1, but for October in the Southern Hemisphere.
Fig. 3. Temperature biases at 80° N and 80° S for the winter and spring seasons, as a function of pressure. To determine the bias, a climatology determined from 10 years of UKMO data assimilation temperatures was subtracted from the model results averaged for the same years as indicated in Fig. 1.
Fig. 4. Scatter diagrams of heat flux $\bar{\nu'\bar{T}'}$ (averaged 40°–80° N, at 100 hPa for January and February) against temperature (averaged 60°–90° N, at 50 hPa for February and March) for participating models for the same years as indicated in Fig. 1. The solid lines are linear regression lines between the two variables. The observations are taken from NCEP assimilations. The heat flux is in units of Kms$^{-1}$, the temperature is in K.
Fig. 5. As in Fig. 4, but for the Southern Hemisphere for the months July and August, and August and September, respectively. For convenience, the usual convention for ν has been used (i.e. negative values indicate toward the South Pole) but the values have been multiplied by -1.
Fig. 6. Seasonal integration of the hemispheric area at 50 hPa, corresponding to the temperatures below 195 K (approximate NAT temperature) and below 188 K (approximate ICE temperature) for participating models. The error bars for the timeslice runs indicate 95% confidence intervals. For clarity, ULAQ data are plotted two years early, and for 1990 and 2030 MAECHEM CHEM data are plotted two years late.
Fig. 7. Residual streamfunction (10^9 Kgs$^{-1}$) at 50 hPa as a function of latitude and season for the participating models.
Chemistry-climate models of the stratosphere

J. Austin et al.

Fig. 8. Scatter diagrams of heat flux $v' T'$ (averaged 40°–80° N, at 100 hPa for January and February) against year for participating models. In both panels, the linear regression line between the NCEP derived heat flux and time is drawn as a solid line. Left panel: the dashed line is the linear regression for the non-orographic gwd run of UMETRAC, and the dot-dash line is the linear regression for the Rayleigh friction run of UMETRAC. Right panel: the dashed line is the linear regression for the CCSR/NIES results and the CMAM and MAECHAM/CHEM results are indicated by dots and diamonds. Two standard deviations of the annual values are indicated by the error bars for the timeslice experiments.
Fig. 9. Minimum Arctic (March/April) total ozone for the main experiments of this assessment.
(a) Transient runs in comparison with TOMS data. The solid lines show the results of a guassian smoother applied to the individual year's results. The error bars denote twice the standard deviation of the individual years from the smoothed curve.
(b) Timeslice runs in comparison with TOMS data. The error bars denote the mean and twice the standard deviation of the individual years within each model sample (10 years for CMAM, 20 years for MAECHAM/CHEM and E39/C). Dotted lines are drawn between the end points of the error bars to assist in estimating trends by eye. For MAECHAM/CHEM only: (i) the values have been plotted two years late for clarity, (ii) a standard tropospheric column of 100 DU has been added to the computed stratospheric columns. Note that the MAECHAM/CHEM results are not symmetric about the mean, but have a long tail towards low values.
Fig. 10. Upper Panel: Minimum antarctic total ozone for September to November, computed by the participating models. For the transient models, the solid lines show the results of a gaussian smoother applied to the individual year’s results (also plotted). For the timeslice experiments the mean and twice the standard deviation of the values within each sample are recorded by the error bars. For MAECHAM/CHEM only: (i) the values have been plotted two years late for clarity, (ii) a standard tropospheric column of 40 DU has been added to the computed stratospheric columns. Lower panel: The maximum area of the ozone hole during the period September to November, as given by the 220 DU contour, for TOMS observations and participating models. The TOMS data and transient model results are plotted for each year and with a gaussian filter applied (solid lines). For the timeslice experiments the means and twice the standard deviations of the model samples are included. The MAECHAM/CHEM results for 1960 indicated no ozone values below 220 DU and are not included in the figure.
Fig. 11. Minimum total column ozone in the latitude range 30° to 60° in the Northern (upper) and Southern (lower) Hemispheres for participating models. See Fig. 10 for line styles and symbols.