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Abstract

We have been carrying out in-situ monitoring of atmospheric O2/N2 ratio at Cape Ochi-

ishi (COI; 43
◦
10

′
N, 145

◦
30

′
E) in the northern part of Japan since March 2005 by using

a modified gas chromatography/thermal conductivity detector (GC/TCD). The standard

deviation of the O2/N2 ratio is estimated to be about ±14 per meg (≈3 ppm) with inter-5

vals of 10 min. Thus, the in-situ measurement system has a 1σ precision of ±6 per

meg (≈1.2 ppm) for one-hour mean O2/N2 ratio. Atmospheric potential oxygen (APO

≈O2+1.1CO2), which is conserved with respect to terrestrial photosynthesis and respi-

ration but reflects changes in air-sea O2 and CO2 fluxes, shows large variabilities from

April to early July 2005. Distribution of satellite-derived marine primary production in-10

dicates occurrences of strong bloom in the Japan Sea in April and in the Okhotsk Sea

and the western North Pacific near Hokkaido Island in June. Back trajectory analysis

of air masses indicates that high values of APO, which last for several hours or several

days, can be attributed to the oxygen emission associated with the spring bloom of

active primary production.15

1 Introduction

Observation of atmospheric oxygen has been conducted for decades since the de-

velopment of methods for measuring atmospheric O2/N2 ratios (e.g. Keeling, 1988;

Bender et al., 1994). Changes in atmospheric O2 have been applied to resolve the

carbon budget, exploiting the nature of the molar O2:C exchange ratios in fossil fuel20

combustion (Keeling, 1988) and in land biotic photosynthesis and respiration (Sever-

inghaus, 1995). For oceanic fluxes, exchange of O2 is much faster than that of CO2. It

takes only 3 weeks for dissolved oxygen to equilibrate with the atmosphere, whereas it

takes about a year for CO2 because of the different equilibration time scales of various

carbonate species (Broecker and Peng, 1982). Therefore, because of the apparent25

independence of the air-sea exchange of CO2 and O2 due to the fast response of O2
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relative to CO2, seasonal variations in atmospheric oxygen have been used to estimate

marine productivity (Keeling and Shertz, 1992; Bender et al., 1996; Balkanski et al.,

1999).

Stephens et al. (1998) introduced Atmospheric Potential Oxygen (APO ≈O2+1.1

CO2) as a conservative tracer for O2 and CO2 exchange related to land biotic pho-5

tosynthesis and respiration. The concept of APO is similar to the oceanic component

of the O2/N2 ratio, which has been discussed by Keeling and Shertz (1992). Although

spatial and temporal distributions of APO have been revealed through flask sample

measurements (Battle et al., 2006; Manning and Keeling, 2006; Tohjima et al., 2005b),

there are short-term APO variations that can not be detected from flask sampling. At10

stations such as Cold Bay, Alaska (CAB: 55
◦
N, 162

◦
E) (Battle et al., 2006) and Cape

Ochi-ishi, Hokkaido (COI: 43
◦
10

′
N, 145

◦
30

′
E) (Tohjima et al., 2008), plots of APO are

scattered, which may be related to variation of O2 flux from the oceans caused by

active marine primary production near the stations.

In-situ measurements at stations can significantly increase the temporal resolution15

of atmospheric O2 measurements, leading to new insights into marine productivity and

air-sea oxygen flux on even smaller time and space scales. Various techniques have

been developed to make in-situ measurements of the atmospheric O2/N2 ratio, such as

the paramagnetic oxygen analyzer system (Lueker et al., 2003; Manning et al., 1999),

the vacuum ultraviolet absorption method (Stephens, 1999; Stephens et al., 2003), and20

the fuel cell analyzer systems (Stephens et al., 2007 and references therein). Previous

studies have revealed that a sampling line for in-situ O2/N2 measurements requires

careful design to prevent fractionation of O2 from N2. Thermal fractionation between

O2 and N2 can easily occur at various locations, such as the sampling line inlet (Blaine

et al., 2006; Stephens et al., 2007; Sturm et al., 2006) and tee junctions (Keeling et al.,25

2004; Manning, 2001; Stephens et al., 2003).

Tohjima (2000) developed an analytical system for measuring O2/N2 ratio by using

a gas chromatograph equipped with a thermal conductivity detector (GC/TCD). The

GC/TCD method has been used to analyze flask samples collected at monitoring sta-
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tions and cargo ships (Tohjima et al., 2003; Tohjima et al., 2005b) and has the potential

to be applied for field-base measurements. In this study, we set up a field-base O2/N2

measurement system at COI, which is located at the eastern coast of Hokkaido island

in Japan. APO at COI shows large variability especially during spring and summer

(Tohjima et al., 2008). To examine the causes of the variability of APO at COI, we5

have monitored the O2/N2 ratio since 17 March 2005. Here, we show the details of the

in-situ measurement system and the quality and reliability of the obtained data. We

also made analysis of short-term variations (temporal scales of several hours to days)

in APO from April to early July 2005 using back trajectory analysis and found that the

APO variation can be attributed to the regional-scale oxygen emission resulting from10

spring bloom in the Japan Sea, the Okhotsk Sea, and the western North Pacific.

2 Methods

2.1 Sampling line

An air intake, which is capped with an inverted stainless steel beaker covered with

stainless steel mesh, is placed on the tower at ∼51 m height above ground level15

(∼100 m height above sea level) at COI. Sample air is drawn through 1/4 inch OD,

4.35 mm ID stainless (SUS 316) tubing from the tower to the inside of the station using

an oil-free diaphragm pump (model MOA-P108-HB, Gast Mfg. Corp., Benton Harbor,

MI, USA) at a rate of ∼8 L min
−1

. This fast sample flow rate was chosen to prevent

thermal fractionation between O2, N2, and Ar at the inlet of the sample line (Keeling et20

al., 1998).

The measurement system requires a 8 mL min
−1

flow rate, which is one thousandth

of the main flow rate of the sample gas. Previous studies have found that the fraction-

ation of O2 from N2 occurs at a tee junction when there is a thermal gradient in the

tee junction or the flow ratio between the two separated flows is large (Keeling et al.,25

2004; Manning et al., 1999; Stephens et al., 2003). To separate the sample gas without

2228
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fractionation at tee junctions, Stephens et al. (2007) have developed a special tee con-

figuration, in which a thin pick-off tubing extends upstream into a larger O. D. tubing.

In our case we inserted a 2-L spherical Pyrex®-glass flask into the main sample flow

as a buffer volume for picking up the required small sample gas flow for measurement

(see Fig. 1).5

After the air sample is drawn from the intake with a 1/4
′′

tubing, it is passed through

a 7-µm-pore-sized filter in a stainless housing and compressed into the spherical flask

at a pressure of 0.06 MPa above atmospheric pressure by the diaphragm pump (see

Fig. 1 for details of the sample line). The pressure in the spherical flask is adjusted

using a back pressure valve. A drain port on the spherical flask removes water con-10

densed from vapor in the air sample. The air sample is then collected from the center

of the spherical flask using a 1/16 inch OD, 0.80 mm ID stainless steel tubing (SUS 316)

at a continuous flow rate of 8 mL min
−1

.

After sample collection, the air sample is dried further by passing through an 80-mL

Pyrex®-glass trap immersed in an alcohol bath (–80
◦
C). The alcohol bath is cooled15

using a low temperature freeze trap VA-500F (Taitec Corp., Koshigaya, Japan). Al-

though a large temperature gradient in the glass trap leads to large gradients of O2

and N2 between the bottom and top of the trap, the constant flow of the sample en-

sures a constant O2/N2 ratio for air flowing into and out of the cold trap (Keeling et al.,

1998). To prevent fractionation, we keep the flow of the air sample constant and use a20

1/16 inch OD, 0.030 inch ID passivation-layer-coated Silcosteel® tubing (Restek Corp.,

Bellefonte, PA, USA) at the sample line where the temperature gradient exists. The

dried sample is then introduced into the sample line of the O2/N2 ratio measurement

system for analysis (see Tohjima (2000) for details of the measurement line).

2.2 Instruments and gas handling descriptions25

Some components of the measurement system differ from those shown by Tohjima

(2000). We use a GC-323(W) GC/TCD (GL Sciences Inc., Tokyo, Japan; hereinafter

abbreviated as GC-323) as the detector instead of the Hewlett-Packard (HP) 5890

2229

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/2225/2008/acpd-8-2225-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/2225/2008/acpd-8-2225-2008-discussion.html
http://www.egu.eu


ACPD

8, 2225–2248, 2008

Detection of oxygen

emission related to

spring bloom

H. Yamagishi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

GC/TCD to improve precision. Precision of the O2/N2 ratio is sensitive to temperature

fluctuations of the separation column and the TCD detector (see Tohjima (2000) for

details of the components in the measurement system). Thus, the heaters for the TCD

and oven, as well as the fan in the GC oven, are turned off to prevent temperature

fluctuations. Temperature fluctuations of the sample loop and the reference volumes5

for differential pressure sensors are also minimized by insulating them from room tem-

perature. During the period of 17 March 2005–21 February 2006, analog output of the

TCD has been digitized using a Hewlett-Packard 3396 Series II Integrator (USA). On 22

February 2006, the HP integrator was replaced by a 24-bit A/D converter (Chromato-

DAQ, Ulvac Inc., Chigasaki, Japan). Measurements, data acquisition, and calculation10

of peak area are performed using Visual Basic® (Microsoft Corp., Redmond, USA)

since 22 February 2006.

In the GC/TCD, hydrogen gas (99.99999%) is used as the carrier gas, supplied by a

Hydrogen Generator H2-300JA-100 (Perker Balston, Haverhill, USA). The carrier gas is

introduced into the sample and reference cells of the TCD at a flow rate of 30 mL min
−1

.15

Purified natural air in a 48-L aluminum cylinder compressed to a pressure of ∼8 MPa is

used as a reference gas. Concentrations of O2, N2, Ar, and CO2 of the purified air are

adjusted as required by adding O2, Ar, and CO2 into the cylinder (Tohjima et al., 2008).

Two reference gas cylinders are sent to the monitoring station once a year. These

cylinders are placed horizontally in heat-insulated wooden boxes to prevent thermal20

fractionation. Each cylinder is used as a working gas successively at a continuous

flow rate of 8 mL min
−1

. When the pressure of the cylinder being used decreases to

∼2 MPa, it is replaced with the second one. One cylinder lasts for more than 6 months.

Once a month, maintenance of the measurement system is carried out. During

maintenance, two reference gas cylinders are compared to check stability of the O2/N225

ratio. The separation column is baked at 320
◦
C for 300 min and the vapor traps are

dried. The O2/N2 ratio of each reference gas cylinder is checked in our laboratory

before and after each usage. We find that the O2/N2 ratio stays within 4 per meg

before and after deployment at the monitoring station, indicating no significant drift.

2230
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The averaged O2/N2 ratio is, therefore, applied to the O2/N2 ratio of each reference

gas cylinder.

2.3 Data processing

Changes of the O2/N2 ratio are expressed as relative deviations from a reference gas

according to:5

δ
(

O2

/

N2

)

=

(

O2

/

N2

)

S
(

O2

/

N2

)

R

− 1, (1)

where subscripts S and R denote sample and reference gases, respectively. Normally,

the value of δ(O2/N2) is multiplied by 10
6

and expressed as per meg unit (Keeling and

Shertz, 1992). The scale of the reference gas used in the present study is described

elsewhere (Tohjima et al., 2008). The ratio of the (O2+Ar) peak area to the N2 peak10

area is directly determined by using the O2/N2 measurement system developed by

Tohjima (2000). With the TCD sensitivity ratio of Ar relative to O2 being expressed by

k, the (O2+Ar) peak area is related to the mole fractions of O2 and Ar. One may define

(Tohjima et al., 2000):

δ
{

(O2 + Ar)/N2

}

=

{(

XO2
+ kXAr

)/

XN2

}

S
{(

XO2
+ kXAr

)/

XN2

}

R

− 1. (2)15

The value of k for HP5890 is slightly different from the one for GC-323 (kHP=1.13

(Tohjima et al., 2005a) and kGL=1.08, where the subscript symbols represent HP5890

and GC-323, respectively). Assuming that the value of k(XAr/XN2
)S–k(XAr/XN2

)R is

zero for any samples and reference gases (see Tohjima (2000) for details), δ(O2/N2) is

related to δ{(O2+Ar)/N2}:20

δ(O2/N2) = δ{(O2 + Ar)/N2}×{(XO2
+ kXAr)/XO2

}R , (3)
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where {(XO2
+kXAr)/XO2

}R is a scaling factor (1.050 for HP5890 (Tohjima et al., 2005a)

and 1.048 for GC323). If the sample Ar/N2 ratio increases by ∼20 per meg, the O2/N2

ratio measured by the GC/TCD method is overestimated by ∼1 per meg; this is based

on the assumption of a constant Ar/N2 ratio (definition of Ar/N2 ratio is as follows:

δ(Ar/N2)={(Ar/N2)sample/(Ar/N2)reference–1}×10
6

(per meg)). This is a relatively valid as-5

sumption, since changes in the Ar/N2 ratio are not likely to be significant in the present

analysis of short-term variability in the O2/N2 ratio, because short term variability in the

Ar/N2 ratio is less than 30 per meg (see Battle et al., 2003; Blaine et al., 2006).

We found that the value of δ{(O2+Ar)/N2} measured by GC-323 (δ{(O2+Ar)/N2}GL)

is not always equal to that measured by HP5890 GC/TCD (δ{(O2+Ar)/N2}HP) when we10

measure the same set of cylinders. The linearity of HP5890 GC/TCD was found to lie

within ±1% based on the measurements of purified air gases that cover wide range of

O2/N2 ratio (Tohjima et al., 2005a); the difference of δ{(O2+Ar)/N2} measured by two

different types of TCD could be attributed to a nonlinear behavior of GC-323 GC/TCD

(see details in Sect. 2.3). The area ratio of δ{(O2+Ar)/N2}GL is then corrected from the15

following equation:

δ{(O2 + Ar)/N2}HP = δ{(O2 + Ar)/N2}GL/L, (4)

where L is the linearity correction factor for GC-323 (L=1.078±0.004 at COI; Serial No.

is GC-323-0338.). Note that the factor L is different for individual GC-323 GC/TCDs.

Slight difference in the value of the factor k (the TCD sensitivity ratio of Ar relative20

to O2) between HP5890 and GC-323 can not explain the difference in the linearity of

δ{(O2+Ar)/N2}.
Here, APO is calculated by the following equation:

δAPO = δ(O2/N2)S/N + αBXCO2
/XO2

− 1850 (per meg), (5)

where XCO2
is the CO2 mol fraction in ppm, αB is the O2:C molar exchange ratio for the25

land biotic respiration and photosynthesis (αB=1.1), XO2
is the atmospheric O2 mole

fraction (XO2
=0.2094 (Tohjima et al., 2005a), and the value 1850 is the arbitrary APO
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reference point (Tohjima et al., 2005b). We have calculated APO using in-situ CO2

data obtained from the monitoring station (Mukai et al., 2001).

2.4 Linearity correction for TCD response

To estimate the linearity correction factor for the in-situ measurement system, we se-

lected two 10L-aluminum cylinders of the purified air that is synthesized gravimetrically5

by Tohjima et al. (2005a). High and low O2/N2 ratio values of the two gravimetric stan-

dards cover the range of the variation of O2/N2 ratio observed at COI. Before and after

calibration experiments, the ratios of δ{(O2+Ar)/N2}HP in gravimetric standards were

estimated in our laboratory using an HP 5890 GC/TCD. After relocation to the moni-

toring station, the two cylinders of the gravimetric standards were heat-insulated and10

kept horizontal for a month. The gravimetric standards were then measured as a sam-

ple gas relative to the working gas using a GC-323 GC/TCD in February and March

2007. We calculated the values of δ{(O2+Ar)/N2}GL between gravimetric standards

and estimated the linearity correction factor for each experiment (see Table 1). The

linearity correction factor remained relatively constant for a month between the before-15

and after-calibration experiments (see Table 1). In our laboratory, we also examined

the linearity of another GC-323 GC/TCD by measuring cylinders and samples for more

than two years. The linear correlation between δ{(O2+Ar)/N2}HP and δ{(O2+Ar)/N2}GL

stays within a range of ∼2000 per meg and the slope of the correlation does not change

significantly during the periods. Considering these results, we have adopted a constant20

value of 1.078±0.004 for the linearity correction factor for the in-situ measurement sys-

tem at COI (Table 1).

Although we have not yet identified the cause of the non-linearity inherent in GC-

323, the difference in the linearity between these two instruments might be related to

the difference in the physical structure between GC-323 and HP 5890 TCDs. Basically,25

TCD consists of four filaments in a Wheatstone bridge configuration. In GC-323, two

filaments are exposed to the reference gas, and the other two filaments are exposed to

the sample gas. In contrast, in the HP5890 detector only one TCD filament is exposed
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alternately to the reference and sample gases very rapidly.

3 Results and discussion

3.1 Precision and data evaluation

The in-situ O2/N2 ratio and CO2 concentration measurements from March 2005 to

March 2006 are shown in Fig. 2a and APO is shown in Fig. 2b. The standard deviation5

of the O2/N2 ratio was estimated at ∼±14 per meg (1σ) for half a day measurements

when intra-hourly room temperature fluctuation was 0.5–1
◦
C. Thus, standard error (SE)

for 1-h mean O2/N2 ratio was ∼±6 per meg (1.2 ppm). During August 2005 and from

December 2005 to May 2006, the standard deviation of the O2/N2 ratio increased to

20–30 per meg because the range of room temperature fluctuation increased to ∼2
◦
C.10

To reduce the influence of the room temperature fluctuation on the measurement pre-

cision, on 24 May 2006 GC/TCD and the sample loop were heat-insulated in an alu-

minum box, with the space between the inside and the outside plates of the box filled

with water. This resulted in a stabilization of the O2/N2 ratio with a standard deviation

of ∼±14 per meg.15

The in-situ O2/N2 ratio values were compared with those obtained from flask sam-

ples. As shown in Fig. 3a, there is a linear correlation between δ(O2/N2) from the

flask sampling, δ(O2/N2)flask, and the in-situ 5-h mean O2/N2 ratio, δ(O2/N2)5 h. The

difference between δ(O2/N2)5 h and δ(O2/N2)flask (denoted as ∆δ(O2/N2)5 h/flask) during

March 2005–March 2006 is shown in Fig. 3b. The value of ∆δ(O2/N2)5 h/flask was es-20

timated to be 7.0±9.9 per meg (1σ, n=79), whereas the difference between the in-situ

1-h mean O2/N2 ratio and the ratio from the flask measurements (∆δ(O2/N2)1 h/flask)

was found to be 8.4±12.7 per meg (1σ, n=79).

Although we have not yet clearly identified the cause of the difference noted above, it

is likely that a positive fractionation of O2 relative to N2 occurring in the sampling line is25

caused by the back pressure regulator (BPR) that adjusts the pressure of the spherical
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flask (Fig. 1). Stephens et al. (2003) reported a fractionation of O2 relative to N2 by as

much as 70 per meg when air sample flowing at a rate of 80 mL min
−1

was separated

from the main sample flow (6 L min
−1

) by the tee junction located just before the BPR.

In order to reduce the fractionation, they installed a 2 m of 1/4
′′

tubing before the BPR

and reduced the main flow rate to 2 L min
−1

. In our system, air sample is allowed to flow5

for about 30 cm in a stainless steel tubing (1/4
′′

OD, 4.35 mm ID) from the spherical

flask to the BPR at a rate of ∼8 L min
−1

. The pressure and the flow rate govern the

degree to which the fractionation occurs at BPR (Stephens et al., 2003); therefore, at

the monitoring station, these were adjusted to 0.06 MPa and ∼8 L min
−1

, respectively.

The standard deviation of ∆δ(O2/N2)1 h/flask (±12.7 per meg) is larger than the ex-10

pected standard error (SE) of ±∼8 per meg based on the SE of individual measure-

ments from flasks (SE=±5 per meg) and in-situ measurements (SE=±6 per meg for

1-h mean O2/N2 ratio). The reasons for this could be due to the following factors: (1)

Increase in the fluctuation of the room temperature during August 2005 and from De-

cember 2005 to May 2006 may have increased the standard error of ∆δ(O2/N2)1 h/flask15

by ∼1 per meg, and (2) Changes in the cold trap temperature may have contributed

to the fractionation of O2 from N2 as the air sample passed through the 80-mL glass

trap. There are other possible factors, such as the temporal variability of the O2/N2

ratio of the working gas and the difference in the sampling time for flasks and in-situ

measurements.20

3.2 Atmospheric observation

The observed O2/N2 ratio shows a seasonal variation characterized by many short-

term variations with time scales of several hours to several days (Fig. 2a); these fluctu-

ations are not resolved by the flask measurements since the flask sampling was done

every 4 days. The observed higher variability in the O2/N2 ratios (Fig. 2a), compared25

to the APO variability, suggests that the O2/N2 variation was caused mainly by ex-

change with the terrestrial biosphere. In contrast, during the period from April to July,

APO showed a large variability. Especially in late May to early July 2005, APO values
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were about 40 per meg higher than the APO values observed during the neighboring

months.

On the other hand, APO had no significant variabilities from October 2005 to March

2006 (Fig. 2b). In fall and winter, mixed layer depth of the ocean increases because of

the enhancement of ventilation and surface waters are mixed with subsurface waters,5

in which O2 is undersaturated. A decrease in the temperature of surface waters re-

sults in an increase in O2 solubility; the extent of undersaturation is enhanced. These

factors should result in an uptake of atmospheric O2 into the oceans in fall and winter

in the North Pacific near COI. At Trinidad Hed, California (41.05
◦
N, 124.15

◦
W), strong

coastal upwelling events occur from March to October, which transport the low-oxygen10

subsurface waters to the surface layer. The observed short-term declines of APO last-

ing several days or weeks by tens to ∼100 per meg, which should be attributed to the

uptake of atmospheric O2 into the low-oxygen sea waters (Lueker et al., 2003, 2004).

However, such short-term negative spikes of APO were not observed in winter time

(from December to February) at COI (Fig. 2b). Therefore, the O2 uptake in the western15

North Pacific near COI does not likely produce large heterogeneity of the atmospheric

O2/N2 ratio in winter time.

3.3 Oxygen emission related to spring bloom

We focus on the APO variation from April to July 2005 (Fig. 4b, d) and examine the

reasons for the high APO values during this period. We relate the APO variation at20

COI to the correlative patterns of the air mass transport (obtained through a back tra-

jectory analysis) and the distribution of monthly-averaged marine net primary produc-

tion (NPP), as shown in Fig. 5. We have computed the back trajectories using the

CGER/METEX trajectory model (Zeng et al., 2003) forced by a 3-d wind field on a

sigma vertical coordinate; the altitude of the starting point is 500 m, integrating back for25

120 h. Monthly NPP distribution is estimated from the Vertically Generalized Produc-

tion Model (VGPM) (Behrenfeld and Falkowski, 1997), which is a widely used satellite-

derived NPP estimation.
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Because of the relatively rapid air-sea exchange of oxygen, re-equilibration of O2

in a mixed layer depth of 50 m occurs on a timescale of days (Gruber et al., 2001).

Mixed layer depth is much less than 50 m (typically 5–30 m) during spring bloom in the

Japan Sea (Jo et al., 2007) and the Okhotsk Sea (Okunishi et al., 2005), and is about

50 m in the western North Pacific (Imai et al., 2002). Therefore, the time lag between5

O2 production and emission should be small (several days). In April 2005, the spring

bloom occurred mainly in the Japan Sea and the region between 30
◦
N and 40

◦
N in

the western North Pacific (Fig. 5a). High values of APO were observed at COI (red

symbols from a1 to a5 in Fig. 4b) when the air mass trajectories passed over the high

productive regions (Fig. 5a). On the other hand, low APO values were observed (blue10

symbols from b1 to b5 in Fig. 4b) when the air mass trajectories passed over the low

productive regions (Fig. 5b). In June, high APO values (red symbols from c1 to c6

in Fig. 4d) were related to the strong bloom observed in the Okhotsk Sea and in the

region 40∼50
◦
N in the western North Pacific (Fig. 5c), while low APO values (blue

symbols from d1 to d4 in Fig. 4d) were related to air mass trajectories passing over15

the low productive regions (see Fig. 5d). Back trajectory analysis indicates that high

values of APO are associated with air masses that have passed over the regions of

active biological photosynthesis (spring bloom), showing that the O2 emission related

to marine primary production can be observed by in-situ monitoring of atmospheric

O2/N2 ratio and CO2 concentration.20

Not all of the APO variability at COI, however, can be explained by the NPP-trajectory

relationship. For example, a large increase in APO was observed on 3 June 2005 and

an APO fluctuation on 24–27 June 2005. We are in the process of carrying out a

detailed analysis of these events.

4 Summary and implications25

We have been carrying out in-situ measurements of the atmospheric O2/N2 ratio at

Cape Ochi-ishi (COI; 43
◦
10

′
N, 145

◦
30

′
E) in the northern part of Japan since March
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2005 using the GC/TCD analyzer. The standard deviation of the O2/N2 ratio is esti-

mated to be about ±14 per meg (≈3 ppm) for the in-situ measurement system, resulting

in a standard error of ±6 per meg (≈1.2 ppm) for the 1-h mean O2/N2 ratio. Although

precision of the GC/TCD method is worse than that of the other in-situ measurement

systems, the smaller consumption rate of working gas (8 mL min
−1

) is a benefit for long5

term observation at remote monitoring stations. After linearity correction in the in-situ

measurement system, there remains a systematic bias for the O2/N2 ratio measured

in situ compared with the O2/N2 ratio obtained from the flask measurements. The av-

erage of the differences between the in-situ and the flask measurements (5-h mean

O2/N2 ratio – flask data) is 7.0±9.9 per meg (1σ, n=79) from March 2005 to March10

2006.

During the period of our study, we have observed a clear seasonal variation in APO

at COI. From late May to early July 2005, APO shows relatively high values, exceed-

ing the values observed during the neighboring months by about 40 per meg, and is

characterized by a large variability. Based on the results from trajectory analysis, it15

is suggested that the high values of APO at COI are associated with occurrences of

strong marine primary production (spring bloom) observed in the Okhotsk Sea and the

western North Pacific. This gives additional support to the idea that the variation in

APO reflects variation in O2 emission associated with the spring bloom of phytoplank-

ton in the western North Pacific and marginal seas near Japan.20
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Table 1. Results of linearity calibration experiments.

GC/TCD δ{(O2+Ar)/N2}S1/S2(per meg)
a

Linearity correction factor, L Date of experiments

HP5890 491.3±1.4 – –

GC-323 529.7±1.9 1.078±0.005 19–20 Feb. 2007

GC-323 529.3±1.8 1.077±0.005 18–19 March 2007

GC-323 (average) – 1.078±0.004 –

a
Symbols of S1 and S2 represent cylinders of CPB-26855 and CPB-17279, respectively.

Values of δ{(O2+Ar)/N2}HP of the cylinders S1 and S2 were estimated at 63.3±1.0 and –428.0±1.0 per meg, respectively.

Value of δ{(O2+Ar)/N2}S1/S2 represents δ{(O2+Ar)/N2} of the cylinder S1 relative to that of S2.
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Fig. 1. Schematic diagram of the sampling line for the in-situ O2/N2 measurement system

using the GC/TCD method developed by Tohjima (2000).
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Fig. 2. One-hour mean O2/N2 ratio (blue line,(a)), CO2 concentration (red line, a), and δAPO

(green dot,(b)) measured in situ at Cape Ochi-ishi form March 2005 to March 2006. Open cir-

cles (a) and open triangles (b) represent O2/N2 ratio and δAPO, respectively, of flask samples.
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Fig. 3. Comparison of δ(O2/N2) between the flask, δ(O2/N2)flask, and the 5-h mean in-situ O2/N2

ratio, δ(O2/N2)5 h, from 17 February 2005 to 20 March 2006. (a) Solid and broken lines are the

reduced measure axis regression (Y=1.02X+10.5) and the function of Y=X, respectively. Plot

represents the 5-h mean δ(O2/N2) measured in situ. (b) Deviation of the in-situ measurements

from the flask measurements (i.e. ∆δ(O2/N2)5 h/flask = δ(O2/N2)5 h–δ(O2/N2)flask). Broken line

represents Y=7.0, which is an average of the deviation.

2246

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/2225/2008/acpd-8-2225-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/2225/2008/acpd-8-2225-2008-discussion.html
http://www.egu.eu


ACPD

8, 2225–2248, 2008

Detection of oxygen

emission related to

spring bloom

H. Yamagishi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 4. One-hour mean O2/N2 ratio, CO2 mole fraction, and δAPO at Cape Ochi-ishi for the

periods of 1 April–12 May (a, b) and 1 July–12 July (c, d) in 2005. One-hour mean O2/N2 ratio

(blue lines in a and c), CO2 mole fraction (red lines in a and c), and δAPO (red dots in b and

d), and 5-h running mean δAPO (green lines in b and d) are shown. Dots represent the O2/N2

ratio (open circles in a and c), CO2 mole fraction (open squares in a and c), and δAPO (open

triangles in b and d) of the flask samples. Times indicated by a1 to d4 in pointing δAPO (in b

and d) represent the starting times of the back trajectory calculations shown in Fig. 5a–d (see

Sect. 3.3 for details). The numbers from 1 to 6 are comparable with those in the legends of

Fig. 5. 2247
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Fig. 5. Monthly-average distribution of the net primary production in April (a, b) and June (c,

d) 2005 estimated from the Vertically Generalized Production Model (VGPM) (Behrenfeld and

Falkowski, 1997), along with 5-day air mass back trajectories. The NPP estimation in the East

China Sea and Yellow Sea might be overestimated due to suspended matter and chromophoric

dissolved organic matter (He et al., 2000). Legends show the start time (UTC) for calculating

back trajectories.
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