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Abstract

Various solar broadband models have been developed in the last half of the 20th cen-

tury. The driving demand has been the estimation of available solar energy at different

locations on earth for various applications. The motivation for such developments,

though, has been the ample lack of solar radiation measurements at global scale.5

Therefore, the main goal of such codes was to generate artificial solar radiation series

or calculate the availability of solar energy at a place.

One of the broadband models to be developed in the late 80’s was the Meteorological

Radiation Model (MRM). The main advantage of MRM over other similar models was

its simplicity in acquiring and using the necessary input data, i.e., air temperature,10

relative humidity, barometric pressure and sunshine duration from any of the many

meteorological stations.

The present study describes briefly the various steps (versions) of MRM and in

greater detail the latest version 5. To show the flexibility and great performance of

the MRM, a harsh test of the code under the (almost total) solar eclipse conditions15

of 29 March 2006 over Athens was performed and comparison of its results with real

measurements was made. From this hard comparison it is shown that the MRM can

simulate solar radiation during a solar eclipse event as effectively as on a typical day.

The value of this comparison is further enhanced if it said that the sky was cloudy

almost all the duration of the solar eclipse event.20

1 Introduction

The demand of exact knowledge about the availability of solar energy at different loca-

tions on the earth’s surface has been increasing recently because of its use as one

of the most promising renewable energy sources. Solar data, on the other hand,

are nowadays used in diverse disciplines, including climatology, micro-meteorology,25

biology, agriculture, glaciology, urban planning, architecture, mechanical and environ-
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mental engineering. The design of many solar conversion devices, such as thermal

appliances, requires the knowledge of solar radiation availability on horizontal as well

as sloped surfaces. Also, the estimation of solar radiation on inclined surfaces starts

with the determination of the corresponding values on horizontal plane.

It is well known that the number of the existing solar radiation stations is not ade-5

quately large throughout the world, in order to provide the required data for mapping

solar radiation at a global scale. On the other hand, long-term solar radiation mea-

surements are needed by scientists and solar energy system designers for various

applications, such that the development of Solar Radiation Atlases and the generation

of Typical Meteorological Years (TMYs) are nowadays important tasks. Nevertheless,10

because of an ample lack of such data worldwide, most of the above applications must

primarily rely on simulation techniques. For instance, the US National Solar Radiation

Data Base provides hourly radiation data and TMYs for 239 US sites, but 93% of these

data come from appropriate modeling (Maxwell, 1998; Maxwell et al., 1991).

In the context of the above, various solar radiation models (mostly broadband) have15

started being developed since the middle of the 20th century to calculate solar radia-

tion components on a horizontal surface, under clear-sky conditions mostly. The per-

formance of a number of broadband models tested against theoretical and measured

data under clear-sky conditions has been presented by Gueymard (1993a, 2003).

The Atmospheric Research Team (ART) at the National Observatory of Athens20

(NOA) has developed the so-called Meteorological Radiation Model, or MRM in brevity

(Kambezidis and Papanikolaou, 1989, 1990a; Kambezidis et al., 1993a, 1997). The ini-

tiative of this development was to derive solar radiation data for places where these are

not available because of lack of such measurements. To do that, the MRM employed

meteorological data only (viz. air temperature, relative humidity, barometric pressure25

and sunshine duration) that are available worldwide.

The MRM code passed through different phases of development since its first ver-

sion. Its latest version is 5. The original form of MRM (MRM v1) worked efficiently under

clear-sky conditions, but it could not work under partly-cloudy or overcast skies. MRM
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v2 introduced new analytical transmittance equations and, therefore, became more

efficient than its predecessor. Nevertheless, this version still worked well under clear-

sky conditions only. These deficiencies were resolved via the development of MRM

v3, derived by T. Muneer’s research group at Napier University, Edinburgh (Muneer

et al., 1996, 1997, 1998; Muneer, 1997;) after successful co-operation between ART5

and his group. MRM v3 was included in the book edited by Muneer (1997). Through

the EC JOULE III project on Climatic Synthetic Time Series for the Mediterranean Belt

(acronym: CliMed), a further development of the MRM was achieved, which is re-

ferred to as version four (MRM v4), providing further improvement in relation with the

partly-cloudy and overcast skies. The algorithm of MRM v4 was used by Prof. Hassid,10

Technion University, Israel, to make simulations and comparison with Israeli solar radi-

ation data (unpublished work). In using the code, he found some errors mainly in the

calculation of the daily solar course in the sky; these errors were later incorporated in

the algorithm. On the other hand, Gueymard (2003), in an inter-comparison study em-

ploying various broadband models, used MRM v4 and found it not to be performing well15

in relation to others. These tests forced ART to reconsider the source code of MRM.

The effort resulted in discovering further errors in the transmittance and solar geom-

etry functions; new transmittance and more effective solar geometry functions were,

therefore, introduced from the international literature concluding to MRM v5. Also the

recent solar constant of 1366.1 Wm
−2

was incorporated in version 5. A full description20

of the code is given in Sect. 2.

MRM has successfully been used by the Chartered Institution of Building-Service

Engineers (CIBSE) of UK under the Solar Data Task Group in 1994 (Muneer, 1997).

Apart from that specific task, MRM can be used in a variety of applications, among of

which the most important nowadays are:25

1. estimating solar irradiance on horizontal plane to be used as input parameter to

codes calculating solar irradiance on inclined surfaces with arbitrary orientation,

2. estimating solar irradiance on horizontal plane with the use of available meteoro-
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logical data to derive the solar climatology at a location,

3. filling gaps of missing solar radiation values in a series of historic observations

from corresponding observations of available meteorological parameters,

4. providing results for engineering purposes, e.g., solar-energy applications, PV

efficiency, energy-efficient buildings and daylight applications.5

The primary objective of this study is to test the performance of the new version of MRM

during the recent solar eclipse of 29 March 2006. The simulation of solar radiation

levels by a broadband model during an eclipse event is, therefore, made for the first

time in the international literature because of the difficulty to describe correctly the

atmospheric conditions and solar geometry during the phase of the eclipse within the10

code. The results of this study have, however, a scientific and not a practical value,

but can justify the performance of MRM v5 under very “adverse conditions” as those

of a solar eclipse. The sun’s disk coverage during the eclipse maximum on 29 March

2006 was 84% at NOA’s solar radiation station featuring an almost total eclipse. For

comparison, the performance of the model is also tested during the preceding day of15

the eclipse, i.e., 28 March 2006.

2 Model description

MRM is a broadband algorithm for simulation and estimation of solar irradiance on

horizontal surface, using widely available meteorological information, viz. values of air

temperature, relative humidity, barometric pressure, and sunshine duration as input20

parameters. This section provides a detailed description of the newly developed MRM,

version 5, incorporating all recent knowledge on the subject.
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2.1 Clear-sky MRM sub-model

2.1.1 Direct-beam radiation

The direct-beam component of solar radiation (the radiation arriving directly from the

sun) normal to a horizontal plate at the earth’s surface, under clear sky and natural

(without anthropogenic influence) atmosphere, is the extra-terrestrial radiation at the5

top of the atmosphere (TOA) modified by absorption and scattering from its various

constituents. Thus, during cloudless periods, the direct-beam radiation received on a

horizontal surface can be expressed as:

Ib = Iex cosθz Tw Tr To Tmg Ta (1)

where θz is the solar zenith angle, Iex is the normal-incidence extra-terrestrial solar10

radiation in the ni -th day of the year; the T terms are the broadband transmission func-

tions for water vapor (Tw ), Rayleigh scattering (Tr ), uniformly mixed gases (CO2, CO,

N2O, CH4 and O2) absorption (Tmg), ozone absorption (To), and aerosol total extinction

(scattering & absorption) (Ta).

The general transmittance function, Ti , for seven main atmospheric gases (H2O, O3,15

CO2, CO, N2O, CH4 and O2) can be expressed by the following equation (Psiloglou et

al., 1994, 1995a, 1996, 2000):

Ti = 1 −
a m ui

(1 + b m ui )
c
+ d m ui

(2)

where m is the relative optical air mass, and a, b, c, d are numerical coefficients that

depend on the specific extinction process; the values of these coefficients are given in20

Table 1.

The relative optical air mass, m, at standard pressure conditions, is given by Kasten

and Young (1989):

m = [cosθz + 0.50572 (96.07995 − θz)−1.6364]−1 (3)
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This above formula is accurate for all m’s up to θz<85
◦

with an error of less than 0.5%.

The absolute air mass, m′
, can then be estimated by the expression:

m′
= m

(

P

Po

)

(4)

where P is the atmospheric pressure at the station’s height, in hPa, and

Po=1013.25 hPa the mean pressure at sea level.5

The relative optical air mass has been used here only for ozone, water vapor and

aerosols, whereas the absolute air mass is used for the Rayleigh scattering and mixed

gases absorption.

In Eq. (2), ui represents the “absorber’s amount in a vertical column” for each extinc-

tion process. This quantity is variable for water vapor and ozone, and represented by10

uw (in cm) and uo (in atm-cm), respectively. The necessary ui values (in atm-cm) for

the other atmospheric gases of Table 1 are: 1.60 for CH4, 0.075 for CO, 330.0 for CO2,

0.28 for N2O, and 2.095×10
5

for O2.

For the estimation of the water-vapor total amount in a vertical column (the so-called

precipitable water), the following expression (Leckner, 1978) is used:15

uw =
0.493 em

T
(5)

where em is the partial water-vapor pressure, in hPa, given by:

em = es

(

RH

100

)

(6)

where RH is the relative humidity at the station’s height, in %, and es is the saturation

vapor pressure, in hPa, given by Gueymard (1993b):20

es = exp (22.329699 − 49.140396T−1
1

− 10.921853T−2
1

− 0.39015156T1) (7)

with T1=T /100, T being the air temperature at the station’s height, in K.
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The broadband transmittance function due to the total absorption by the uniformly

mixed gases can then be calculated by:

Tmg = TCO2
TCO TN2O TCH4

TO2
(8)

where the transmittances TCO2
, TCO, TN2O, TCH4

and TO2
are given by Eq. (2) using the

appropriate coefficients of Table 1.5

The transmittance corresponding to the Rayleigh scattering is calculated from

Psiloglou et al. (1995b):

Tr = exp[−0.1128m′0.8346(0.9341 −m′0.9868
+ 0.9391m′)] (9)

Very few locations in the world provide detailed aerosol data. In general, solar radi-

ation modelers are forced to use or develop aerosol models specific for their own site10

of application. In the present study, the Mie scattering transmittance function proposed

by Yang et al. (2001) has been incorporated in MRM v5:

Ta = exp{−m β[0.6777 + 0.1464 m β − 0.00626 (m β)2]−1.3} (10)

where the Ångström’s turbidity parameter, β, is in the range 0.05–0.4 for low-to-high

aerosol loads. Some indicative values of β are given in Table 2 (Iqbal, 1983).15

Another way of estimating β, when this is not known from measurements, is by using

Yang et al.’s (2001) expression, which relates β to the geographical latitude, φ, and the

altitude of the station, H . This expression is:

β = β′
+ ∆β (11)

β′
= (0.025 + 0.1 cosϕ) exp

(

−0.7H

1000

)

(12)20

∆β = ±(0.02 ∼ 0.06) (13)

where β′
represents the annual mean value of turbidity and ∆β their seasonal devia-

tions from the average, i.e. low values in winter, high values in the summer. For Athens
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(φ=37.967
◦
N, H=107 m a.m.s.l.) β′

=0.09. Considering ∆β=−0.04, it is found that

β=0.05. This value was adopted for both days, since similar atmospheric conditions

prevailed on 28 and 29 March, namely unaltered wind speeds and wind directions from

the southern sector mostly.

During the earth’s movement around the sun, Iex varies by approximately ±3.5 per-5

cent of its value at the equinoxes. Iex may be expressed in the ni -th day of the year as

(Spencer, 1971):

Iex = Io [1.00011 + 0.034221 cos Γ + 0.00128 sin Γ + 0.000719 cos 2Γ + 0.000077 sin 2Γ]

(14)

where Io is the solar constant, equal to 1366.1 Wm
−2

, and Γ (in radians) is the day10

angle, which is given by:

Γ =
2π (ni − 1 )

365
(15)

where the day number of the year, ni , ranges from 1 (on 1 January) to 365 (on 31

December); February is always assumed to have 28 days.

Figures 1–3 show the transmittances of water vapor, ozone and total aerosol extinc-15

tion, respectively, as predicted by the new MRM v5 algorithm.

2.1.2 Diffuse radiation

Under clear-sky conditions, the diffuse (indirect) sky radiation is assumed to be made

up of a portion of singly scattered by the atmospheric constituents (molecules and

aerosol particles) direct-beam radiation, Ids, plus a multiple-scattering component, Idm20

(Atwater and Brown, 1974; Psiloglou et al., 2000):

Ids = Iex cosθz Tw Tmg To Taa 0.5(1 − Tas Tr ) (16)

The first part in the right-hand side of Eq. (16), i.e. Iex Tw Tmg To Taa, represents the

amount of solar radiation left over after its absorption by the atmospheric constituents
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and aerosols, while the second part, i.e. 0.5(1−Tas Tr ), expresses the amount of solar

radiation scattered forward (towards the surface of the earth) by the air molecules and

aerosol particles.

The aerosol transmittance function due to absorption only, Taa, is given by the ex-

pression (Bird and Hulstrom, 1980, 1981):5

Taa = 1 − 0.1(1 −m +m1.06)(1 − Ta) (17)

and the aerosol transmittance due to scattering alone, Tas, can be estimated from:

Tas =
Ta
Taa

(18)

The diffuse component which is due to a single reflection of Ib and Ids from the earth’s

surface, followed by backscattering from the atmospheric constituents, Idm, is modeled10

as:

Idm = (Ib + Ids)
αg αs

1 − αg αs

(19)

where αg is the surface albedo, usually taken equal to 0.2, and αs the albedo of the

cloudless sky.

The atmospheric albedo is defined as the ratio of the energy reflected back to space15

to the incident one. Under clear-sky conditions, it can be approximated using the fol-

lowing form:

αs = αr + αa (20)

where αr represents the albedo due to molecular (Rayleigh) scattering, commonly

taken equal to 0.0685 after Lacis and Hansen (1974).20

The second term, αa, is the atmospheric aerosol albedo due to atmospheric aerosol

scattering, and can be estimated from the following equation (Bird and Hulstrom, 1980,

1981):

αa = 0.16(1 − Ta,1.66) (21)
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where Ta,1.66 implies the value of the total aerosol transmittance, Ta, calculated for

m=1.66 (i.e., for θz=53
◦
).

The diffuse radiation at ground level under clear-sky conditions, Id , is then simply the

sum of the Ids and Idm components, i.e.:

Id = Ids + Idm (22)5

2.1.3 Total radiation

The total solar radiation, It, received under clear-sky conditions on a horizontal surface

at the surface of the earth is simply the sum of the horizontal components of Ib from

Eq. (1), and Id from Eq. (22):

It = Ib + Id =
Ib + Ids

1 − αg αs

(23)10

2.2 Cloudy-sky MRM sub-model

Clouds play an important role in modifying radiation as they significantly affect the

reflectance, absorptance and transmittance of the incident radiation. However, the

present understanding of their effect on solar radiation is at a good level, but its mod-

eling in the various radiative models (broadband or spectral) is far from being efficient15

and lies on statistical techniques than physical processes (Kontratyev, 1969; Davies et

al., 1975; Suckling and Hay, 1977; Barbaro et al., 1979; Munro, 1991; Gu et al., 2001;

Badescu, 2002; Ehnberg and Bollen, 2005).

The direct-beam radiation is attenuated by the presence of clouds by blocking its

propagation through the atmosphere, as well as by the various atmospheric con-20

stituents, as already discussed above. The depletion of the direct-beam component

by clouds depends on their type, thickness, and the number of layers.

The diffuse component consists of several parts. The mechanism of scattering by air

molecules and aerosols is the same with the one already described above. In addition,
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there is an interaction between the direct-beam solar radiation with clouds, resulting in

reflected diffuse radiation. Further, a portion of the direct-beam and diffuse radiation

components reaching the surface of the earth is reflected back to space; this part

contributes to a multiply-reflected irradiance. This latter radiation component depends

strongly on the reflectance properties of the clouds system. When the sky is completely5

overcast, the diffuse component is considered almost isotropic.

Theoretical determinations of the direct-beam and diffuse irradiance components

under cloudy-sky conditions are quite difficult. Such tasks require detailed data on the

type and optical properties of clouds, cloud coverage, thickness, position and number

of layers. Such data are very rarely collected on a routine basis.10

However, several methods have been developed to model solar radiation under

cloudy skies. Depending on the type of input data used for each model, Davies et

al. (1984) identified five model groups: (i) sunshine-based models, (ii) cloud-layer-

based models, (iii) total-cloud-based models, (iv) satellite-data-based models, and (v)

Liu-Jordan (1960) type models; all these groups discriminate total radiation into direct-15

beam and diffuse components.

In the last version of MRM, an algorithm for calculating the solar radiation compo-

nents on cloudy days has been introduced. Given the absence of adequate information

on cloudiness, solar radiation is simulated by MRM using the measured sunshine du-

ration, n, which is widely measured and easily available to most users from existing20

national meteorological stations.

2.2.1 Direct-beam radiation

The direct-beam solar radiation under clear skies, Ib, decreases in the presence of

clouds by the factor Tc, which depends on the characteristics of cloudiness (Barbaro et

al., 1979). Therefore, the direct-beam solar radiation under cloudy skies, Icb, can be25

obtained by:

Icb = Ib Tc (24)
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where Tc is the cloud transmittance, and Ib is calculated from Eq. (1).

Generally, Tc can be expressed as a function of the relative sunshine duration, n/N,

which is the ratio of the daily measured sunshine duration, n, to its maximum (astro-

nomical) value, N:

Tc = k
( n

N

)

(25)5

where k is an empirical coefficient for cloudiness with a usual value equal to unity. Such

an approximation, as that in Eq. (24), is necessary because the information pertaining

to cloudiness is unsatisfactory.

Barbaro (1979) allows k=1, but Ideriah (1981) proposed a value of k=0.75 to provide

better agreement between modeled estimates and measurements. For the Athens data10

it was found that k should vary between 0.85 and 0.95 for the winter months, and be

1.0 for the summer period (Psiloglou et al., 2000).

2.2.2 Diffuse radiation

The single-scattered portion of the diffuse radiation in the presence of clouds, Tcds, can

be computed by Barbaro et al. (1979):15

Icds = IdsTc + k∗(1 − Tc)(Ib + Ids) (26)

where k∗
is an empirical transmission coefficient, whose value is a function of φ, and

is obtained from Berland and Danilchenko (1961). Values of k∗
for different latitudes

are given in Table 3. For the case of Athens (φ=38
◦
N), the value of k∗

=0.33 has been

adopted (see Table 3).20

The ground-reflected, atmospheric- and cloud-backscattered diffuse term, Icdm, is

modeled identically as in clear-sky conditions:

Icdm = (Icb + Icds)
αg αcs

1 − αg αcs

(27)
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where αcs is the albedo of the cloudy sky.

In order to estimate the atmospheric albedo of a cloudy sky, a corrective factor for

multiple scattering between the clouds and the surface of the earth, αc, is introduced

in Eq. (20). Thus the new formula is expressed as:

αcs = αr + αa + αc (28)5

where the α’s in the right-hand side of Eq. (28) are defined for clear skies (see Eqs. 20,

21), while αc is given by various analytical expressions (Atwater and Ball, 1978; Davies

and McKay, 1982; Lyons and Edwards, 1982), as a function of n. In MRM v5, the

following expression has been adopted:

αc = ν
(

1 −
n

N

)

(29)10

where v is a parameter varying between 0.3 and 0.6. For Athens, the value of v=0.4

was found to be more appropriate (Psiloglou et al., 2000).

Therefore, the diffuse radiation at ground level under cloudy skies, Icd , is the sum of

the Icds and Icdm components, i.e.:

Icd = Icds + Icdm (30)15

2.2.3 Total radiation

The total solar radiation received under cloudy-sky (partly or overcast) conditions on

horizontal surface is again the sum of the horizontal direct-beam and diffuse compo-

nents, i.e.:

Ict = Icb + Icd =
Icb + Icds
1 − αgαcs

(31)20
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3 Validation of MRM v5

3.1 Data collection and quality test

In order to evaluate the performance of the newly introduced version 5 of the MRM al-

gorithm under normal and extraordinary conditions, 1-min mean total and diffuse hor-

izontal solar irradiance data (Wm
−2

) from the Actinometric Station of NOA (ASNOA)5

were used together with concurrent values of dry-bulb temperature, relative humidity,

sunshine duration, and atmospheric pressure at the station’s height from the meteoro-

logical station of NOA, for 28 (typical clear day) and 29 (eclipse day) March 2006.

NOA (latitude 37.967
◦
N, longitude 23.717

◦
E) is located on a small hill with elevation

of 107 m a.m.s.l., near the center of Athens. The Athens Metropolitan area is located10

in the central part of the Attika Peninsula in an oblong basin having a NE-SW direction;

the basin has an area of 450 km
2

and is inhabited by 3.5 millions of people (census

of 2001). To the east of the basin’s axis, the city is less densely populated. To the

west, the area is 3
4

industrial and 1
4

residential. The average annual sunshine duration

is 2919 h.15

The actinometers for measuring the total and diffuse horizontal radiation measure-

ments at ASNOA are Eppley PSP pyranometers; in addition, the diffuse radiation is

measured by using a shadow ring over the pyranometer.

To establish a valid set of measurements for the validation of the MRM code, the

1-min mean total and diffuse horizontal irradiance values were thoroughly tested for20

errors. A routine quality-control procedure was applied; erroneous data were excluded.

The quality tests screened out all (i) diffuse horizontal values greater than 110% of the

corresponding total horizontal ones; (ii) total horizontal values greater than 120% of

the seasonally correct solar constant; (iii) diffuse horizontal values greater than 80% of

the seasonally correct solar constant; (iv) total horizontal values equal to or less than25

5 Wm
−2

, during sunrise and sunset, due to the pyranometers’ sensitivity; (v) data for a

solar altitude less than 5 degrees; and (vi) data with the direct-beam solar component

exceeding the extraterrestrial solar irradiance. It must be noted here that on the eclipse
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day and during the phenomenon, from its start to its end, Iex was multiplied by the factor

1-EM, where EM is the eclipse magnitude, i.e. the fraction of the solar disk covered by

the moon’s shadow. This was done in order to simulate the phenomenon in the MRM

algorithm.

The value of uo in the MRM can either be calculated through the Van Heuklon (1979)5

methodology or be given in atm-cm from available satellite or ground-based instru-

ments. In the present study, the value of uo was obtained from a Brewer spectropho-

tometer operating in the center of Athens (Academy of Athens). No matter which of

the above mentioned methodologies is used, the uo value is introduced in the MRM as

an average daily value. These average daily values were 279.8 and 316.9 DU (1 atm-10

cm=1 DU×10
−3

) for 28 and 29 March 2006, respectively.

The calculations of the solar position in the sky on both dates (prior and during

the eclipse) were performed using the modified SUNAE algorithm (Walraven, 1978),

incorporating all corrections introduced by Wilkinson (1981), Muir (1983), Kambezidis

and Papanikolaou (1990b), and Kambezidis and Tsangrassoulis (1993b).15

Table 4 gives the 1-min values of EM during the eclipse day. The start of the eclipse

is taken at 0 min (11:30 h LST) in the left column of the Table corresponding to the last

minute before the beginning of the sun’s disk blockage by the moon. The maximum

of the eclipse was for Athens 84% at 12:48 h LST. The descending limb of the phe-

nomenon lasted 77 min and the whole phenomenon 154 min, i.e. from 11:30 h LST to20

14:04 h LST.

3.2 Statistical analysis

The Root Mean Square Error (RMSE) and the Mean Bias Error (MBE), expressed as

the percentage of the measured mean value, were used as indicators of the model’s
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performance:

RMSE (%)=

√

M
∑

i=1

(Im−Ic)2

/

M

M
∑

i=1

Im

/

M

× 100 (32)

MBE (%)=

M
∑

i=1

(Im−Ic)

/

M

M
∑

i=1

Im

/

M

× 100 (33)

where Im and Ic are the measured and model-estimated values of the total or diffuse

radiation and M is the number of data points on one day before (28 March, 2006) or5

the day of the eclipse (29 March, 2006). The values of these estimators for 28 and 29

March 2006 are given in Table 5.

The comparison between the MRM-modeled radiation components (total and dif-

fuse) and the measured ones for the day before the eclipse is shown in Fig. 4. A very

good agreement is observed, an observation that is also obvious from the statistical10

estimators in Table 5.

Figure 5 shows the same comparison as Fig. 4 does, but for the eclipse day. The

performance of MRM v5 seems to be excellent, a fact that is also confirmed by the

RMSE and MBE statistics of Table 5. Both statistical estimators concerning the total

horizontal irradiance are very good even compared to those of the previous day. There15

must be noted here that 28 March was an almost cloudless day, while on the eclipse

day some cloudiness was developed over Athens after the start of the phenomenon.

This is the reason for increased values in both statistical estimators in the diffuse radi-

ation component. To the contrary, the RMSE and MBE obtain very satisfactory values

for the total horizontal irradiance even compared with those on a typical cloudless day,20
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such as 28 March 2006. Such a harsh test (eclipse with cloudy sky) for a broadband

radiation model constitutes an ultimate validation of its performance. Therefore, the

excellent performance of MRM v5 has been affirmed by the close agreement of the

modeled and measured radiation components under adverse conditions.

To further show the capabilities of the MRM, Fig. 6 is drawn. The left panel of the5

figure refers to the one-to-one comparison between the estimated and measured total

horizontal irradiances on 28 March and the right panel refers to the 29 March case. It is

easily seen that in both cases the data points are along the y=x line and without great

dispersion around it.

4 Conclusions10

This study dealt with the validation of the Meteorological Radiation Model (MRM) de-

veloped by the Atmospheric Research Team of the National Observatory of Athens.

Though the model, in its previous versions, has been tested in the past against mea-

surements, this was the first time that the performance of the latest version 5 of the

MRM algorithm was tested. To do this, a difficult case, such as the solar eclipse of 2915

March 2006 over Athens with cloudy sky, was chosen.

The test proved that the MRM v5 is an efficient broadband code capable in simulating

solar irradiance at a location not only under clear-sky conditions, but also with cloudy

weather. Moreover, the mix of such sky conditions with an eclipse event is done for the

first time in the international literature as far as a solar broadband model is concerned.20

The results showed that the MRM simulated the solar radiation levels changes during

the almost total solar eclipse of 29 March 2006 over Athens very well. Indeed, the

RMSE and MBE statistical estimators were 7.64% and −1.67% on 29 March for the

simulated total solar radiation in comparison with the respective 5.30% and +2.04% for

the previous clear day.25

The efficiency of the MRM constitutes the model capable in handling other simu-

lation situations as easily as in the case of a solar eclipse with even better results.
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Therefore, the MRM can be used in a variety of applications, among which there can

be atmospheric physics, photovoltaic studies, complement of missing data from a solar

radiation time series, solar thermal projects, agricultural studies, architectural designs.

The MRM can also be used in the derivation of a Solar Radiation (or Energy) Atlas

over a region with as much accuracy as possible. This latter applicability makes MRM5

a precious tool in the energy sector.
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Appendix A

Symbol List

a, b, c, d numerical coefficients in the general transmittance function of various

atmospheric constituents

αa atmospheric aerosol albedo due to atmospheric aerosol scattering

αc corrective factor for multiple scattering between the clouds and the

surface of a cloudy sky

αcs atmospheric albedo of a cloudy sky

αg surface albedo

αr atmospheric albedo due to molecular (Rayleigh) scattering

αs atmospheric albedo of a cloudless sky

em partial water-vapor pressure, in hPa

es saturation vapor pressure, in hPa

H station’s altitude, in meters

Iex normal-incidence extra-terrestrial solar radiation in the ni -th day of the

year

Ic model-estimated value of total or diffuse solar radiation, for RMSE or

MBE statistical indicators estimation

Ib direct-beam component of solar radiation, normal to a horizontal plate at

the earth’s surface, under clear sky conditions

Icb direct-beam component of solar radiation, normal to a horizontal plate at

the earth’s surface, under cloudy-sky conditions

Icd diffuse component of solar radiation, normal to a horizontal plate at the

earth’s surface, under cloudy-sky conditions

Icdm ground-reflected, atmospheric- and cloud-backscatttered portion of the

diffuse sky radiation under cloudy-sky conditions

12826

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/12807/2007/acpd-7-12807-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/12807/2007/acpd-7-12807-2007-discussion.html
http://www.egu.eu


ACPD

7, 12807–12843, 2007

Performance of the

MRM model during a

solar eclipse

B. E. Psiloglou and

H. D. Kambezidis

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Icds portion of the diffuse sky radiation under cloudy-sky conditions, singly

scattered by the atmospheric constituents (molecules and aerosol parti-

cles)

Ict total solar radiation, normal to a horizontal plate at the earth’s surface,

under cloudy-sky conditions

Id diffuse component of solar radiation, normal to a horizontal plate at the

earth’s surface, under clear sky conditions

Idm ground-reflected, atmospheric-backscatttered portion of the diffuse sky

radiation under clear sky conditions

Ids portion of the diffuse sky radiation under clear sky conditions, singly scat-

tered by the atmospheric constituents (molecules and aerosol particles)

Im measured value of total or diffuse solar radiation, for RMSE or MBE sta-

tistical indicators estimation

Io the solar constant, equal to 1366.1 Wm
−2

It total solar radiation, normal to a horizontal plate at the earth’s surface,

under clear sky conditions

k empirical coefficient for cloudiness

k∗
empirical transmission coefficient for the single-scattered portion of the

diffuse radiation under cloudy-sky conditions

m relative optical air mass

m′
absolute optical air mass

M number of available data points of total or diffuse solar radiation, for the

RMSE or MBE statistical indicators estimation

n daily measured sunshine duration, in hours

N daily maximum (astronomical) sunshine duration, in hours

ni the day number of the year, ranges from 1 to 365

P atmospheric pressure at the station’s height, in hPa

Po mean pressure at sea level (equal to 1013.25 hPa)

RH relative humidity at the station’s height, in %
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T air temperature at the station’s height, in K

T1 equal to T/100

Ta broadband transmittance function for aerosol total extinction (scattering

& absorption)

Ta,1.66 broadband transmittance function for aerosol total extinction, calculated

for air mass m=1.66

Taa broadband aerosol transmittance function due to absorption only

Tas broadband aerosol transmittance function due to scattering only

Tc cloud transmittance

TCH4
broadband transmittance function for CH4 absorption

TCO broadband transmittance function for CO absorption

TCO2
broadband transmittance function for CO2 absorption

Tmg broadband transmittance function due to total uniformly mixed gases’

(CO2, CO, N2O, CH4 and O2) absorption

TN2O broadband transmittance function for N2O absorption

TO2
broadband transmittance function for O2 absorption

To broadband transmittance function for ozone absorption

Tr broadband transmittance function for Rayleigh scattering

Tw broadband transmittance function for water vapor absorption

uo total ozone amount in a vertical column, in atm-cm

ui total amount in a vertical column for atmospheric uniformly mixed gases,

in atm-cm (i=CO2, CO, N2O, CH4, O2)

uw water-vapor total amount in a vertical column, in cm

V horizontal visibility around the station
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Greek letters

β Ångström’s turbidity parameter

β′
annual mean value of Ångström’s turbidity parameter

∆β seasonal deviations from the average of Ångström’s turbidity parameter

Γ day angle, in radians

θz solar zenith angle, in degrees

φ station’s geographical latitude, in degrees
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Table 1. Values of the coefficients a, b, c and d in the general transmittance function of Eq. (2)
for various atmospheric constituents.

Atmospheric constituent a b c d

H2O 3.0140 119.300 0.6440 5.8140
O3 0.2554 6107.26 0.2040 0.4710
CO2 0.7210 377.890 0.5855 3.1709
CO 0.0062 243.670 0.4246 1.7222
N2O 0.0326 107.413 0.5501 0.9093
CH4 0.0192 166.095 0.4221 0.7186
O2 0.0003 476.934 0.4892 0.1261
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Table 2. Indicative values of Ångström’s turbidity parameter β for various atmospheric condi-
tions and horizontal visibilities, V .

Atmospheric condition β V (km)

Clean 0.05 340
Clear 0.10 28
Turbid 0.20 11
Very turbid 0.40–0.50 <5
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Table 3. Typical values of k∗
as proposed by Berland and Danilchenko (1961) for different

latitudes.

k∗ φ (degrees)

0.32 30
0.32 35
0.33 40
0.34 45
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Table 4. Sun’s disk coverage (EM) by the moon over Athens on 29 March 2006 from the start
of the phenomenon until its maximum.

Time (min) EM Time (min) EM Time (min) EM Time (min) EM

0 0.0000 20 0.1253 40 0.3411 60 0.6008
1 0.0015 21 0.1346 41 0.3533 61 0.6146
2 0.0041 22 0.144 42 0.3655 62 0.6283
3 0.0075 23 0.1537 43 0.3779 63 0.6422
4 0.0115 24 0.1635 44 0.3903 64 0.6560
5 0.0161 25 0.1736 45 0.4030 65 0.6700
6 0.0211 26 0.1837 46 0.4155 66 0.6839
7 0.0266 27 0.1941 47 0.4283 67 0.6980
8 0.0324 28 0.2045 48 0.4411 68 0.7120
9 0.0386 29 0.2152 49 0.4541 69 0.7261

10 0.0451 30 0.2259 50 0.4670 70 0.7402
11 0.0520 31 0.2369 51 0.4801 71 0.7544
12 0.0591 32 0.2479 52 0.4932 72 0.7686
13 0.0665 33 0.2592 53 0.5065 73 0.7828
14 0.0742 34 0.2705 54 0.5197 74 0.7970
15 0.0822 35 0.2820 55 0.5331 75 0.8114
16 0.0903 36 0.2936 56 0.5465 76 0.8256
17 0.0988 37 0.3053 57 0.5601 77 0.8400
18 0.1074 38 0.3171 58 0.5736
19 0.1163 39 0.3291 59 0.5872

continued ↑ continued ↑ continued ↑
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Table 5. RMSEs and MBEs for the MRM-modeled total and diffuse horizontal radiation compo-
nents together with their mean measured values for 28 and 29 March 2006, at ASNOA.

March 2006 Mean diffuse rad. (Wm
−2

) Mean total rad. (Wm
−2

)
RMSE (%) MBE (%)

Diffuse Total Diffuse Total

28 87.83 560.61 25.80 5.30 −2.50 +2.04
29 175.63 395.17 48.59 7.64 +35.53 −1.67
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Fig. 1. Water-vapor absorption transmittance for different values of uw , as predicted by MRM
v5.
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 Fig. 2. Ozone absorption transmittance for different values of uo, as predicted by MRM v5.
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β

Fig. 3. Total aerosol extinction transmittance for different values of β, as predicted by MRM v5.
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Fig. 4. Comparison between MRM simulations (black lines) and measurements (gray lines) for
Athens on 28 March, 2006.
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Fig. 5. Comparison between MRM simulations (black lines) and measurements (gray lines) for
Athens on 29 March, 2006.
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Fig. 6. Estimated vs. measured values of total solar radiation on horizontal surface for 28
(left) and 29 (right) March 2006. The y=x (dashed) line shows, in general, the case of ideal
agreement between estimated and measured values.
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