SIMPOL.1: A simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds

J. F. Pankow, W. E. Asher

To cite this version:

SIMPOL.1: A simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds

J. F. Pankow and W. E. Asher

1Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, Oregon 97006-8921, USA
2Air-Sea Interaction and Remote Sensing Department, Applied Physics Laboratory, University of Washington, Seattle, Washington 98105, USA

Received: 3 July 2007 – Accepted: 18 July 2007 – Published: 13 August 2007

Correspondence to: J. F. Pankow (pankow@ebs.ogi.edu)
Abstract

The SIMPOL.1 group contribution method is developed for predicting the liquid vapor pressure $p^0_{L,i}$ (atm) and enthalpy of vaporization $\Delta H_{vap,i}$ (kJ mol$^{-1}$) of organic compounds as functions of temperature (T). For each compound i, the method assumes

$$\log_{10} p^0_{L,i}(T) = \sum_k n_{k,i} b_k(T)$$

where $n_{k,i}$ is the number of groups of type k, and $b_k(T)$ is the contribution to $\log_{10} p^0_{L,i}(T)$ by each group of type k. A zeroth group is included that uses $b_0(T)$ with $n_{0,i}=1$ for all i. A total of 30 structural groups are considered: molecular carbon, alkyl hydroxyl, aromatic hydroxyl, alkyl ether, alkyl ring ether, aromatic ether, aldehyde, ketone, carboxylic acid, ester, nitrate, nitro, alkyl amine (primary, secondary, and tertiary), aromatic amine, amide (primary, secondary, and tertiary), peroxy, hydroperoxide, peroxy acid, C=C, carbonylperoxynitrate, nitro-phenol, nitro-ester, aromatic rings, non-aromatic rings, C=C–C=O in a non-aromatic ring, and carbon on the acid-side of an amide. The T dependence in each of the $b_k(T)$ is assumed to follow $b(T)=B_1/T+B_2+B_3T+B_4\ln T$. Values of the B coefficients are fit using an initial basis set of 272 compounds for which experimentally based functions $p^0_{L,i}=f_i(T)$ are available. The range of vapor pressure considered spans fourteen orders of magnitude. The ability of the initially fitted B coefficients to predict $p^0_{L,i}$ values is examined using a test set of 161 compounds and a T range that is as wide as 273.15 to 393.15 K for some compounds. σ_{FIT} is defined as the average over all points of the absolute value of the difference between experimental and predicted values of $\log_{10} p^0_{L,i}(T)$. After consideration of σ_{FIT} for the test set, the initial basis set and test set compounds are combined, and the B coefficients re-optimized. For all compounds and temperatures, $\sigma_{FIT}=0.34$: on average, $p^0_{L,i}(T)$ values are predicted to within a factor of 2. Because $d(\log_{10} p^0_{L,i}(T))/d(1/T)$ is related to the enthalpy of vaporization $\Delta H_{vap,i}$, the fitted B provide predictions of $\Delta H_{vap,i}$ based on structure.
1 Introduction

For organic compound \(i\), knowledge of the liquid vapor pressure \(p^o_{L,i}\) at the system temperature \((T)\) is required whenever phase equilibrium of \(i\) between a liquid phase and the gas phase is of interest. This type of partitioning arises frequently in many disciplines, and so the need for reliable \(p^o_{L,i}\) values is considerable. And, since the \(T\) dependence of \(p^o_{L,i}\) is determined by the compound-dependent enthalpy of vaporization \(\Delta H_{vap,i}\), the same need extends to \(\Delta H_{vap,i}\) values. In our case, the topic of interest is gas/particle partitioning in atmospheric and smoke aerosol systems (e.g., Pankow et al., 1994a, b, 2001a, b, 2003a, b, 2004; Barsanti and Pankow, 2004, 2005, 2006).

Given the infinite structural variety possible with organic compounds, laboratory measurements will never keep pace with the need for new \(p^o_{L,i}\) information. Consequently, there is continuing interest in the development of reliable methods for predicting \(p^o_{L,i}\) and \(\Delta H_{vap,i}\) values. In the case of the behavior and formation of organic particulate matter (OPM) in the atmosphere, there is growing interest in a wide range of multifunctional oxygenated compounds and nitrogen-containing compounds, e.g., hydroxy acids, diacids, hydroxy diacids, hydroxy aldehydes, organic nitrates, nitro aldehydes, etc.

At some point in the future, quantum-mechanical calculations will be able to reliably predict \(p^o_{L,i}\) values for any structure of interest. Currently, however, that approach is limited to simple compounds (e.g., see Banerjee et al., 2006). Prediction efforts for more complicated structures can now only be based on either a complex consideration of the interaction forces between molecules (i.e., dispersion, induction, dipole and H-bonding) as in the SPARC model discussed by Hilal et al. (1994), or by empirical group-contribution means.

In the group contribution approach to prediction of molecular properties, it is hypothesized that the value of a property of interest for compound \(i\) can be predicted based on empirically determinable contributions from the structural fragments that comprise
i. As a function of temperature \(T \), the result is often an equation of the type

\[
\log_{10} Z_i(T) = b_0(T) + \sum_k \nu_{k,i} b_k(T)
\]

(1)

where: \(Z_i(T) \) is the property of interest, e.g., \(p_{\text{L},i}^\circ(T) \); the parameter \(b_0(T) \) is a \(T \)-dependent constant; \(\nu_{k,i} \) is the number of groups of type \(k \) in \(i \); the index \(k \) may take on the values 1,2,3, etc.; and \(b_k(T) \) is the group contribution term for group \(k \). Values for \(b_0(T) \) and the set of \(b_k(T) \) are usually determined by fitting (i.e., optimizing) Eq. (1) using laboratory-based measures of \(Z_i(T) \) for a large number of compounds that contain the groups of interest. For example, for both 2,3- and 2,4-dihydroxypentane it can be considered that \(\nu_{\text{OH},i} = 2, \nu_{\text{CH}_3,i} = 2, \nu_{\text{CH}_2,i} = 1, \) and \(\nu_{\text{CH},i} = 2 \). In this approach, four \(b_k(T) \) values are required, and Eq. (1) will give the same prediction for \(Z_i(T) \) for both isomers. However, the vicinal nature of the two OH groups in 2,3-dihydroxypentane allows greater intramolecular interaction of the OH groups (and less intermolecular interaction) than in the 2,4 isomer, causing differences in molecular properties. In the case of vapor pressure, \(p_{\text{L},i}^\circ(T) \) will be higher for the 2,3 isomer than for the 2,4 isomer. Accounting for such property differences among isomers can be accomplished by consideration of additional, “higher-order” groups. Thus, for 2,3-dihydroxypentane a “second-order” group \(\text{CH(OH)}-\text{CH(OH)} \) (= “vicinal-OH”) can be invoked with \(\nu_{\text{vicinal-OH},i} = 1 \). Kolská et al. (2005) describe a third-order method for prediction of \(\Delta H_{\text{vap},i} \) and \(\Delta S_{\text{vap},i} \) values at 298.15 K.

In the most general application of a group contribution model, the fitting takes place over a broad range of compound types, e.g., simple alkanes, functionalized alkanes, aromatics, functionalized aromatics, etc. In that case, \(b_0(T) \) serves as a general fitting constant. Alternatively, the fitting can take place within a particular class of compounds, as in the study by Lee et al. (2000) of substituted benzene compounds wherein for predicting \(p_{\text{L},i}^\circ(298.15) \) the value of \(b_0(298.15) \) was not obtained from the fitting process. Rather, it was defined that \(b_0(298.15) = \log_{10} p_{\text{L},\text{benzene}}^\circ(298.15) \). A second-order group contribution model was then fit to

\[
\log_{10} p_{\text{L},i}^\circ(298.15) = \log_{10} p_{\text{L},\text{benzene}}^\circ(298.15) + \sum_k \nu_{k,i} b_k(298.15)
\]

(2)
The summation accounts for how the presence of the various first- and second-order groups cause $p_{L,i}^0(298.15)$ to differ from $p_{L,benzene}^0(298.15)$.

In a generalization (though first order) of the Lee et al. (2000) approach, Capouet and Müller (2006) allowed that a range of parent structures would be of interest, and so existing $p_{L,i}^0(T)$ data for a range of compounds were fit to

$$\log_{10} p_{L,i}^0(T) = \log_{10} p_{L,hc-i}^0(T) + \sum_k v_{k,i} \tau_k(T)$$

(3)

where $p_{L,hc-i}^0(T)$ is the known vapor pressure for the non-functionalized hydrocarbon (hc) compound that possesses the skeletal structure underlying compound i, and the $\tau_k(T)$ are conceptually equivalent to the $b_k(T)$. Application of Eq. (3) to a particular i requires knowledge (or an independent prediction) of $p_{L,hc-i}^0(T)$; the summation accounts for how the substituents in i cause $p_{L,i}^0(T)$ to differ from $p_{L,hc-i}^0(T)$. In the fitting carried out by Capouet and Müller (2006), multiple different hc-i structures were considered; the corresponding $p_{L,hc-i}^0(T)$ and $p_{L,i}^0(T)$ were taken as the inputs, and the output was a set of $\tau_k(T)$ encompassing 10 groups: OH (as bonded to a primary, secondary, and tertiary carbon); C=O (aldehyde or ketone); COOH; hydroperoxy; nitrate (primary, secondary, and tertiary); and peroxyacetyl nitrate (PAN).

The use of $p_{L,hc-i}^0(T)$ in Eq. (3) carries accuracy advantages for predicting $p_{L,i}^0(T)$ values because each prediction utilizes important specific knowledge of the vapor pressure of the compound with the underlying hc-i structure. It is not surprising, then, that Capouet and Müller (2006) report generally better prediction accuracies for the Eq. (3) method than with the more general UNIFAC-p_L^0 method of Asher et al. (2002), though the fitting constants in Asher et al. (2002) have been superceded by those given in Asher and Pankow (2006). In any case, as a practical matter, requiring knowledge of $p_{L,hc-i}^0(T)$ can be a significant disadvantage relative to a more general method that can be executed using fitting constants alone, e.g. the method of Asher and Pankow (2006) or that of Makar (2001). Moreover, for the compounds that actually form OPM in the atmosphere, good knowledge of the underlying structures is lacking, the available information being limited to a general idea of structural characteristics such as the
number of carbons, the likely number and types of functional substituents, and whether any aromatic or non-aromatic rings are likely to be present. The goal of this work was to develop a simple $p^0_{L,i}(T)$ group contribution method for which that level of information would be sufficient.

2 Simplified p^0_L prediction method (SIMPOL.1)

2.1 General

The groups of interest considered include a range of first-order group functionalities important for organic compounds involved in OPM formation, and several second order groups. Nevertheless, the total number of groups N_G was kept as small as possible while still affording good accuracy of the overall fit: SIMPOL.1 is not intended as a method that employs many second- and third-order groups.

The SIMPOL.1 method is based on

$$\log_{10} p^0_{L,i}(T) = b_0(T) + \sum_k v_{k,i} b_k(T) \quad k = 1, 2, 3, \ldots$$

(4)

wherein the role of $b_0(T)$ is the same as in Eq. (1), and the index k may take on the values 1, 2, 3, etc. The units carried by $p^0_{L,i}(T)$ are atm. The form of Eq. (4) is equivalent to

$$\log_{10} p^0_{L,i}(T) = v_{0,i} b_0(T) + \sum_k v_{k,i} b_k(T) \quad k = 1, 2, 3\ldots$$

(5)

so that $b_0(T)$ can be viewed as pertaining to group “zero”, with $v_{0,i} \equiv 1$ for all i. Thus, Eqs. (4) and (5) are equivalent to

$$\log_{10} p^0_{L,i}(T) = \sum_k v_{k,i} b_k(T) \quad k = 0, 1, 2, 3\ldots$$

(6)

wherein k may take on the values 0, 1, 2, 3, etc., and for $k=0$, $v_{0,i} \equiv 1$ for all i.

Perhaps the most important chemical group in SIMPOL.1 is molecular carbon, for which $k=1$. Thus, $v_{1,i}$ denotes the number of carbon atoms in i, and $b_1(T)$ denotes the
per-carbon group contribution to $\log_{10} \rho_{L,i}^0(T)$. At ambient temperatures, $b_1(T) \approx -0.5$ (see Table 6 below) and so within any given compound class, $\rho_{L,i}^0(T)$ drops by about $\frac{1}{2}$ order of magnitude for every unit increase in the carbon number.

By way of comparison with prior work from our group, Asher and Pankow (2006) follow Jensen et al. (1981) and begin with

$$\log_{10} \rho_{L,i}^0(T) = \sum_k v_{k,i} \left[\log_{10}(\Gamma_{k,i}) + \frac{\Delta g_k(T)}{2.303RT} \right] \quad (7)$$

where: each $\log_{10}(\Gamma_{k,i})$ is a UNIFAC “residual term” that accounts for the intramolecular and intermolecular group-group interactions involving group k; R is the gas constant; and $\Delta g_k(T)$is the difference between the molar free energy of group k in the pure liquid state and in the perfect gas at 1 atm. After using tabulated values of UNIFAC group interactions parameters compiled in Hansen et al. (1991) to compute $\sum_k v_{k,i} \log_{10}(\Gamma_{k,i})$ for the compounds in their basis set, Asher and Pankow (2006) fit $\rho_{L,i}^0(T)$ data values to Eq. (7) to obtain expressions for $\Delta g_k(T)$; a total of 24 groups were considered. Adoption of Eq. (6) in place of Eq. (7) amounts to assuming that each $b_k(T)$ can be fit as a lumped equivalent of $[\log_{10}(\Gamma_{k,i}) + \Delta g_k(T)/2.303RT]$.

In SIMPOL.1, the T dependence in each of the $b_k(T)$ is fit to its own set of $B_{1,k}$ to $B_{4,k}$ according to

$$b_k(T) = \frac{B_{1,k}}{T} + B_{2,k} + B_{3,k}T + B_{4,k} \ln T \quad (8)$$

which is the form of the T dependence utilized for the 17 coefficients in the UNIFAC model of Jensen et al. (1981). The goal of this work is to use $\rho_{L,i}^0(T)$ data for a wide range of compounds to obtain best-fit functional representations of the $b_k(T)$.

The temperature dependence of $\log_{10} \rho_{L,i}^0(T)$ may be used to estimate $\Delta H_{vap,i}(T)$ according to

$$\frac{d \log_{10} \rho_{L,i}^0(T)}{d(1/T)} = -\frac{\Delta H_{vap,i}(T)}{2.303R} \quad (9)$$
Thus, by Eq. (6)

$$\Delta H_{\text{vap},i}(T) = -2.303R \sum_k v_{k,i} \frac{d b_k(T)}{d(1/T)}$$

(10)

Equation (10) may be viewed as a group contribution expression for $\Delta H_{\text{vap},i}(T)$ based on the SIMPOL.1 framework. In other words,

$$\Delta H_{\text{vap},i}(T) = \sum_k v_{k,i} \Delta h_{\text{vap},k}(T)$$

(11)

where $\Delta h_{\text{vap},k}(T)$ is the enthalpy of vaporization of group k. In the SIMPOL.1 representation,

$$\Delta h_{\text{vap},k}(T) = -2.303R \frac{d b_k(T)}{d(1/T)}$$

(12)

By Eq. (11),

$$\frac{d \Delta H_{\text{vap},i}(T)}{dT} = \sum_k v_{k,i} \frac{d \Delta h_{\text{vap},k}(T)}{dT}$$

(13)

and in the SIMPOL.1 representation,

$$\frac{d \Delta h_{\text{vap},k}(T)}{dT} = -2.303R \frac{d}{dT} \frac{d b_k(T)}{d(1/T)}$$

(14)

$$\frac{d b_k(T)}{d(1/T)} = B_{1,k} - B_{3,k} T^2 - B_{4,k} T$$

(15)

$$\frac{d}{dT} \frac{d b_k(T)}{d(1/T)} = -2B_{3,k} T - B_{4,k}$$

(16)

$$\Delta h_{\text{vap},k}(T) = -2.303R (B_{1,k} - B_{3,k} T^2 - B_{4,k} T)$$

(17)
\[\frac{d \Delta h_{\text{vap},k}(T)}{dT} = 2.303R(2B_{3,k}T + B_{4,k}) \]

Equation (18)

For any real compound \(i \) in the liquid state, \(\Delta H_{\text{vap},i}(T)>0 \), but \(\frac{d \Delta H_{\text{vap},i}(T)}{dT}<0 \) because \(\Delta H_{\text{vap},i} \) decreases monotonically to zero as \(T \) approaches the compound’s critical temperature \(T_{c,i} \) (Reid et al., 1986). (As \(T \rightarrow T_{c,i} \), the liquid and gas states for \(i \) become increasingly similar, and less and less thermal energy is required for the phase transition.) It is desirable, then, that the values of the fitted parameters used in Eq. (18) yield \(\frac{d \Delta H_{\text{vap},i}(T)}{dT}<0 \) with Eq. (13). The extent to which this is observed depends upon the reliability of the \(p_{\text{L},i}^0(T) \) data set used in the fitting (including adequate coverage by the data of suitably wide temperature ranges for a mix of compounds that contains all the groups of interest), and the ability of the chosen groups to represent the physical properties of \(i \).

2.2 Fitting the SIMPOL.1 coefficients

All \(B_{1,k} - B_{4,k} \) sets were determined by an optimization process using a set of compounds with measured \(p_{\text{L},i}^0(T) \) values. See Asher et al. (2002) and Asher and Pankow (2006) for descriptions of this type of process. The optimization used nonlinear regression to minimize a least-squares goodness-of-fit criterion defined as

\[\chi^2 = \sum_{i=1}^{N_C} \sum_{j=1}^{N_{T,i}} \left(\log_{10} \left(p_{\text{L},i}^0(T_{j,i}) \right) \right)_{\text{E}} - \left[b_0 \left(T_{j,i} \right) + \sum_{k=1}^{N_G} \nu_{k,i} b_k \left(T_{j,i} \right) \right]^2 \]

Equation (19)

where: \(N_C \) is the number of compounds (=272 for the initial basis set); \(N_G \) is the total number of groups considered; and each \((p_{\text{L},i}^0(T_{j,i}))_{\text{E}} \) is the vapor pressure of \(i \) at temperature \(T \) as evaluated using a \(p_{\text{L},i}^0=f_i(T) \) expression (e.g., an Antoine-type equation) fitted to experimentally derived \(p_{\text{L},i}^0 \) data. The \(f_i(T) \) expressions used and the associated references are provided in the supplementary online materials (http://www.atmos-chem-phys-discuss.net/7/11839/2007/11847)
The optimizations were performed using $T_{j,i}$ that could take on the discrete values of 273.15, 293.15, \ldots 393.15$\,$K. For compounds for which $f_i(T)$ had been fit over that entire range, $N_{T,i}=7$; for others, $N_{T,i}<7$. With the initial basis set compounds, the total number of points considered in the optimization was $N=1844$.

2.3 Groups and initial basis set compounds

In addition to the zeroeth group, 30 structural groups are considered, giving the total number of groups $N_G=31$. In addition to molecular carbon (for which $k=1$), the first-order groups considered are: alkyl hydroxyl, aromatic hydroxyl (e.g., phenol), alkyl ether, alkyl ring ether (e.g., dioxane), aromatic ether (e.g., methoxybenzene), aldehyde, ketone, carboxylic acid, ester, nitrate, nitro, alkyl amine (primary, secondary, and tertiary), aromatic amine (e.g., aniline), amide (primary, secondary, and tertiary), peroxide, hydroperoxide, peroxy acid, $C\equiv C$, and carbonylperoxynitrate. The second-order groups considered are: carbon on the acid-side of an amide for which $k=2$ (e.g., for n-propyl-butyramide, $\nu_1=7$ and $\nu_2=4$); nitro-phenol (as in 2-nitro-phenol), nitro-ester (as in methyl nitroacetate), aromatic rings, non-aromatic rings (as in cyclohexane), and $C\equiv C\equiv C=O$ in a non-aromatic ring (as in cyclohex-2-enone). Group consideration was not extended to ortho, meta, or para positioning on aromatic rings, or to cis/trans positioning for alkenes.

Table 1 lists the 272 basis set compounds used in the initial fit. There were 6 compounds in the set with primary amide functionality, 4 secondary amides, 4 tertiary amides, 12 primary amines, 4 secondary amines, 3 tertiary amines, 9 aromatic amines, 37 esters, 21 ethers, 10 nitrates, 35 nitros, 3 peroxides, 4 hydroperoxides, 3 peroxy acids, 1 carbonylperoxynitrate, 65 hydroxyls, 6 phenols, 14 aldehydes, 27 ketones, 55 carboxylic acids, 16 aromatic ethers, 16 alkyl ring ethers, 8 nitrophenols, and 5 nitroesters. (These numbers sum to more than 272 because many of the compounds in the basis set had more than one functional group.)
2.4 Optimization

There is no general theoretical method for determining whether a local minimum χ^2 value found by optimizing the set of B values for Eq. (19) is the desired global minimum. However, beginning the optimization with a large number of suitably different sets of initial B values provides an equal number of optimized χ^2 values, and selecting the lowest of these local minima provides a measure of confidence that the corresponding optimized B set either is the set for the global minimum, or is nearly as good as the set for the global minimum.

The χ^2 fitting function in Eq. (19) was minimized using the generalized reduced-gradient method (Lasdon et al., 1978) contained in the nonlinear optimization routines LOADNLP and OPTIMIZE from SOLVER.DLL (Frontline Systems, Boulder, Colorado). The optimization was performed in two steps. First, 100 sets of initial B values (with each set containing 31×4 initial values) were populated randomly (though subject to the condition that the absolute value of all four terms on the right-hand side of Eq. (8) were of order unity). The mean and standard deviation of the 100 χ^2 values were 444 and 95, respectively. The smallest of these χ^2 was 337.

In the second step of the optimization, the set of B values giving $\chi^2 = 337$ was subjected to further refinement by running 100 additional optimizations, varying each B by a random amount, with all variations restricted within $\pm 30\%$. The mean and standard deviation of the resulting 100 χ^2 values were 367 and 71, respectively. The smallest of the χ^2 was 286. Further attempts to refine the coefficients did not produce any significant decrease in χ^2. When comparing the B set for $\chi^2 = 337$ to the set for $\chi^2 = 286$, the median absolute difference is 24\%.
3 Results

3.1 Fit accuracy of SIMPOL.1 with initial basis set compounds

The overall agreement between the experimental and predicted values can be assessed in terms of an absolute value form of standard error of the fit:

\[
\sigma_{\text{FIT}} = \frac{1}{N} \sum_{i=1}^{N_C} \sum_{j=1}^{N_T,i} \left| \log_{10}(p_{\text{L},i}(T_{j,i}))_P - \log_{10}(p_{\text{L},i}(T_{j,i}))_E \right| = \frac{1}{N} \sum_{i=1}^{N_C} \sum_{j=1}^{N_T,i} \sigma_{\text{FIT},i} \quad (20)
\]

where \((p_{\text{L},i}(T_{j,i}))_P\) is the predicted vapor pressure for \(i\) at temperature \(T_{j,i}\) by Eq. (6). For the basis set, \(N_C=272\) and \(N=1844\) (see above), and using the set of \(B\) giving \(\chi^2=286\) yields \(\sigma_{\text{FIT}}=0.28\) (log units): on average, \((p_{\text{L},i}(T_{j,i}))_E\) for compounds in the basis set is predicted to within a factor of \(\sim 2\). This is evidenced in Fig. 1, which is a plot of \(\log_{10}(p_{\text{L},i}(T_{j,i}))_P\) vs. \(\log_{10}(p_{\text{L},i}(T_{j,i}))_E\) for the initial basis set compounds at 333.15 K, the lowest \(T\) to which all of the experimentally based \(p_{\text{L},i}=f_i(T)\) expressions extended. Given the multi-functionality possessed by many of the compounds, the 13 major compound class designations used in the figures are somewhat arbitrary. The “saturated” class for example, includes all compounds lacking double bonds and aromatic rings that are not assigned to another class, and so includes simple alcohols. Table 2 provides \(\sigma_{\text{FIT}}\) for the initial basis set by compound class, i.e., with \(N_C\) and \(N\) in Eq. (17) limited to represent the compounds within a particular class. Figure 2 provides a plot of the corresponding individual \(\sigma_{\text{FIT},i}\) vs. \(\log_{10}(p_{\text{L},i}(T_{j,i}))_E\) for 333.15 K.

An estimate of the method bias towards over- or under-fitting the \(p_{\text{L},i}\) is obtained by a variation of Eq. (20) that does not use absolute values:

\[
\sigma_{\text{SGN}} = \frac{1}{N} \sum_{i=1}^{N_C} \sum_{j=1}^{N_T,i} \left(\log_{10} p_{\text{L},i}(T_{j,i})_P - \log_{10} p_{\text{L},i}(T_{j,i})_E \right) = \frac{1}{N} \sum_{i=1}^{N_C} \sum_{j=1}^{N_T,i} \sigma_{\text{SGN},i} \quad (21)
\]
For the initial basis set of compounds, the set of B producing $\chi^2=286$ gives $\sigma_{\text{SGN}}=+9.2\times10^{-5}$ (log units). This indicates that as averaged over all 272 initial basis set compounds and seven temperatures, there is no significant bias in the fitting; the σ_{SGN} values in Table 2 indicate that this result extends down to each of the 13 major compound classes considered. Figure 3 provides a plot of the corresponding individual $\sigma_{\text{SGN},i}$ vs. log$_{10}(p^0_{L,i}(T_{j,i}))_E$ for 333.15 K.

3.2 Method validation of SIMPOL.1 with a test set of compounds

The ability of the set of B coefficients producing $\chi^2=286$ to predict values of $(p^0_{L,i}(T_{j,i}))_E$ for compounds outside the initial basis set was examined using a test set of 161 compounds (Table 3); the results are given in Figs. 4–6 and Table 4. The $p^0_{L,i}=f_i(T)$ expressions used in evaluation of the $(p^0_{L,i}(T_{j,i}))_E$ are provided in the supplementary online materials (http://www.atmos-chem-phys-discuss.net/7/11839/2007/acpd-7-11839-2007-supplement.pdf). Averaged over all of the test set compounds, $\sigma_{\text{FIT}}=0.42$, and $\sigma_{\text{SGN}}=-0.079$: the average prediction error is a factor of ~3, and there is no significant overall bias. Table 4 gives σ_{FIT} and σ_{SGN} values for the test compounds when N_C and N are limited to represent the compounds within a particular compound class. Overall, given the wide range of compounds in the test set, SIMPOL.1 does well in predicting $(p^0_{L,i}(T_{j,i}))_E$. However, the individual compounds for which the performance appears to be poor bear some discussion. In the case of the nitro class, σ_{FIT} and σ_{SGN} are 1.0 and $+0.37$, respectively. These ostensibly poor results are driven by: 1) the small number of nitro compounds in the test set; and 2) large apparent errors for only two of the nitro compounds, 3-nitrophenol and 4-nitrophenol. The cause of the poor performance for 3-nitrophenol and 4-nitrophenol is not clear. By comparison, for 2-nitrophenol (which is in the initial basis set), $\sigma_{\text{FIT},i}$ is better (0.42). Thus, there might be a large effect of meta and para substitution on p^0_{L} for nitrophenols. Alternatively, it is quite possible that the $(p^0_{L,i}(T_{j,i}))_E$ values for 3-nitrophenol and 4-nitrophenol are simply in error. Indeed, it is undoubtedly true that some of the experimentally based $p^0_{L,i}=f_i(T)$
expressions suffer from significant error: numerous prior parameter prediction studies have identified experimental data that likely are in error, e.g., see the comments by Rathbun (1987) on the likelihood of errors in the p^0_L data of Stull (1947) for 2-pentanone and other similar ketones.

Besides compounds containing the nitro group, method performance appears to be relatively poor for some compounds in the saturated class, the aromatic class, and some compounds in the ether class. For the saturated class, $\sigma_{\text{FIT}}=0.57$, due mainly to 2-hydroxy-2-methyl-3-hexanone, 2-ethyl-hexanoic acid, and pinonaldehyde. When these three compounds are removed, σ_{FIT} for the remaining 17 compounds is lowered to 0.47, and the method may be viewed as performing relatively well. Given their relatively simple structures, (i.e., the absence of likely effects from higher order groups), errors in some of the $(p^0_{L,i}(T_{j,i}))_E$ values for compounds in the saturated class seem possible. For the ethers, $\sigma_{\text{FIT}}=0.42$ and $\sigma_{\text{SGN}}=-0.25$, but there are not consistent patterns in the results that explain the relatively large bias. However, for trans-2,2,4,6-tetramethyl-1,3-dioxane, for its set of $T_{j,i}$ values, $\sigma_{\text{FIT},i}$ averages 1.2; removing this compound from the average for the ether class dramatically reduces the magnitudes of σ_{FIT} and σ_{SGN} for the ethers to 0.34 and −0.14, respectively.

3.3 Final coefficients for SIMPOL.1 and associated error estimates for p^0_L values

In the determination of the final set of B coefficients, the basis set compounds in Table 1 was combined with the test set compounds in Table 3. For this combined set (433 compounds), the set of B coefficients determined using the initial basis set gives $\chi^2=674$. For each of 100 subsequent optimization runs, the initial value of each B coefficient was taken as the final value determined using the initial basis set modified randomly by at most ±30%. The lowest χ^2 value thus obtained was 609 (mean = 613, standard deviation = 4). Further optimization attempts did not succeed in lowering χ^2.

Table 5 gives the final B coefficients giving $\chi^2=609$. Table 6 gives the values of the $b_k(T)$ at $T=293.15$: at that T, adding one carbon, carboxylic acid, alkyl hydroxyl, ketone, or aldehyde groups alters $\log_{10} p^0_{L,i}$ by −0.47, −3.59, −2.29, −0.99,
and \(-1.06\), respectively. For comparison, Table 6 also provides the corresponding values of \(\tau_k(293.15)\) from Capouet and Müller (2006); these are generally similar to the \(b_k(293.15)\) determined here. For the carboxylic acid, primary hydroxyl, and carbonyl (i.e., ketone or aldehyde) groups, Capouet and Müller (2006) give \(\tau_k(293.15)=-3.10,\ -2.76,\ -0.91.\)

Consider the transformation of cyclohexene to adipic acid, an example that has historical significance in the evolution of the understanding of the formation of secondary OPM in the atmosphere (Haagen-Smit, 1952). For cyclohexene, \(\nu_0=1,\ \nu_1=6,\ \nu_4=1,\ \nu_5=1\), and by Eq. (6) and the values in Table 6, SIMPOL.1 predicts \(\log_{10} p^o_L(293.15)=-0.99\). For adipic acid, \(\nu_0=1,\ \nu_1=6,\ \nu_{10}=2\), and SIMPOL.1 predicts \(\log_{10} p^o_L(293.15)=-8.02\). Overall, for cyclohexene \(\rightarrow\) adipic acid, the SIMPOL.1 method provides a simple parameterization for quantifying how addition of two COOH groups (\(b_{10}=-3.59\) at 293.15 K) causes a seven order magnitude change in volatility. The \(\log_{10} p^o_L(293.15)\) values derived using SIMPOL.1 may be compared with experimental values as follows. For cyclohexene, data in Lister (1941), Meyer and Hotz (1973) and Steele et al. (1996) yield the Antoine fit \(\log_{10} p^o_L(T)=4.814-(1713/(T+0.04870))\), which gives \(\log_{10} p^o_L(293.15)=-1.08\) at 293.15 K. For adipic acid, the \(p^o_S(T)\) (sublimation) data of Tao and McMurray (1989) combined with the entropy of fusion data of Khetarpal et al. (1980) give \(\log_{10} p^o_L=-8.30\) at 293.15 K.

Figure 7 provides a plot of \(\log_{10}(p^o_{L,j,i}(T_{j,i}))_P\) vs. \(\log_{10}(p^o_{L,j,i}(T_{j,i}))_E\) for all compounds; Figures 8 and 9 provide corresponding plots of \(\sigma_{SGN,j,i}\) and \(\sigma_{FIT,j,i}\) vs. \(\log_{10}(p^o_{L,j,i}(T_{j,i}))_E\). Table 7 provides \(\sigma_{SGN}\) and \(\sigma_{FIT}\) values by compound class and sub-class. Except for the carbonylperoxynitrate class (for which \(p^o_L\) values were available for only one compound), all \(\sigma_{SGN}\) values for the major classes are low (no significant biases). However, among the compounds containing the nitro group, as noted above, \(p^o_L\) is predicted poorly for 3-nitrophenol and 4-nitrophenol. When these two compounds are excluded, \(\sigma_{FIT}\) for the nitro class is reduced from 0.51 to 0.42, but even so prediction for this class seems problematical. As discussed above, this may be due to complexities in the ef-
fects of structure on ρ_L^0 with nitro-containing compounds, or accuracy problems with the experimental data.

Figure 10 shows σ_{FIT} at various T by major compound class. For some classes, e.g., amides and peroxides, the mean error is least for T values in the center of the fitted range, and larger at both $T<300$ K and $T>360$ K. This type of parabolic behavior in the error is typical of least-squares fitting carried out over a specific data range for the independent variable. The relatively larger errors at lower T for all classes are likely exacerbated due to the increase in experimental difficulty at low ρ_L^0. Evidence of this difficulty at low ρ_L^0 is shown in Fig. 11 using data for nitroethanol. Figure 12 plots $\sigma_{\text{FIT}}(T)$ vs. $\log_{10}(\rho_L^0(T_{j,i}))_E$, again showing the general tendency in the error to increase with decreasing $\log_{10}(\rho_L^0(T_{j,i}))_E$.

3.4 $\Delta H_{\text{vap},i}$ prediction using SIMPOL.1 with final coefficients

Values of $\Delta H_{\text{vap},i}$ may be predicted using Eq. (17) and the final B coefficients in Table 5. Figure 13 shows predicted values of $\Delta H_{\text{vap},i}$ at $T=333.15$ K vs. experimentally based values derived by consideration of the experimental $\rho_L^0=f_i(T)$ functions and Eq. (9). Table 8 summarizes the quality of the predictions at $T=333.15$ K based on the following un-normalized (σ) and normalized (i.e., relative, ρ) error estimates, with each in absolute value and signed form:

$$
\sigma_{\Delta H} = \frac{1}{N} \sum_i \left| (\Delta H_{\text{vap},i})_P - (\Delta H_{\text{vap},i})_E \right| \quad (22)
$$

$$
\sigma_{\Delta H \cdot \text{SGN}} = \frac{1}{N} \sum_i \left((\Delta H_{\text{vap},i})_P - (\Delta H_{\text{vap},i})_E \right) \quad (23)
$$

$$
\rho_{\Delta H} = \frac{1}{N} \sum_i \left| \frac{(\Delta H_{\text{vap},i})_P - (\Delta H_{\text{vap},i})_E}{(\Delta H_{\text{vap},i})_E} \right| \quad (24)
$$
\[\rho_{\Delta H_{\text{SGN}}} = \frac{1}{N} \sum_i \left(\frac{(\Delta H_{\text{vap},i})_p - (\Delta H_{\text{vap},i})_E}{(\Delta H_{\text{vap},i})_E} \right) \]

For all compounds, \(\sigma_{\Delta H} = 8.9 \text{ kJ mol}^{-1} \), \(\sigma_{\Delta H_{\text{SGN}}} = 4.2 \text{ kJ mol}^{-1} \), \(\rho_{\Delta H} = 0.17 \) (i.e., 17%), and \(\rho_{\Delta H_{\text{SGN}}} = 0.10 \) (i.e., 10%). Overall, the fit is reasonably good, especially considering that the fitted quantity was not \(\Delta H_{\text{vap},i} \) but rather the underlying \(\rho^0_{L,i}(T) \) functionalities.

3.5 Temperature dependence of \(\Delta H_{\text{vap},i} \) using SIMPOL.1 with final coefficients

As noted above, theoretical considerations indicate that \(d\Delta H_{\text{vap},i}/dT < 0 \) for any real compound below its critical temperature \(T_{c,i} \). Examination of values returned by Eq. (13) with Eq. (18) indicate that while imperfect, the results are encouraging in this regard, with 305 of the 433 compounds considered returning \(d\Delta H_{\text{vap},i}/dT < 0 \) for \(T = 335.15 \text{ K} \). The results by compound class and sub-class are given in Table 9.

At any given \(T < T_{c,i} \), though we know that \(d\Delta H_{\text{vap},i}(T)/dT < 0 \) (see above), this does not require for any particular group \(k \) that \(d\Delta h_{\text{vap},k}(T)/dT < 0 \), only that the \(\nu_{k,i} \)-weighted sum is negative. However, since all \(\nu_{k,i} \geq 0 \), by Eq. (13), at least some fraction of the structurally important groups must give \(d\Delta h_{\text{vap},k}(T)/dT < 0 \). Table 6 gives the sign of the \(d\Delta h_{\text{vap},k}(T)/dT \) values at 293.15 K for the SIMPOL.1 groups based on Eq. (18) and the \(B \) values in Table 5. Importantly, for the carbon group \((k=1)\), \(d\Delta h_{\text{vap},1}(T)/dT < 0 \). This result is important in causing \(d\Delta H_{\text{vap},i}(T)/dT < 0 \) to be predicted for many of the compounds in Tables 1 and 3.

For the method of Capouet and Müller (2006), taking the derivative of Eq. (3) with respect to \((1/T)\) and consideration of Eq. (9) yields

\[
\Delta H_{\text{vap},i}(T) = \Delta H_{\text{vap},hc-i}(T) - 2.303R \sum_k \nu_{k,i} \frac{d\tau_k(T)}{d(1/T)} \tag{26}
\]
\[
\frac{d \Delta H_{vap,i}(T)}{dT} = \frac{d \Delta H_{vap,hc-i}(T)}{dT} - 2.303R \sum_k v_{k,i} \frac{d}{dT} \frac{d \tau_k(T)}{d(1/T)}
\]

(27)

which lead to

\[
\Delta h_{vap,k}(T) = -2.303R \frac{d \tau_k(T)}{d(1/T)}
\]

(28)

\[
\frac{d \Delta h_{vap,k}(T)}{dT} = -2.303R \frac{d}{dT} \frac{d \tau_k(T)}{d(1/T)}
\]

(29)

Equations (28) and (29) are analogs of Eqs. (12) and (14) respectively. Combining Eqs. (27) and (29) gives

\[
\frac{d \Delta H_{vap,i}(T)}{dT} = \frac{d \Delta H_{vap,hc-i}(T)}{dT} + \sum_k v_{k,i} \frac{d \Delta h_{vap,k}(T)}{dT}
\]

(30)

The analogous expression for the SIMPOL.1 representation is Eq. (13).

The functionality selected for the \(b_k(T) \) as fitted by Capouet and Müller (2006) is \(\tau_k(T) = a_k + b_k T \), giving \(d \tau_k(T)/d(1/T) = -\beta_k T^2 \) and \((d/dT)d \tau_k(T)/d(1/T) = -2\beta_k T \). Thus, by Eq. (29), \(d \Delta h_{vap,k}/dT = 2.303R \times 2\beta_k T \). In the fitting results reported by Capouet and Müller (2006), all \(\beta_k > 0 \). Thus in that fitting, all \(d \Delta h_{vap,k}/dT > 0 \) at all \(T \). By Eq. (30), the role of forcing \(d \Delta H_{vap,i}(T)/dT < 0 \) must then be borne entirely by \(d \Delta H_{vap,hc-i}(T)/dT \). This is not possible for any real compound \(i \). The latter derivative is only capable of bringing \(\Delta H_{vap,hc-i}(T) \) to zero, and for the groups considered by Capouet and Müller (2006), \(\Delta H_{vap,i}(T) > \Delta H_{vap,hc-i}(T) \). Caution should therefore accompany use of the temperature dependencies given for the \(\tau_k \) in Capouet and Müller (2006).

Overall, regardless of the \(\rho_L^0(T) \) prediction method used when modeling the atmospheric behavior of a compound over a particular \(T \) interval, when it is correctly predicted over the entire interval that \(d \Delta H_{vap,i}/dT < 0 \), then the \(T \) dependence given by...
Eq. (10) may be used. However, when \(d\Delta H_{\text{vap},i}/dT > 0 \) over some portion of the \(T \) interval of interest, \(\Delta H_{\text{vap},i} \) should be evaluated at the central \(T \) and then assumed to remain constant over the entire interval.

4 Conclusions

A simple group contribution method has been developed that allows prediction of \(p_{L,i}^0 \) and \(\Delta H_{\text{vap},i} \) values based on straightforward molecular structure considerations. Extensive error analyses for both parameters provide a detailed understanding of the reliability of the estimates by compound class and sub-class.

Acknowledgements. This work was supported by National Science Foundation Grant ATM-0513492, by the Electric Power Research Institute, and by the Cooley Family Fund for Critical Research of the Oregon Community Foundation.

References

Pankow, J. F.: An absorption model of gas/particle partitioning of organic compounds in the

Table 1. (a) Non-oxygenated, hydroxyl, ketones, aldehydes, and carboxylic acid saturated compounds in the basis set for the initial fit.

<table>
<thead>
<tr>
<th>Alkanoic hydroxyls</th>
<th>Non-oxygenated alkanes</th>
<th>Alkanoic carboxylic acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclobutanol</td>
<td>2,2-dimethyl pentane</td>
<td>ethanoic acid</td>
</tr>
<tr>
<td>2-butanol</td>
<td>1,1-dimethyl cyclohexane</td>
<td>propanoic acid</td>
</tr>
<tr>
<td>2-methyl-1-propanol</td>
<td>cis-1,2-dimethyl-cyclohexane</td>
<td>2-methyl-propanoic acid</td>
</tr>
<tr>
<td>1-butanol</td>
<td>2,2,4 trimethyl pentane</td>
<td>butanoic acid</td>
</tr>
<tr>
<td>1-pentanol</td>
<td></td>
<td>cyclobutanoic acid</td>
</tr>
<tr>
<td>2,2-dimethyl-1-propanol</td>
<td>Alkanoic ketones and aldehydes</td>
<td>3-methyl-butanoic acid</td>
</tr>
<tr>
<td>2-pentanol</td>
<td>butanal</td>
<td>pentanoic acid</td>
</tr>
<tr>
<td>cyclohexanol</td>
<td>2-methyl-propanal</td>
<td>cyclopentane carboxylic acid</td>
</tr>
<tr>
<td>1-hexanol</td>
<td>cyclopentanone</td>
<td>hexanoic acid</td>
</tr>
<tr>
<td>2-methyl-2-pentanol</td>
<td>cyclohexanone</td>
<td>2-ethyl-butanoic acid</td>
</tr>
<tr>
<td>2,3 dimethyl-2-butanol</td>
<td>3-hexanone</td>
<td>4-methyl-pentanoic acid</td>
</tr>
<tr>
<td>3-hexanol</td>
<td>hexanal</td>
<td>cyclohexane-carboxylic acid</td>
</tr>
<tr>
<td>1,2-propanediol</td>
<td>heptanal</td>
<td>heptanoic acid</td>
</tr>
<tr>
<td>1,4-butandiol</td>
<td>2-heptanone</td>
<td>octanoic acid</td>
</tr>
<tr>
<td>2,3-butanediol</td>
<td>5-methyl-2-hexanone</td>
<td>nonanoic acid</td>
</tr>
<tr>
<td>1,3-butanediol</td>
<td>octanal</td>
<td>2-oxo-propanoic acid</td>
</tr>
<tr>
<td>1,2-butanediol</td>
<td>2-octanone</td>
<td>2-hydroxy-propanoic acid</td>
</tr>
<tr>
<td>1,5-pentanediol</td>
<td>3-hydroxy-3-methyl-2-butanone</td>
<td>4-oxo-pentanoic acid</td>
</tr>
<tr>
<td>2,3-pentanediol</td>
<td>4-hydroxy-2-pentane</td>
<td>butanedioic acid</td>
</tr>
<tr>
<td>1,2-pentanediol</td>
<td>2,4-hexanedione</td>
<td>pentanedioic acid</td>
</tr>
<tr>
<td>2,4-dimethyl-cyclopentanol</td>
<td>4-hydroxy-4-methyl-2-pentanone</td>
<td></td>
</tr>
<tr>
<td>cycloheptanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-methyl-cis-cyclohexanol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. (b) Non-oxygenated, hydroxyl, ketones, aldehydes, and carboxylic acid alkene and aromatic compounds in the basis set for the initial fit.

<table>
<thead>
<tr>
<th>Nonoxygenated alkenes</th>
<th>Nonoxygenated aromatics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3-dimethyl-2-butene</td>
<td>7-butyl-benzene</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alkenoic hydroxyls</th>
<th>Alkenoic ketones and aldehydes</th>
<th>Alkenoic carboxylic acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-butene-1-ol</td>
<td>4-methyl-3-penten-2-one</td>
<td>3-hexenoic-acid</td>
</tr>
<tr>
<td>3-butene-2-ol</td>
<td>4-methyl-4-penten-2-one</td>
<td>4-hexenoic-acid</td>
</tr>
<tr>
<td>3-butene-2-ol</td>
<td>3-cyclohexen-1-ol</td>
<td>3-butylenoic-acid</td>
</tr>
<tr>
<td>2-methyl-2-buten-1-ol</td>
<td>3-methyl-3-penten-2-one</td>
<td>2-ethyl-propenoic-acid</td>
</tr>
<tr>
<td>2-penten-1-ol</td>
<td>4-methyl-3-penten-1-ol</td>
<td>9,12-octadecadienoic acid</td>
</tr>
<tr>
<td>3-methyl-3-buten-1-ol</td>
<td>cyclohex-1-ethyl-methanol</td>
<td>9,12,15-octadecatrienoic acid</td>
</tr>
<tr>
<td>3-penten-1-ol</td>
<td>3-methyl-2-cyclohexen-1-ol</td>
<td>9,12,15-octadecatrienoic acid</td>
</tr>
<tr>
<td>2,3-dimethyl-2-buten-1-ol</td>
<td>cis-9-octadecen-1-ol</td>
<td>Trans-3-phenyl-2-propenoic acid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nonoxygenated aromatics</th>
<th>Phenylic alkenoic hydroxyls</th>
<th>Phenols</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-diphenyl-ethane</td>
<td>1-phenyl-ethanol</td>
<td>phenol</td>
</tr>
<tr>
<td>2-phenyl-ethanol</td>
<td>2-phenyl-ethanol</td>
<td>2-hydroxy-toluene</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phenols</th>
<th>Aromatic ketones and aldehydes</th>
<th>Aromatic carboxylic acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-hydroxy-toluene</td>
<td>1-phenyl-ethanone</td>
<td>3-methyl-benzoic-acid</td>
</tr>
<tr>
<td>3-hydroxy-toluene</td>
<td>2-methyl-benzaldehyde</td>
<td>4-hydroxy-toluene</td>
</tr>
<tr>
<td>4-hydroxy-toluene</td>
<td>2-phenyl-propanal</td>
<td>1-(2-methyl-phenyl)-ethanone</td>
</tr>
<tr>
<td>2-ethyl-phenol</td>
<td>1-phenyl-2-propanone</td>
<td>1-phenyl-2-propanone</td>
</tr>
<tr>
<td>Phenol</td>
<td>Benzaldehyde</td>
<td>3-methyl-benzoic-acid</td>
</tr>
<tr>
<td>2-hydroxy-toluene</td>
<td>2-methyl-benzaldehyde</td>
<td>4-hydroxy-toluene</td>
</tr>
<tr>
<td>3-hydroxy-toluene</td>
<td>2-phenyl-propanal</td>
<td>1-(2-methyl-phenyl)-ethanone</td>
</tr>
<tr>
<td>4-hydroxy-toluene</td>
<td>1-phenyl-2-propanone</td>
<td>1-phenyl-2-propanone</td>
</tr>
<tr>
<td>2-ethyl-phenol</td>
<td>Benzaldehyde</td>
<td>3-methyl-benzoic-acid</td>
</tr>
<tr>
<td>Phenol</td>
<td>2-hydroxy-toluene</td>
<td>3-hydroxy-toluene</td>
</tr>
<tr>
<td>2-ethyl-phenol</td>
<td>2-phenyl-propanal</td>
<td>1-(2-methyl-phenyl)-ethanone</td>
</tr>
<tr>
<td>Phenol</td>
<td>Benzaldehyde</td>
<td>3-methyl-benzoic-acid</td>
</tr>
<tr>
<td>2-hydroxy-toluene</td>
<td>2-methyl-benzaldehyde</td>
<td>4-hydroxy-toluene</td>
</tr>
<tr>
<td>3-hydroxy-toluene</td>
<td>2-phenyl-propanal</td>
<td>1-(2-methyl-phenyl)-ethanone</td>
</tr>
<tr>
<td>4-hydroxy-toluene</td>
<td>1-phenyl-2-propanone</td>
<td>1-phenyl-2-propanone</td>
</tr>
<tr>
<td>2-ethyl-phenol</td>
<td>Benzaldehyde</td>
<td>3-methyl-benzoic-acid</td>
</tr>
<tr>
<td>Phenol</td>
<td>2-hydroxy-toluene</td>
<td>3-hydroxy-toluene</td>
</tr>
<tr>
<td>2-ethyl-phenol</td>
<td>2-phenyl-propanal</td>
<td>1-(2-methyl-phenyl)-ethanone</td>
</tr>
<tr>
<td>Phenol</td>
<td>Benzaldehyde</td>
<td>3-methyl-benzoic-acid</td>
</tr>
<tr>
<td>2-hydroxy-toluene</td>
<td>2-methyl-benzaldehyde</td>
<td>4-hydroxy-toluene</td>
</tr>
<tr>
<td>3-hydroxy-toluene</td>
<td>2-phenyl-propanal</td>
<td>1-(2-methyl-phenyl)-ethanone</td>
</tr>
<tr>
<td>4-hydroxy-toluene</td>
<td>1-phenyl-2-propanone</td>
<td>1-phenyl-2-propanone</td>
</tr>
<tr>
<td>2-ethyl-phenol</td>
<td>Benzaldehyde</td>
<td>3-methyl-benzoic-acid</td>
</tr>
<tr>
<td>Phenol</td>
<td>2-hydroxy-toluene</td>
<td>3-hydroxy-toluene</td>
</tr>
<tr>
<td>2-ethyl-phenol</td>
<td>2-phenyl-propanal</td>
<td>1-(2-methyl-phenyl)-ethanone</td>
</tr>
<tr>
<td>Phenol</td>
<td>Benzaldehyde</td>
<td>3-methyl-benzoic-acid</td>
</tr>
<tr>
<td>2-hydroxy-toluene</td>
<td>2-methyl-benzaldehyde</td>
<td>4-hydroxy-toluene</td>
</tr>
<tr>
<td>3-hydroxy-toluene</td>
<td>2-phenyl-propanal</td>
<td>1-(2-methyl-phenyl)-ethanone</td>
</tr>
<tr>
<td>4-hydroxy-toluene</td>
<td>1-phenyl-2-propanone</td>
<td>1-phenyl-2-propanone</td>
</tr>
<tr>
<td>2-ethyl-phenol</td>
<td>Benzaldehyde</td>
<td>3-methyl-benzoic-acid</td>
</tr>
<tr>
<td>Phenol</td>
<td>2-hydroxy-toluene</td>
<td>3-hydroxy-toluene</td>
</tr>
<tr>
<td>2-ethyl-phenol</td>
<td>2-phenyl-propanal</td>
<td>1-(2-methyl-phenyl)-ethanone</td>
</tr>
<tr>
<td>Phenol</td>
<td>Benzaldehyde</td>
<td>3-methyl-benzoic-acid</td>
</tr>
<tr>
<td>2-hydroxy-toluene</td>
<td>2-methyl-benzaldehyde</td>
<td>4-hydroxy-toluene</td>
</tr>
<tr>
<td>3-hydroxy-toluene</td>
<td>2-phenyl-propanal</td>
<td>1-(2-methyl-phenyl)-ethanone</td>
</tr>
<tr>
<td>4-hydroxy-toluene</td>
<td>1-phenyl-2-propanone</td>
<td>1-phenyl-2-propanone</td>
</tr>
<tr>
<td>2-ethyl-phenol</td>
<td>Benzaldehyde</td>
<td>3-methyl-benzoic-acid</td>
</tr>
<tr>
<td>Phenol</td>
<td>2-hydroxy-toluene</td>
<td>3-hydroxy-toluene</td>
</tr>
<tr>
<td>2-ethyl-phenol</td>
<td>2-phenyl-propanal</td>
<td>1-(2-methyl-phenyl)-ethanone</td>
</tr>
<tr>
<td>Phenol</td>
<td>Benzaldehyde</td>
<td>3-methyl-benzoic-acid</td>
</tr>
<tr>
<td>2-hydroxy-toluene</td>
<td>2-methyl-benzaldehyde</td>
<td>4-hydroxy-toluene</td>
</tr>
<tr>
<td>3-hydroxy-toluene</td>
<td>2-phenyl-propanal</td>
<td>1-(2-methyl-phenyl)-ethanone</td>
</tr>
<tr>
<td>4-hydroxy-toluene</td>
<td>1-phenyl-2-propanone</td>
<td>1-phenyl-2-propanone</td>
</tr>
<tr>
<td>2-ethyl-phenol</td>
<td>Benzaldehyde</td>
<td>3-methyl-benzoic-acid</td>
</tr>
<tr>
<td>Phenol</td>
<td>2-hydroxy-toluene</td>
<td>3-hydroxy-toluene</td>
</tr>
<tr>
<td>2-ethyl-phenol</td>
<td>2-phenyl-propanal</td>
<td>1-(2-methyl-phenyl)-ethanone</td>
</tr>
<tr>
<td>Phenol</td>
<td>Benzaldehyde</td>
<td>3-methyl-benzoic-acid</td>
</tr>
<tr>
<td>2-hydroxy-toluene</td>
<td>2-methyl-benzaldehyde</td>
<td>4-hydroxy-toluene</td>
</tr>
<tr>
<td>3-hydroxy-toluene</td>
<td>2-phenyl-propanal</td>
<td>1-(2-methyl-phenyl)-ethanone</td>
</tr>
<tr>
<td>4-hydroxy-toluene</td>
<td>1-phenyl-2-propanone</td>
<td>1-phenyl-2-propanone</td>
</tr>
</tbody>
</table>
Table 1. (c) Amides, amines, ethers, and nitrate-group containing compounds in the basis set for the initial fit.

<table>
<thead>
<tr>
<th>Amides</th>
<th>Ethers</th>
<th>Nitrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>formamide</td>
<td>dimethyl-propionamide</td>
<td>1,2-epoxy-3-isopropoxy-propane</td>
</tr>
<tr>
<td>acetamide</td>
<td>diethyl-formamide</td>
<td>1-butoxy-2-ethoxyethane</td>
</tr>
<tr>
<td>methyl-formamide</td>
<td>butyl-acetamide</td>
<td>2,6-dimethoxybenzoic acid</td>
</tr>
<tr>
<td>dimethyl-formamide</td>
<td>propanamide</td>
<td>1-(2-methoxyethoxy)-butane</td>
</tr>
<tr>
<td>methyl-acetamide</td>
<td>butyramide</td>
<td>3,4-dimethoxybenzoic acid</td>
</tr>
<tr>
<td>ethyl-formamide</td>
<td>pentanamide</td>
<td>4-methoxy-benzaldehyde</td>
</tr>
<tr>
<td>dimethyl-acetamide</td>
<td>hexanamide</td>
<td>2-(2-methylpropoxy)-ethanol</td>
</tr>
<tr>
<td>Amines</td>
<td></td>
<td>1,3-dimethoxybenzoic acid</td>
</tr>
<tr>
<td>2-propylamine</td>
<td>4-amino-3-methylbenzoic acid</td>
<td>3-(2-methoxyphenyl)-propionic acid</td>
</tr>
<tr>
<td>1-propylamine</td>
<td>n-methyl-n-phenyl-amine</td>
<td>3-(3,4-dimethoxyphenyl)-propionic acid</td>
</tr>
<tr>
<td>phenylamine</td>
<td>dimethyl-hydroxylamine</td>
<td>5,5-dimethyl-1,3-dioxane</td>
</tr>
<tr>
<td>1-pentylamine</td>
<td>1,2,-ethane-diamine</td>
<td>2-methoxy-tetrahydropyran</td>
</tr>
<tr>
<td>4-amino-toluene</td>
<td>3-amino-4-methylbenzoic</td>
<td>3-(4-methoxyphenyl)-propionic acid</td>
</tr>
<tr>
<td>3-amino-toluene</td>
<td>2-methyl-propylamine</td>
<td>cis-2,4-dimethyl-1,3-dioxane</td>
</tr>
<tr>
<td>2-amino-toluene</td>
<td>1-methyl-propylamine</td>
<td></td>
</tr>
<tr>
<td>dimethylamine</td>
<td>1-(dimethylamino)-2-propanone</td>
<td></td>
</tr>
<tr>
<td>2-butylamine</td>
<td>(1-methyl-ethyl)-methylamine</td>
<td>3-methylbutyl nitrate</td>
</tr>
<tr>
<td>methylamine</td>
<td>n-methyl-phenylamine</td>
<td>2-methylpropyl nitrate</td>
</tr>
<tr>
<td>ethylamine</td>
<td>n-methyl-1-butanamine</td>
<td>butyl nitrate</td>
</tr>
<tr>
<td>trimethylamine</td>
<td>n,n-dimethyl-n-phenyl-amine</td>
<td>ethyl nitrate</td>
</tr>
<tr>
<td>diethylamine</td>
<td>triethylamine</td>
<td>propynitrate</td>
</tr>
<tr>
<td>1-butylamine</td>
<td></td>
<td>1-methylthethyl nitrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,2,3-propanetrinitrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cyclopentyl nitrate</td>
</tr>
</tbody>
</table>
Table 1. (d) Esters and nitro-group containing compounds in the basis set for the initial fit.

<table>
<thead>
<tr>
<th>Esters</th>
<th>Nitro-containing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-methyl-propyl ethanoate</td>
<td>6-methyl-2,4-dinitrophenol</td>
</tr>
<tr>
<td>methyl 3-methyl-butanoate</td>
<td>3-nitro-2-butanol</td>
</tr>
<tr>
<td>methyl pentanoate</td>
<td>1-nitrobutane</td>
</tr>
<tr>
<td>ethyl 2-methyl-propanoate</td>
<td>2-nitrobutane</td>
</tr>
<tr>
<td>ethyl hexanoate</td>
<td>ethyl 2-nitropropionate</td>
</tr>
<tr>
<td>hexyl ethanoate</td>
<td>methyl 4-nitrobutano</td>
</tr>
<tr>
<td>2-methyl-propyl butanoate</td>
<td>1-nitromethyl-1-cyclohexanol</td>
</tr>
<tr>
<td>methyl heptanoate</td>
<td>4-(1-methylpropyl)-2-nitrophenol</td>
</tr>
<tr>
<td>dibutanoate ethane</td>
<td>2-nitro-1-propanol</td>
</tr>
<tr>
<td>1-methyl-propyl butanoate</td>
<td>3-nitro-1-propanol</td>
</tr>
<tr>
<td>propyl 3-methyl-butanoate</td>
<td>3-methoxy-2-nitrobenzoic</td>
</tr>
<tr>
<td>1-methyl-ethyl pentanoate</td>
<td>4-methoxy-3-nitrobenzoic</td>
</tr>
<tr>
<td>diethyl cyclopropane-1,1-dicarboxylate</td>
<td>3-methoxy-4-nitrobenzoic</td>
</tr>
<tr>
<td>ethyl 4-methyl-pentanoate</td>
<td>methyl 2-nitrobenzoic</td>
</tr>
<tr>
<td>2-methyl-propyl 2-methyl-propanoate</td>
<td>ethyl 2-butoxy-ethanoate</td>
</tr>
<tr>
<td></td>
<td>diethyl hexandioanate</td>
</tr>
<tr>
<td></td>
<td>ethyl butanoate</td>
</tr>
<tr>
<td></td>
<td>phenyl-methyl ethanoate</td>
</tr>
<tr>
<td></td>
<td>diethyl ethanedioate</td>
</tr>
<tr>
<td></td>
<td>methyl cyclopropanoate</td>
</tr>
<tr>
<td></td>
<td>ethyl cyclopropanoate</td>
</tr>
<tr>
<td></td>
<td>propyl pentanoate</td>
</tr>
<tr>
<td></td>
<td>methyl cyclobutanoate</td>
</tr>
<tr>
<td></td>
<td>ethyl cyclobutanoate</td>
</tr>
<tr>
<td></td>
<td>ethyl cyclopentanoate</td>
</tr>
<tr>
<td></td>
<td>dimethyl 1,2-benzenedicarboxylate</td>
</tr>
<tr>
<td></td>
<td>dimethyl 1,3-benzenedicarboxylate</td>
</tr>
<tr>
<td></td>
<td>dimethyl cis-1,3-cyclohexanedicarboxylate</td>
</tr>
<tr>
<td></td>
<td>2,4,6-trinitrotoluene</td>
</tr>
<tr>
<td></td>
<td>2-nitrophenol</td>
</tr>
<tr>
<td></td>
<td>3-nitro-2-pentanol</td>
</tr>
<tr>
<td></td>
<td>2-methyl-3-nitrobenzoic</td>
</tr>
<tr>
<td></td>
<td>3-methyl-2-nitrobenzoic</td>
</tr>
<tr>
<td></td>
<td>4-methyl-2-nitrobenzoic</td>
</tr>
<tr>
<td></td>
<td>5-methyl-2-nitrobenzoic</td>
</tr>
<tr>
<td></td>
<td>4-methoxy-2-nitrobenzoic</td>
</tr>
<tr>
<td></td>
<td>2-nitro-ethanol</td>
</tr>
<tr>
<td></td>
<td>4-formyl-2-nitrobenzoic</td>
</tr>
<tr>
<td></td>
<td>4-methyl-3-nitrobenzoic</td>
</tr>
<tr>
<td></td>
<td>5-methyl-2-nitrobenzoic</td>
</tr>
<tr>
<td></td>
<td>3-nitro-2-butane</td>
</tr>
<tr>
<td></td>
<td>ethyl nitroacetate</td>
</tr>
<tr>
<td></td>
<td>methyl nitroacetate</td>
</tr>
<tr>
<td></td>
<td>2-nitrobenzoic acid</td>
</tr>
<tr>
<td></td>
<td>3-nitrobenzoic acid</td>
</tr>
<tr>
<td></td>
<td>4-nitrobenzoic acid</td>
</tr>
</tbody>
</table>
Table 1. (e) Peroxide, hydroperoxide, and carbonylperoxynitraten-group containing compounds in the basis set for the initial fit.

<table>
<thead>
<tr>
<th>Peroxides</th>
<th>Carbonylperoxynitrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>di-(n)-butyl peroxide</td>
<td>peroxyacetyl nitrate</td>
</tr>
<tr>
<td>di-(1,1-dimethylethyl)-peroxide</td>
<td></td>
</tr>
<tr>
<td>diethyl-peroxide</td>
<td></td>
</tr>
</tbody>
</table>

Hydroperoxides

<table>
<thead>
<tr>
<th>Peroxyacids</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-methyl-1-phenyl-ethyl-hydroperoxide</td>
</tr>
<tr>
<td>methyl-hydroperoxide</td>
</tr>
<tr>
<td>ethyl-hydroperoxide</td>
</tr>
<tr>
<td>(1,1-dimethylethyl)-hydroperoxide</td>
</tr>
<tr>
<td>1-oxo-ethyl-hydroperoxide</td>
</tr>
<tr>
<td>1-oxo-propyl-hydroperoxide</td>
</tr>
<tr>
<td>1-oxo-butyl-hydroperoxide</td>
</tr>
</tbody>
</table>
Table 2. Average standard errors for the initial fit for all compounds in the basis set, and by compound class.

<table>
<thead>
<tr>
<th>Compound class</th>
<th>N_C</th>
<th>σ_{FIT}</th>
<th>σ_{SGN}</th>
</tr>
</thead>
<tbody>
<tr>
<td>All compounds</td>
<td>272</td>
<td>0.28</td>
<td>-0.000092</td>
</tr>
<tr>
<td>Alkenes</td>
<td>40</td>
<td>0.27</td>
<td>-0.012</td>
</tr>
<tr>
<td>Amides</td>
<td>14</td>
<td>0.30</td>
<td>0.0055</td>
</tr>
<tr>
<td>Amines</td>
<td>27</td>
<td>0.23</td>
<td>-0.013</td>
</tr>
<tr>
<td>Aromatics</td>
<td>21</td>
<td>0.21</td>
<td>0.063</td>
</tr>
<tr>
<td>Carboxyldiperoxynitrates</td>
<td>1</td>
<td>0.11</td>
<td>-0.018</td>
</tr>
<tr>
<td>Esters</td>
<td>30</td>
<td>0.24</td>
<td>0.028</td>
</tr>
<tr>
<td>Ethers</td>
<td>27</td>
<td>0.22</td>
<td>-0.063</td>
</tr>
<tr>
<td>Hydroperoxides</td>
<td>4</td>
<td>0.20</td>
<td>0.014</td>
</tr>
<tr>
<td>Nitrates</td>
<td>8</td>
<td>0.14</td>
<td>0.032</td>
</tr>
<tr>
<td>Nitro-containing</td>
<td>32</td>
<td>0.41</td>
<td>0.068</td>
</tr>
<tr>
<td>Peroxides</td>
<td>3</td>
<td>0.54</td>
<td>0.030</td>
</tr>
<tr>
<td>Peroxyacids</td>
<td>3</td>
<td>0.19</td>
<td>-0.017</td>
</tr>
<tr>
<td>Saturated</td>
<td>62</td>
<td>0.34</td>
<td>-0.037</td>
</tr>
</tbody>
</table>
Table 3. (a) Non-oxygenated, hydroxyl, phenolic, aldehyde, ketone, and carboxylic acid compounds in the test set for the initial fit.

<table>
<thead>
<tr>
<th>Hydroxyls</th>
<th>Non-oxygenated</th>
<th>Carboxylic Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-methyl, 2,4-pentanediol</td>
<td>cyclohexane</td>
<td>hexanedioic acid</td>
</tr>
<tr>
<td>1,6-hexanediol</td>
<td>1,1-dimethyl cyclopentane</td>
<td>heptanedioic acid</td>
</tr>
<tr>
<td>2,3-dimethyl 2,3-butanediol</td>
<td>trans-1,3-dimethyl cyclopentane</td>
<td>octanedioic acid</td>
</tr>
<tr>
<td>1,7-heptanediol</td>
<td>2,3,4-trimethyl pentane</td>
<td>nonanedioic acid</td>
</tr>
<tr>
<td>1,2,3-trihydroxy-propane</td>
<td>2,2,3,3-tetramethyl butane</td>
<td>undecanedioic acid</td>
</tr>
<tr>
<td>4-methyl-4-penten-2-ol</td>
<td></td>
<td>2-ethyl-hexanoic acid</td>
</tr>
<tr>
<td>2-methyl-cyclohex-1-ethyl-methanol</td>
<td></td>
<td>5-hexenoic acid</td>
</tr>
<tr>
<td>cis-2-butene-1,4-diol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oct-2-en-4-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,7-dimethyl-oct-6-en-1-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-decen-1-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-decen-1-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-phenyl-1-propanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-phenyl-1-butanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-phenyl-ethanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-phenyl-1-propanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-phenyl-2-propanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-phenyl-1-propanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-phenyl-2-propen-1-ol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-ethyl-phenol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-hydroxy biphenyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-hydroxy biphenyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-(phenylmethyl)-phenol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-(1,1-dimethylthyl)-phenol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(1,1-dimethylthyl-4-methyl-phenol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-methyl(1,1-dimethylthyl-4-methyl-phenol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-methyl(2-(1,1-dimethylthyl)-phenol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4,6-tri-(1,1-dimethylthyl)-phenol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-(4-hydroxyphenyl)-ethaneone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-naphthol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-naphthol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-propyl phenol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-propyl phenol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(1-methyl-ethyl)-phenol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-(1-methyl-ethyl)-phenol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11866
Table 3. (b) Amide, amine, ester, ether, nitrate, nitro-containing, and peroxide compounds in the test set for the initial fit.

<table>
<thead>
<tr>
<th>Amides</th>
<th>Ethers</th>
<th>Amines</th>
<th>Nitrates</th>
<th>Nitros</th>
<th>Esters</th>
<th>Peroxides</th>
</tr>
</thead>
<tbody>
<tr>
<td>heptanamide</td>
<td>4-methyl-1,3-dioxane</td>
<td>1-amino-2,6-dimethylbenzene</td>
<td>cyclohexane nitrate</td>
<td>2,4-dinitrophenol</td>
<td>dimethyl 1,4-benzenedicarboxylate</td>
<td>1-(1-methyl-propyl)-peroxide</td>
</tr>
<tr>
<td>octanamide</td>
<td>1,3-dioxepan</td>
<td>n-ethyl-n-phenylamine</td>
<td>phenylmethyl nitrate</td>
<td>2,4-dinitrophenol</td>
<td>methyl dimethoxyethanoate</td>
<td></td>
</tr>
<tr>
<td>methyl-butyramide</td>
<td>1,3-dioxolan</td>
<td>1-amino-2,4-dimethylbenzene</td>
<td>2,2'-oxybis-ethanol dinitrate</td>
<td>3-methyl-4-nitrobenzoic acid</td>
<td>diethyl 1,1-cyclopentanedicarboxylate</td>
<td></td>
</tr>
<tr>
<td>diethyl-butanamide</td>
<td>dimethoxy methane</td>
<td>1-amino-4-ethylenbenzene</td>
<td>2-nitro-2-[(nitrooxy)methyl]-1,3-propanediol dinitrate</td>
<td>3-methyl-2-nitrobenzoic acid</td>
<td>dimethyl propanedioate</td>
<td></td>
</tr>
<tr>
<td>dimethyl-cyclohexanecarboxamide</td>
<td>trans-2,2,4,6-tetramethyl-1,3-dioxane</td>
<td>1-methyl-piperidin-2-one</td>
<td>(phenoxymethyl)-oxirane</td>
<td>2-methyl-6-nitrobenzoic acid</td>
<td>1,2-ethanediol diacetate</td>
<td></td>
</tr>
<tr>
<td>1-methyl-piperidin-2-one</td>
<td>2-(2-methoxyethoxy)-tetrahydropyran</td>
<td></td>
<td></td>
<td>3-methyl-2-nitrobenzoic acid</td>
<td>methyl benzoate</td>
<td></td>
</tr>
<tr>
<td>Amines</td>
<td></td>
<td></td>
<td></td>
<td>3-methyl-4-nitrobenzoic acid</td>
<td>phenyl acetate</td>
<td></td>
</tr>
<tr>
<td>1-amino-2,6-dimethylbenzene</td>
<td></td>
<td></td>
<td></td>
<td>4-nitrophenol</td>
<td>ethyl benzoate</td>
<td></td>
</tr>
<tr>
<td>n-ethyl-n-phenylamine</td>
<td></td>
<td></td>
<td></td>
<td>2-methyl-6-nitrobenzoic acid</td>
<td>diethyl 1,1-cyclobutanedicarboxylate</td>
<td></td>
</tr>
<tr>
<td>1-amino-2,4-dimethylbenzene</td>
<td></td>
<td></td>
<td></td>
<td>3-methyl-2-nitrobenzoic acid</td>
<td>n-propyl benzoate</td>
<td></td>
</tr>
<tr>
<td>1-amino-4-ethylenbenzene</td>
<td></td>
<td></td>
<td></td>
<td>3-methyl-4-nitrobenzoic acid</td>
<td>2-methyl-propyl benzoate</td>
<td></td>
</tr>
<tr>
<td>triethanolamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n-butyl benzoate</td>
<td></td>
</tr>
<tr>
<td>dibutylamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>methyl benzoate</td>
<td></td>
</tr>
<tr>
<td>hexylamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phenyl acetate</td>
<td></td>
</tr>
<tr>
<td>n-propyl-1-propanamine,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ethyl benzoate</td>
<td></td>
</tr>
<tr>
<td>n-(1-methylthethyl)-2-propanamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>diethyl 1,1-cyclobutanedicarboxylate</td>
<td></td>
</tr>
<tr>
<td>1-(diethyldiamino)-2-propanone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n-propyl benzoate</td>
<td></td>
</tr>
<tr>
<td>2-amino-3-methylbenzoic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-methyl-propyl benzoate</td>
<td></td>
</tr>
<tr>
<td>2-amino-5-methylbenzoic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n-butyl benzoate</td>
<td></td>
</tr>
<tr>
<td>2-amino-6-methylbenzoic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>methyl benzoate</td>
<td></td>
</tr>
<tr>
<td>3-amino-2-methylbenzoic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phenyl acetate</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Average standard errors in vapor pressures for the test set compounds as estimated by SIMPOL.1 based on the initial basis set compounds in Table 1 and all $T_{j,i}$ for which the experimentally based $p_{L,i}^0 = f_i(T)$ expressions extended.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>number of compounds N_C</th>
<th>average absolute error σ_{FIT}</th>
<th>average signed error σ_{SGN}</th>
</tr>
</thead>
<tbody>
<tr>
<td>All compounds</td>
<td>161</td>
<td>0.42</td>
<td>0.079</td>
</tr>
<tr>
<td>Alkenes</td>
<td>24</td>
<td>0.30</td>
<td>0.022</td>
</tr>
<tr>
<td>Amides</td>
<td>6</td>
<td>0.38</td>
<td>0.078</td>
</tr>
<tr>
<td>Amines</td>
<td>14</td>
<td>0.39</td>
<td>-0.14</td>
</tr>
<tr>
<td>Aromatics</td>
<td>63</td>
<td>0.39</td>
<td>0.20</td>
</tr>
<tr>
<td>Carbonylperoxynitrates</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Esters</td>
<td>12</td>
<td>0.35</td>
<td>0.053</td>
</tr>
<tr>
<td>Ethers</td>
<td>10</td>
<td>0.42</td>
<td>-0.25</td>
</tr>
<tr>
<td>Hydroperoxides</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Nitrates</td>
<td>4</td>
<td>0.27</td>
<td>-0.088</td>
</tr>
<tr>
<td>Nitro-containing</td>
<td>7</td>
<td>1.02</td>
<td>0.37</td>
</tr>
<tr>
<td>Peroxides</td>
<td>1</td>
<td>0.082</td>
<td>0.024</td>
</tr>
<tr>
<td>Peroxyacids</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Saturated</td>
<td>20</td>
<td>0.57</td>
<td>0.025</td>
</tr>
</tbody>
</table>

NA = not available
Table 5. Chemical groups used in SIMPOL.1 and the B values obtained by least-squares optimization using the final fitting set (all compounds in Tables 1 and 3) and giving $\chi^2=625$.

<table>
<thead>
<tr>
<th>groups</th>
<th>k</th>
<th>coefficient</th>
<th>footnote</th>
<th>$B_{k,1}$</th>
<th>$B_{k,2}$</th>
<th>$B_{k,3}$</th>
<th>$B_{k,4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>zeroth group (constant term)</td>
<td>0</td>
<td>b_0</td>
<td>a</td>
<td>$-6.01940E+02$</td>
<td>$-1.38446E-01$</td>
<td>$9.06411E-04$</td>
<td>$6.89905E-01$</td>
</tr>
<tr>
<td>carbon number</td>
<td>1</td>
<td>b_1</td>
<td>b</td>
<td>$-2.91300E+02$</td>
<td>$5.97532E-03$</td>
<td>$1.08462E-03$</td>
<td>$1.46458E-01$</td>
</tr>
<tr>
<td>carbon number on the acid-side of an amide (asa)</td>
<td>2</td>
<td>b_2</td>
<td>c</td>
<td>$3.16410E+01$</td>
<td>$1.43003E+00$</td>
<td>$1.29835E-03$</td>
<td>$1.71170E-01$</td>
</tr>
<tr>
<td>aromatic ring</td>
<td>3</td>
<td>b_3</td>
<td>d</td>
<td>$5.65939E+01$</td>
<td>$2.07200E+00$</td>
<td>$7.35554E-04$</td>
<td>$2.73002E-01$</td>
</tr>
<tr>
<td>non-aromatic ring</td>
<td>4</td>
<td>b_4</td>
<td>e</td>
<td>$2.93921E+02$</td>
<td>$5.06854E-01$</td>
<td>$4.02483E-05$</td>
<td>$8.05350E-02$</td>
</tr>
<tr>
<td>$C=O$ (non-aromatic)</td>
<td>5</td>
<td>b_5</td>
<td>f</td>
<td>$-4.62827E+00$</td>
<td>$2.52826E-01$</td>
<td>$7.46646E-04$</td>
<td>$2.00730E-02$</td>
</tr>
<tr>
<td>$C=O$ in non-aromatic ring</td>
<td>6</td>
<td>b_6</td>
<td>g</td>
<td>$2.54446E+02$</td>
<td>$8.09985E-01$</td>
<td>$2.98492E-03$</td>
<td>$4.90272E-01$</td>
</tr>
<tr>
<td>hydroxyl (alkyl)</td>
<td>7</td>
<td>b_7</td>
<td>h</td>
<td>$-3.45545E+02$</td>
<td>$1.74981E+00$</td>
<td>$6.06292E-03$</td>
<td>$2.00291E-01$</td>
</tr>
<tr>
<td>aldehyde</td>
<td>8</td>
<td>b_8</td>
<td>i</td>
<td>$5.96156E+00$</td>
<td>$-1.50522E-01$</td>
<td>$-2.78496E-03$</td>
<td>$1.92853E-02$</td>
</tr>
<tr>
<td>ketone</td>
<td>9</td>
<td>b_9</td>
<td>j</td>
<td>$6.59219E+01$</td>
<td>$-2.22146E+00$</td>
<td>$8.10226E-05$</td>
<td>$1.73094E-01$</td>
</tr>
<tr>
<td>carboxylic acid</td>
<td>10</td>
<td>b_{10}</td>
<td>k</td>
<td>$-1.20635E+03$</td>
<td>$-3.63934E-02$</td>
<td>$5.26100E-04$</td>
<td>$7.24845E-02$</td>
</tr>
<tr>
<td>ester</td>
<td>11</td>
<td>b_{11}</td>
<td>l</td>
<td>$-2.74382E+02$</td>
<td>$9.80329E-01$</td>
<td>$2.68493E-04$</td>
<td>$2.01595E-01$</td>
</tr>
<tr>
<td>ether</td>
<td>12</td>
<td>b_{12}</td>
<td>m</td>
<td>$2.52653E+01$</td>
<td>$-1.09789E+00$</td>
<td>$2.44625E-03$</td>
<td>$7.61580E-02$</td>
</tr>
<tr>
<td>ether (alicyclc)</td>
<td>13</td>
<td>b_{13}</td>
<td>m</td>
<td>$-6.06502E+02$</td>
<td>$1.04949E+00$</td>
<td>$-3.14429E-03$</td>
<td>$2.19997E-01$</td>
</tr>
<tr>
<td>ether, aromatic</td>
<td>14</td>
<td>b_{14}</td>
<td>m</td>
<td>$-1.51544E+02$</td>
<td>$2.36067E-01$</td>
<td>$3.02449E-03$</td>
<td>$2.86234E-01$</td>
</tr>
<tr>
<td>nitrate</td>
<td>15</td>
<td>b_{15}</td>
<td>n</td>
<td>$-6.10418E+02$</td>
<td>$-8.96652E-02$</td>
<td>$-3.68951E-04$</td>
<td>$1.36953E-02$</td>
</tr>
<tr>
<td>nitro</td>
<td>16</td>
<td>b_{16}</td>
<td>o</td>
<td>$-3.81121E+02$</td>
<td>$-1.12242E+00$</td>
<td>$4.40184E-03$</td>
<td>$-1.83302E-01$</td>
</tr>
<tr>
<td>aromatic hydroxyl (e.g., phenol)</td>
<td>17</td>
<td>b_{17}</td>
<td>p</td>
<td>$-3.08788E+02$</td>
<td>$-1.49756E+00$</td>
<td>$5.04860E-03$</td>
<td>$-2.14807E-01$</td>
</tr>
<tr>
<td>amine, primary</td>
<td>18</td>
<td>b_{18}</td>
<td>q</td>
<td>$-3.35354E+02$</td>
<td>$-1.19244E+00$</td>
<td>$-3.35003E-03$</td>
<td>$3.90268E-01$</td>
</tr>
<tr>
<td>amine, secondary</td>
<td>19</td>
<td>b_{19}</td>
<td>q</td>
<td>$1.73608E+02$</td>
<td>$-2.09112E+00$</td>
<td>$8.38608E-04$</td>
<td>$7.52532E-02$</td>
</tr>
<tr>
<td>amine, tertiary</td>
<td>20</td>
<td>b_{20}</td>
<td>q</td>
<td>$1.67701E+02$</td>
<td>$-4.89117E-01$</td>
<td>$-3.79575E-04$</td>
<td>$7.27049E-02$</td>
</tr>
<tr>
<td>amine, aromatic</td>
<td>21</td>
<td>b_{21}</td>
<td>q</td>
<td>$-3.77771E+02$</td>
<td>$-1.66926E+00$</td>
<td>$1.40448E-03$</td>
<td>$1.48451E-01$</td>
</tr>
<tr>
<td>amide, primary</td>
<td>22</td>
<td>b_{22}</td>
<td>c</td>
<td>$-9.03205E+02$</td>
<td>$8.60561E-01$</td>
<td>$-2.70656E-03$</td>
<td>$-3.46029E-01$</td>
</tr>
<tr>
<td>amide, secondary</td>
<td>23</td>
<td>b_{23}</td>
<td>c</td>
<td>$-1.40100E+03$</td>
<td>$-3.05900E-01$</td>
<td>$7.21256E-04$</td>
<td>$-5.28425E-02$</td>
</tr>
<tr>
<td>amide, tertiary</td>
<td>24</td>
<td>b_{24}</td>
<td>c</td>
<td>$-2.13191E+02$</td>
<td>$-8.98338E-01$</td>
<td>$-9.46017E-04$</td>
<td>$-1.61356E-01$</td>
</tr>
<tr>
<td>carbonylperoxynitrate</td>
<td>25</td>
<td>b_{25}</td>
<td>r</td>
<td>$-6.11213E+02$</td>
<td>$-1.39415E+00$</td>
<td>$-2.61738E-03$</td>
<td>$2.91807E-01$</td>
</tr>
<tr>
<td>peroxide</td>
<td>26</td>
<td>b_{26}</td>
<td>r</td>
<td>$2.01120E+02$</td>
<td>$-1.72414E+00$</td>
<td>$3.09932E-04$</td>
<td>$7.39949E-02$</td>
</tr>
<tr>
<td>hydroperoxide</td>
<td>27</td>
<td>b_{27}</td>
<td>r</td>
<td>$-4.92572E+02$</td>
<td>$-1.40670E+00$</td>
<td>$6.25166E-03$</td>
<td>$-2.46590E-01$</td>
</tr>
<tr>
<td>carbonylperoxyacid</td>
<td>28</td>
<td>b_{28}</td>
<td>r</td>
<td>$-6.35322E+02$</td>
<td>$-5.38377E+00$</td>
<td>$-7.72936E-04$</td>
<td>$-1.46627E-02$</td>
</tr>
<tr>
<td>nitrophenol</td>
<td>29</td>
<td>b_{29}</td>
<td>p</td>
<td>$6.84798E+00$</td>
<td>$-9.39780E-02$</td>
<td>$-3.39909E-04$</td>
<td>$1.48158E-02$</td>
</tr>
<tr>
<td>nitroester</td>
<td>30</td>
<td>b_{30}</td>
<td>l</td>
<td>$-1.16509E+03$</td>
<td>$-6.48926E+00$</td>
<td>$4.07740E-03$</td>
<td>$3.78153E-02$</td>
</tr>
</tbody>
</table>

a Use for all compounds i with $\omega_{0,j}=1$.
b Use for all compounds i with $\omega_{1,j}=\text{total number of carbons in the molecule}$.
c If the compound is an amide, use both b_1 and b_2. Examples: for acetamide, use b_0, b_1, b_2, and b_{22}; for methyl acetamide, use b_0, b_1, b_2, and b_{23}; for methyl ethyl acetamide, use b_0, b_1, b_2, and b_{24}.
d Use with total number of aromatic rings in a molecule. Examples: for biphenyl, use b_0, b_1, and b_3 with $b_3=2$; for anthracene, use b_0, b_1, and b_3 with $b_3=3$.
e Use with total number of non-aromatic rings in a molecule. Examples: for cyclohexane, use b_0, b_1, and b_4 with $b_4=1$.

Use with total number of C=C–C=O groups in non-aromatic rings. Example: for cyclohex-2-eneone, use \(b_0, b_1, b_4, b_5, b_6, and b_9\) with \(b_4, b_5, b_6, and b_9\) all equal to 1.

Use with total number of hydroxyl groups attached to non-aromatic carbons.

Use with total number of aldehyde groups.

Use with total number of ketone groups.

Use with total number of carboxylic acid groups.

Use with total number of ester groups unless there is a nitro bonded to the acid side carbon chain of the ester, in this case use \(b_{30}\). Examples: for methyl acetate, use \(b_0, b_1, and b_{11}\); for methyl nitroacetate, use \(b_0, b_1, b_{10}, and b_{30}\).

Use with ether groups. If both carbons bonded to the oxygen are not part of an aromatic ring, use \(b_{12}\). Otherwise, use \(b_{14}\). Examples for dimethylether, use \(b_0, b_1, and b_{12}\); for tetrahydrofuran, use \(b_0, b_1, b_4, and b_{13}\); for methylphenyl ether, use \(b_0, b_1, b_3, and b_{14}\).

Use with total number of nitrate groups.

Use with total number of nitro groups. Examples: use \(b_0, b_1, and b_{16}\) for 2-nitropropane; use \(b_0, b_1, b_3, and b_{16}\) for nitrobenzene.

Use with total number of aromatic hydroxyls (i.e., phenolic hydroxyls) unless there is a nitro group bonded to a benzene ring, in which case use \(b_{29}\). Examples: for 2-methylphenol, use \(b_0, b_1, b_3, and b_{17}\); for 2-nitrophenol, use \(b_0, b_1, b_3, b_{16}, and b_{29}\).

Use with amines. If all carbons bonded to the nitrogen are not aromatic, use \(b_{11}\) or \(b_1, b_{11}\). Otherwise, use \(b_{14}\). Examples: for methylamine use \(b_0, b_1, and b_{11}\); for dimethyamine use \(b_0, b_1, and b_{12}\); for trimethyamine and for N-benzyl-dimethyamine use \(b_0, b_1, and b_{13}\); for phenylamine, for N-methyl-N-phenylamine, and for N,N-dimethyl-N-phenylamine, use \(b_0, b_1, and b_{14}\).

Use with peroxy compounds. Examples: for peroxy propanyl nitrate use \(b_0, b_1, and b_{25}\); for N-propyl-N-butyl peroxide use \(b_0, b_1, and b_{26}\); for N-butyl peroxide use \(b_0, b_1, and b_{27}\); and for peroxyacetic acid use \(b_0, b_1, and b_{28}\).
Table 6. Values at $T=293.15$ K of the b_k group contribution terms from this work, the τ group contribution terms from Capouet and Müller (2006), and for each method whether each group value $d\Delta h_{\text{vap}}/dT<0$ at $T=293.15$.

<table>
<thead>
<tr>
<th>groups</th>
<th>k</th>
<th>coefficient</th>
<th>value of b_k</th>
<th>value of τ_k</th>
<th>$\frac{d\Delta h_{\text{vap},k}(T)}{dT}<0$?</th>
<th>$\frac{d\Delta h_{\text{vap},k}(T)}{dT}<0$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>zeroeth group (constant term)</td>
<td>0</td>
<td>b_0</td>
<td>1.99</td>
<td></td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>carbon number</td>
<td>1</td>
<td>b_1</td>
<td>−0.47</td>
<td>yes</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>carbon number, acid-side of amide</td>
<td>2</td>
<td>b_2</td>
<td>0.03</td>
<td>no</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>number of aromatic rings</td>
<td>3</td>
<td>b_3</td>
<td>−0.54</td>
<td>no</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>C=C (non-aromatic)</td>
<td>4</td>
<td>b_4</td>
<td>0.03</td>
<td>yes</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>C=C in non-aromatic rings</td>
<td>5</td>
<td>b_5</td>
<td>−0.16</td>
<td>no</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>hydroxyl (alkyl)</td>
<td>6</td>
<td>b_6</td>
<td>−0.33</td>
<td>no</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>aldehyde</td>
<td>7</td>
<td>b_7</td>
<td>−2.29</td>
<td>no</td>
<td>-2.76, -2.10, -1.49^b</td>
<td>no</td>
</tr>
<tr>
<td>ketone</td>
<td>8</td>
<td>b_8</td>
<td>−1.06</td>
<td>yes</td>
<td>-0.91^c</td>
<td>no</td>
</tr>
<tr>
<td>carboxylic acid</td>
<td>9</td>
<td>b_9</td>
<td>−0.99</td>
<td>no</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>ester</td>
<td>10</td>
<td>b_{10}</td>
<td>−3.59</td>
<td>no</td>
<td>-3.10</td>
<td>no</td>
</tr>
<tr>
<td>ether</td>
<td>11</td>
<td>b_{11}</td>
<td>−1.18</td>
<td>yes</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>ether (alicyclic)</td>
<td>12</td>
<td>b_{12}</td>
<td>−0.73</td>
<td>yes</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>ether, aromatic</td>
<td>13</td>
<td>b_{13}</td>
<td>−0.69</td>
<td>yes</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>nitrate</td>
<td>14</td>
<td>b_{14}</td>
<td>−1.02</td>
<td>no</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>nitro</td>
<td>15</td>
<td>b_{15}</td>
<td>−2.20</td>
<td>yes</td>
<td>-2.12, -1.70, -1.30^d</td>
<td>no</td>
</tr>
<tr>
<td>aromatic hydroxyl (e.g., phenol)</td>
<td>16</td>
<td>b_{16}</td>
<td>−2.17</td>
<td>no</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>amine, primary</td>
<td>17</td>
<td>b_{17}</td>
<td>−2.29</td>
<td>no</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>amine, secondary</td>
<td>18</td>
<td>b_{18}</td>
<td>−1.10</td>
<td>yes</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>amine, tertiary</td>
<td>19</td>
<td>b_{19}</td>
<td>−0.83</td>
<td>no</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>amine, aromatic</td>
<td>20</td>
<td>b_{20}</td>
<td>−0.44</td>
<td>yes</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>amine, aromatic</td>
<td>21</td>
<td>b_{21}</td>
<td>−1.70</td>
<td>no</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>amide, primary</td>
<td>22</td>
<td>b_{22}</td>
<td>−4.98</td>
<td>yes</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>amide, secondary</td>
<td>23</td>
<td>b_{23}</td>
<td>−5.17</td>
<td>no</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>amide, tertiary</td>
<td>24</td>
<td>b_{24}</td>
<td>−2.82</td>
<td>yes</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>carbonylperoxynitrate</td>
<td>25</td>
<td>b_{25}</td>
<td>−2.59</td>
<td>yes</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>peroxide</td>
<td>26</td>
<td>b_{26}</td>
<td>−0.53</td>
<td>no</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>hydroperoxide</td>
<td>27</td>
<td>b_{27}</td>
<td>−2.66</td>
<td>no</td>
<td>-3.17</td>
<td>no</td>
</tr>
<tr>
<td>carbonylperoxyacid</td>
<td>28</td>
<td>b_{28}</td>
<td>−2.52</td>
<td>yes</td>
<td>-3.10</td>
<td>no</td>
</tr>
<tr>
<td>nitrophenol</td>
<td>29</td>
<td>b_{29}</td>
<td>−0.09</td>
<td>yes</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>nitroester</td>
<td>30</td>
<td>b_{30}</td>
<td>−2.63</td>
<td>no</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>
a Not considered by Capouet and Müller (2006).
b Primary, secondary, and tertiary hydroxyl, respectively.
c Capouet and Müller (2006) consider only the carbonyl group.
d Primary, secondary, and tertiary nitro group, respectively.
Table 7. Average standard errors in predicting experimental vapor pressures using SIMPOL.1 coefficients optimized for all compounds in Tables 1 and 3 and all \(T_{j,i} \) for which the experimentally based \(p_L^{O_i} = f_i(T) \) expressions extended.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>number of compounds</th>
<th>(N_C)</th>
<th>(\sigma_{fit})</th>
<th>(\sigma_{SGN})</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Compounds</td>
<td>433</td>
<td>0.32</td>
<td>−0.0029</td>
<td></td>
</tr>
<tr>
<td>Alkenes</td>
<td>64</td>
<td>0.30</td>
<td>−0.021</td>
<td></td>
</tr>
<tr>
<td>Nonoxygenated</td>
<td>1</td>
<td>0.24</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Hydroxys</td>
<td>17</td>
<td>0.37</td>
<td>−0.20</td>
<td></td>
</tr>
<tr>
<td>Cyclic hydroxys</td>
<td>4</td>
<td>0.21</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>Dihydroxys</td>
<td>1</td>
<td>0.57</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>Aldehydes</td>
<td>7</td>
<td>0.37</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Ketones</td>
<td>13</td>
<td>0.16</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Cyclic ketones</td>
<td>3</td>
<td>0.30</td>
<td>−0.076</td>
<td></td>
</tr>
<tr>
<td>Cyclic hydroxy ketones</td>
<td>1</td>
<td>0.16</td>
<td>−0.16</td>
<td></td>
</tr>
<tr>
<td>Carboxylic acids</td>
<td>15</td>
<td>0.32</td>
<td>−0.10</td>
<td></td>
</tr>
<tr>
<td>Cyclic carboxylics</td>
<td>2</td>
<td>0.18</td>
<td>−0.17</td>
<td></td>
</tr>
<tr>
<td>Amides</td>
<td>20</td>
<td>0.30</td>
<td>−0.026</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>8</td>
<td>0.26</td>
<td>−0.0071</td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td>5</td>
<td>0.30</td>
<td>−0.035</td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td>6</td>
<td>0.35</td>
<td>−0.12</td>
<td></td>
</tr>
<tr>
<td>Cyclic</td>
<td>1</td>
<td>0.42</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Amines</td>
<td>41</td>
<td>0.27</td>
<td>−0.0096</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>11</td>
<td>0.20</td>
<td>−0.0039</td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td>8</td>
<td>0.23</td>
<td>−0.060</td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td>2</td>
<td>0.06</td>
<td>−0.037</td>
<td></td>
</tr>
<tr>
<td>Benzoic acids</td>
<td>6</td>
<td>0.50</td>
<td>0.0016</td>
<td></td>
</tr>
<tr>
<td>Ketones</td>
<td>11</td>
<td>0.25</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>Trihydroxys</td>
<td>2</td>
<td>0.28</td>
<td>−0.083</td>
<td></td>
</tr>
<tr>
<td>Aromatics</td>
<td>84</td>
<td>0.33</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>Nonoxygenated</td>
<td>3</td>
<td>0.24</td>
<td>−0.16</td>
<td></td>
</tr>
<tr>
<td>Hydroxys</td>
<td>8</td>
<td>0.35</td>
<td>−0.020</td>
<td></td>
</tr>
<tr>
<td>Hydroxy alkenes</td>
<td>1</td>
<td>0.14</td>
<td>−0.12</td>
<td></td>
</tr>
<tr>
<td>Phenols</td>
<td>20</td>
<td>0.36</td>
<td>−0.030</td>
<td></td>
</tr>
<tr>
<td>Aldehydes</td>
<td>6</td>
<td>0.36</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>Ketones</td>
<td>11</td>
<td>0.16</td>
<td>0.057</td>
<td></td>
</tr>
<tr>
<td>Carboxylic phenols</td>
<td>3</td>
<td>1.16</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Benzoic acids</td>
<td>26</td>
<td>0.30</td>
<td>0.094</td>
<td></td>
</tr>
<tr>
<td>Other carboxylic acids</td>
<td>5</td>
<td>0.17</td>
<td>−0.14</td>
<td></td>
</tr>
<tr>
<td>Carboxylic acid alkenes</td>
<td>1</td>
<td>0.33</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Esters</td>
<td>42</td>
<td>0.27</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>Monoesters</td>
<td>23</td>
<td>0.23</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>Diesters</td>
<td>11</td>
<td>0.30</td>
<td>−0.083</td>
<td></td>
</tr>
<tr>
<td>Cyclic esters</td>
<td>6</td>
<td>0.27</td>
<td>0.086</td>
<td></td>
</tr>
<tr>
<td>Ether esters</td>
<td>2</td>
<td>0.48</td>
<td>0.41</td>
<td></td>
</tr>
</tbody>
</table>
Table 7. Continued.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>number of compounds</th>
<th>(N_C)</th>
<th>(\sigma_{\text{FIT}})</th>
<th>(\sigma_{\text{SGN}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monoethers</td>
<td>1</td>
<td>0.21</td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td>Diethers</td>
<td>7</td>
<td>0.16</td>
<td>-0.0069</td>
<td></td>
</tr>
<tr>
<td>Alkene diethers</td>
<td>2</td>
<td>0.13</td>
<td>-0.10</td>
<td></td>
</tr>
<tr>
<td>Cyclic diethers</td>
<td>11</td>
<td>0.35</td>
<td>-0.021</td>
<td></td>
</tr>
<tr>
<td>Hydroxys</td>
<td>2</td>
<td>0.63</td>
<td>-0.63</td>
<td></td>
</tr>
<tr>
<td>Trihydroxy cyclics</td>
<td>1</td>
<td>0.54</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>Cyclic ethers</td>
<td>2</td>
<td>0.55</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>Carboxylic acid aromatics</td>
<td>6</td>
<td>0.31</td>
<td>-0.025</td>
<td></td>
</tr>
<tr>
<td>Aromatic aldehydes</td>
<td>1</td>
<td>0.11</td>
<td>-0.024</td>
<td></td>
</tr>
<tr>
<td>Phenols</td>
<td>1</td>
<td>0.041</td>
<td>-0.032</td>
<td></td>
</tr>
<tr>
<td>Cyclic and aromatic ethers</td>
<td>1</td>
<td>0.22</td>
<td>-0.22</td>
<td></td>
</tr>
<tr>
<td>Carbox. acid aromatic diethers</td>
<td>2</td>
<td>0.44</td>
<td>-0.19</td>
<td></td>
</tr>
<tr>
<td>Nitrites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturated</td>
<td>7</td>
<td>0.19</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Cyclic</td>
<td>2</td>
<td>0.34</td>
<td>-0.34</td>
<td></td>
</tr>
<tr>
<td>Nitro trinitrates</td>
<td>1</td>
<td>0.095</td>
<td>-0.095</td>
<td></td>
</tr>
<tr>
<td>Saturated trinitrates</td>
<td>1</td>
<td>0.068</td>
<td>-0.068</td>
<td></td>
</tr>
<tr>
<td>Ethers</td>
<td>1</td>
<td>0.43</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>Nitros</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturated</td>
<td>2</td>
<td>0.54</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>Aromatics</td>
<td>1</td>
<td>0.45</td>
<td>-0.45</td>
<td></td>
</tr>
<tr>
<td>Hydroxys</td>
<td>5</td>
<td>0.48</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Cyclic hydroxyls</td>
<td>1</td>
<td>0.24</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Nitrophenols</td>
<td>7</td>
<td>0.71</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>Dinitrophenols</td>
<td>3</td>
<td>0.69</td>
<td>-0.69</td>
<td></td>
</tr>
<tr>
<td>Nitrophenol ethers</td>
<td>1</td>
<td>1.22</td>
<td>-1.22</td>
<td></td>
</tr>
<tr>
<td>Carboxyl nitrophenols</td>
<td>1</td>
<td>0.61</td>
<td>-0.61</td>
<td></td>
</tr>
<tr>
<td>Carbonyls</td>
<td>1</td>
<td>0.52</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>Esters</td>
<td>5</td>
<td>0.41</td>
<td>0.0095</td>
<td></td>
</tr>
<tr>
<td>Nitrobenzoic acids</td>
<td>9</td>
<td>0.29</td>
<td>-0.23</td>
<td></td>
</tr>
<tr>
<td>Nitrophenol benzoic acids</td>
<td>3</td>
<td>0.53</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>Peroxides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonylperoxynitrates</td>
<td>1</td>
<td>0.087</td>
<td>-0.087</td>
<td></td>
</tr>
<tr>
<td>Hydroperoxides</td>
<td>4</td>
<td>0.21</td>
<td>-0.012</td>
<td></td>
</tr>
<tr>
<td>Peroxides</td>
<td>4</td>
<td>0.42</td>
<td>-0.025</td>
<td></td>
</tr>
<tr>
<td>PeroxyAcids</td>
<td>3</td>
<td>0.19</td>
<td>-0.031</td>
<td></td>
</tr>
</tbody>
</table>
Table 7. Continued.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>number of compounds</th>
<th>average absolute error σ_{FIT}</th>
<th>average signed error σ_{SGN}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated</td>
<td>82</td>
<td>0.35</td>
<td>-0.037</td>
</tr>
<tr>
<td>Nonoxygenated</td>
<td>4</td>
<td>0.27</td>
<td>0.17</td>
</tr>
<tr>
<td>Cyclic nonoxygenated</td>
<td>5</td>
<td>0.24</td>
<td>0.0034</td>
</tr>
<tr>
<td>Hydrosyxs</td>
<td>10</td>
<td>0.22</td>
<td>-0.16</td>
</tr>
<tr>
<td>Cyclic hydrosyxs</td>
<td>5</td>
<td>0.29</td>
<td>-0.27</td>
</tr>
<tr>
<td>Dihydrrosyxs</td>
<td>12</td>
<td>0.37</td>
<td>0.16</td>
</tr>
<tr>
<td>Trihydrrosyxs</td>
<td>1</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>Aldehydes</td>
<td>5</td>
<td>0.19</td>
<td>-0.017</td>
</tr>
<tr>
<td>Cyclic aldehydes</td>
<td>2</td>
<td>0.60</td>
<td>-0.27</td>
</tr>
<tr>
<td>Ketones</td>
<td>5</td>
<td>0.22</td>
<td>0.11</td>
</tr>
<tr>
<td>Cyclic ketones</td>
<td>3</td>
<td>0.43</td>
<td>0.34</td>
</tr>
<tr>
<td>Hydroxy ketones</td>
<td>4</td>
<td>0.86</td>
<td>-0.86</td>
</tr>
<tr>
<td>Carboxylic acids</td>
<td>13</td>
<td>0.36</td>
<td>-0.12</td>
</tr>
<tr>
<td>Cyclic carboxylic acids</td>
<td>3</td>
<td>0.061</td>
<td>-0.058</td>
</tr>
<tr>
<td>Hydroxy carboxylic acids</td>
<td>1</td>
<td>0.60</td>
<td>0.51</td>
</tr>
<tr>
<td>Carbonyl carboxylic acids</td>
<td>2</td>
<td>0.78</td>
<td>-0.27</td>
</tr>
<tr>
<td>Dicarboxylic acids</td>
<td>7</td>
<td>0.44</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Table 8. Average standard errors ($\sigma_{\Delta H}$ and $\sigma_{\Delta H_{\text{SGN}}}$) and average relative standard errors ($\rho_{\Delta H}$ and $\rho_{\Delta H_{\text{SGN}}}$) in predicting $\Delta H_{\text{vap},i}$ values at 335.15 K for organic compounds using SIMPOL.1 coefficients as optimized for all compounds in Tables 1 and 3.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Number of compounds</th>
<th>N_C</th>
<th>$\sigma_{\Delta H}$ (kJ mol$^{-1}$)</th>
<th>$\rho_{\Delta H}$</th>
<th>$\sigma_{\Delta H_{\text{SGN}}}$ (kJ mol$^{-1}$)</th>
<th>$\rho_{\Delta H_{\text{SGN}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Compounds</td>
<td>433</td>
<td>8.9</td>
<td>4.2</td>
<td>0.17</td>
<td>0.100</td>
<td>0.14</td>
</tr>
<tr>
<td>Alkenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonoxygenated alkenes</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td>0.56</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>Hydroxy alkenes</td>
<td>17</td>
<td>14.7</td>
<td>14.7</td>
<td>0.29</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Cyclic hydroxyl alkenes</td>
<td>4</td>
<td>10.9</td>
<td>6.7</td>
<td>0.25</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Dihydroxy alkenes</td>
<td>1</td>
<td>10.0</td>
<td>10.0</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Aldehyde alkenes</td>
<td>7</td>
<td>9.9</td>
<td>9.7</td>
<td>0.20</td>
<td>-0.19</td>
<td></td>
</tr>
<tr>
<td>Ketone alkenes</td>
<td>13</td>
<td>6.9</td>
<td>6.9</td>
<td>0.18</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Cyclic ketone alkenes</td>
<td>3</td>
<td>3.0</td>
<td>3.0</td>
<td>0.067</td>
<td>-0.067</td>
<td></td>
</tr>
<tr>
<td>Cyclic hydroxyl ketone alkenes</td>
<td>1</td>
<td>19.2</td>
<td>19.2</td>
<td>0.21</td>
<td>-0.21</td>
<td></td>
</tr>
<tr>
<td>Carboxylic acid alkenes</td>
<td>15</td>
<td>10.1</td>
<td>7.2</td>
<td>0.14</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Cyclic carboxylic alkenes</td>
<td>2</td>
<td>3.5</td>
<td>2.0</td>
<td>0.059</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>Amides</td>
<td>20</td>
<td>10.4</td>
<td>-1.7</td>
<td>0.17</td>
<td>-0.023</td>
<td></td>
</tr>
<tr>
<td>Primary amides</td>
<td>8</td>
<td>14.4</td>
<td>0.76</td>
<td>0.24</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>Secondary amides</td>
<td>5</td>
<td>9.6</td>
<td>-5.8</td>
<td>0.13</td>
<td>-0.063</td>
<td></td>
</tr>
<tr>
<td>Tertiary amides</td>
<td>6</td>
<td>7.34</td>
<td>-1.85</td>
<td>0.14</td>
<td>-0.042</td>
<td></td>
</tr>
<tr>
<td>Cyclic amides</td>
<td>1</td>
<td>0.92</td>
<td>0.92</td>
<td>0.017</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>Amines</td>
<td>41</td>
<td>6.0</td>
<td>3.3</td>
<td>0.13</td>
<td>0.086</td>
<td></td>
</tr>
<tr>
<td>Primary amines</td>
<td>11</td>
<td>4.3</td>
<td>1.1</td>
<td>0.13</td>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>Secondary amines</td>
<td>8</td>
<td>4.3</td>
<td>2.9</td>
<td>0.13</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Tertiary amines</td>
<td>2</td>
<td>4.9</td>
<td>4.9</td>
<td>0.17</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Benzoic acid amines</td>
<td>6</td>
<td>8.7</td>
<td>4.7</td>
<td>0.11</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>Aromatic amines</td>
<td>11</td>
<td>8.5</td>
<td>6.4</td>
<td>0.16</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Ketone amines</td>
<td>2</td>
<td>1.2</td>
<td>-1.2</td>
<td>0.031</td>
<td>-0.031</td>
<td></td>
</tr>
<tr>
<td>Trihydroxy amines</td>
<td>1</td>
<td>7.2</td>
<td>-7.2</td>
<td>0.072</td>
<td>-0.072</td>
<td></td>
</tr>
<tr>
<td>Aromatics</td>
<td>84</td>
<td>10.3</td>
<td>6.5</td>
<td>0.16</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Nonoxygenated aromatics</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>0.22</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Hydroxy aromatics</td>
<td>8</td>
<td>5.1</td>
<td>-0.36</td>
<td>0.071</td>
<td>0.0053</td>
<td></td>
</tr>
<tr>
<td>Hydroxy alken e aromatics</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>0.18</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Phenols</td>
<td>20</td>
<td>7.2</td>
<td>6.5</td>
<td>0.12</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Aldehydes aromatics</td>
<td>6</td>
<td>13</td>
<td>-13</td>
<td>0.18</td>
<td>-0.18</td>
<td></td>
</tr>
<tr>
<td>Ketone aromatics</td>
<td>11</td>
<td>3.9</td>
<td>-0.33</td>
<td>0.066</td>
<td>0.0016</td>
<td></td>
</tr>
<tr>
<td>Carbonyl phenol aromatics</td>
<td>3</td>
<td>8.2</td>
<td>-8.2</td>
<td>0.12</td>
<td>-0.12</td>
<td></td>
</tr>
<tr>
<td>Benzoic acids</td>
<td>26</td>
<td>18</td>
<td>18</td>
<td>0.29</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Carboxylic acid aromatics</td>
<td>5</td>
<td>2.5</td>
<td>2.0</td>
<td>0.034</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>Carboxylic acid alken e aromatics</td>
<td>1</td>
<td>6.3</td>
<td>6.3</td>
<td>0.085</td>
<td>0.085</td>
<td></td>
</tr>
<tr>
<td>Esters</td>
<td>42</td>
<td>8.0</td>
<td>5.4</td>
<td>0.19</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Monoesters</td>
<td>23</td>
<td>6.9</td>
<td>5.8</td>
<td>0.15</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Diesters</td>
<td>11</td>
<td>7.3</td>
<td>1.3</td>
<td>0.14</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>Cyclic esters</td>
<td>6</td>
<td>14</td>
<td>14</td>
<td>0.48</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Ether esters</td>
<td>2</td>
<td>4.9</td>
<td>-4.7</td>
<td>0.077</td>
<td>-0.072</td>
<td></td>
</tr>
</tbody>
</table>
Table 8. Continued.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>number of compounds</th>
<th>average absolute error</th>
<th>Average relative absolute error</th>
<th>average signed error</th>
<th>Average relative signed error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N_C</td>
<td>$\sigma_{\Delta H}$ (kJ mol$^{-1}$)</td>
<td>$\rho_{\Delta H}$</td>
<td>$\sigma_{\Delta H_{SIGN}}$ (kJ mol$^{-1}$)</td>
<td>$\rho_{\Delta H_{SIGN}}$</td>
</tr>
<tr>
<td>Ethers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monoethers</td>
<td>1</td>
<td>12.4</td>
<td>12.4</td>
<td>0.47</td>
<td>0.112</td>
</tr>
<tr>
<td>Diethers</td>
<td>7</td>
<td>5.1</td>
<td>5.1</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Alkene diethers</td>
<td>2</td>
<td>7.9</td>
<td>7.9</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Cyclic diethers</td>
<td>11</td>
<td>5.6</td>
<td>4.3</td>
<td>0.13</td>
<td>0.11</td>
</tr>
<tr>
<td>Hydroxy ethers</td>
<td>2</td>
<td>16</td>
<td>16</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>Trihydroxy cyclic ethers</td>
<td>1</td>
<td>21</td>
<td>–21</td>
<td>0.18</td>
<td>–0.18</td>
</tr>
<tr>
<td>Ether cyclic ethers</td>
<td>2</td>
<td>9.4</td>
<td>–1.8</td>
<td>0.16</td>
<td>0.0043</td>
</tr>
<tr>
<td>Carboxylic acid aromatic ethers</td>
<td>6</td>
<td>4.8</td>
<td>4.0</td>
<td>0.057</td>
<td>0.049</td>
</tr>
<tr>
<td>Aromatic aldehyde ethers</td>
<td>1</td>
<td>6.0</td>
<td>–6.0</td>
<td>0.10</td>
<td>–0.10</td>
</tr>
<tr>
<td>Phenolic ethers</td>
<td>1</td>
<td>2.0</td>
<td>–2.0</td>
<td>0.028</td>
<td>–0.028</td>
</tr>
<tr>
<td>Cyclic ether and aromatic ethers</td>
<td>1</td>
<td>7.6</td>
<td>7.6</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Carboxylic acid aromatic diethers</td>
<td>2</td>
<td>15</td>
<td>15</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Nitrates</td>
<td>12</td>
<td>8.8</td>
<td>–2.3</td>
<td>0.14</td>
<td>–0.0011</td>
</tr>
<tr>
<td>Saturated nitrates</td>
<td>7</td>
<td>4.4</td>
<td>–0.3</td>
<td>0.12</td>
<td>0.010</td>
</tr>
<tr>
<td>Cyclic nitrates</td>
<td>2</td>
<td>6.9</td>
<td>6.9</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Nitro nitrates</td>
<td>1</td>
<td>1.2</td>
<td>1.2</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>Saturated trinitrates</td>
<td>1</td>
<td>0.87</td>
<td>–0.87</td>
<td>0.035</td>
<td>–0.035</td>
</tr>
<tr>
<td>Nitrate ethers</td>
<td>1</td>
<td>5.4</td>
<td>–5.4</td>
<td>0.10</td>
<td>–0.10</td>
</tr>
<tr>
<td>Nitros</td>
<td>39</td>
<td>9.9</td>
<td>4.6</td>
<td>0.15</td>
<td>0.080</td>
</tr>
<tr>
<td>Saturated nitros</td>
<td>2</td>
<td>7.4</td>
<td>3.1</td>
<td>0.17</td>
<td>0.092</td>
</tr>
<tr>
<td>Aromatic nitros</td>
<td>1</td>
<td>8.3</td>
<td>8.3</td>
<td>0.098</td>
<td>0.098</td>
</tr>
<tr>
<td>Hydroxy nitros</td>
<td>5</td>
<td>7.5</td>
<td>–0.5</td>
<td>0.11</td>
<td>0.015</td>
</tr>
<tr>
<td>Cyclic hydroxy nitros</td>
<td>1</td>
<td>24</td>
<td>–24</td>
<td>0.24</td>
<td>–0.24</td>
</tr>
<tr>
<td>Nitrophenols</td>
<td>7</td>
<td>7.2</td>
<td>–4.0</td>
<td>0.10</td>
<td>–0.045</td>
</tr>
<tr>
<td>Dinitrophenols</td>
<td>3</td>
<td>2.1</td>
<td>2.1</td>
<td>0.031</td>
<td>0.031</td>
</tr>
<tr>
<td>Nitrophenol ethers</td>
<td>1</td>
<td>17</td>
<td>17</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>Carbonyl nitrophenols</td>
<td>1</td>
<td>13</td>
<td>–13</td>
<td>0.19</td>
<td>–0.19</td>
</tr>
<tr>
<td>Carbonyl nitros</td>
<td>1</td>
<td>3.0</td>
<td>–3.0</td>
<td>0.057</td>
<td>–0.057</td>
</tr>
<tr>
<td>Nitro esters</td>
<td>5</td>
<td>20</td>
<td>20</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Nitrobenzoic acids</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Nitrophenol benzoic acids</td>
<td>3</td>
<td>6.8</td>
<td>6.8</td>
<td>0.076</td>
<td>0.076</td>
</tr>
<tr>
<td>Peroxides</td>
<td>12</td>
<td>9.4</td>
<td>1.8</td>
<td>0.25</td>
<td>0.14</td>
</tr>
<tr>
<td>Carbonylperoxynitrates</td>
<td>1</td>
<td>4</td>
<td>–4</td>
<td>0.10</td>
<td>–0.10</td>
</tr>
<tr>
<td>Hydroperoxides</td>
<td>4</td>
<td>11.4</td>
<td>–1.7</td>
<td>0.18</td>
<td>0.050</td>
</tr>
<tr>
<td>Peroxides</td>
<td>4</td>
<td>13.3</td>
<td>10.5</td>
<td>0.50</td>
<td>0.45</td>
</tr>
<tr>
<td>PeroxyAcids</td>
<td>3</td>
<td>3.4</td>
<td>–3.4</td>
<td>0.078</td>
<td>–0.078</td>
</tr>
</tbody>
</table>
Table 8. Continued.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Number of compounds N_C</th>
<th>Average absolute error $\sigma_{\Delta H}$ (kJ mol$^{-1}$)</th>
<th>Average relative absolute error $\rho_{\Delta H}$</th>
<th>Average signed error $\sigma_{\Delta H, \text{SIGN}}$ (kJ mol$^{-1}$)</th>
<th>Average relative signed error $\rho_{\Delta H, \text{SIGN}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonoxygenated</td>
<td>4</td>
<td>13</td>
<td>13</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>Cyclic nonoxygenated</td>
<td>5</td>
<td>7.4</td>
<td>7.4</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Hydroxys</td>
<td>10</td>
<td>9.0</td>
<td>9.0</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>Cyclic hydroxys</td>
<td>5</td>
<td>6.6</td>
<td>6.6</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Dihydroxys</td>
<td>12</td>
<td>3.8</td>
<td>1.7</td>
<td>0.056</td>
<td>0.029</td>
</tr>
<tr>
<td>Trihydroxys</td>
<td>1</td>
<td>0.90</td>
<td>0.90</td>
<td>0.011</td>
<td>0.011</td>
</tr>
<tr>
<td>Aldehydes</td>
<td>5</td>
<td>3.9</td>
<td>1.3</td>
<td>0.15</td>
<td>0.073</td>
</tr>
<tr>
<td>Cyclic aldehydes</td>
<td>2</td>
<td>33</td>
<td>−33</td>
<td>0.43</td>
<td>−0.43</td>
</tr>
<tr>
<td>Ketones</td>
<td>5</td>
<td>3.7</td>
<td>1.1</td>
<td>0.082</td>
<td>0.031</td>
</tr>
<tr>
<td>Cyclic ketones</td>
<td>3</td>
<td>4.8</td>
<td>0.042</td>
<td>0.15</td>
<td>0.038</td>
</tr>
<tr>
<td>Hydroxy ketones</td>
<td>4</td>
<td>13</td>
<td>13</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>Carboxylic acids</td>
<td>13</td>
<td>7.0</td>
<td>3.9</td>
<td>0.12</td>
<td>0.088</td>
</tr>
<tr>
<td>Cyclic carboxylic acids</td>
<td>3</td>
<td>1.1</td>
<td>0.20</td>
<td>0.018</td>
<td>0.0032</td>
</tr>
<tr>
<td>Hydroxy carboxylic acids</td>
<td>1</td>
<td>25</td>
<td>−25</td>
<td>0.25</td>
<td>−0.25</td>
</tr>
<tr>
<td>Carbonyl carboxylic acids</td>
<td>2</td>
<td>10.1</td>
<td>−4.3</td>
<td>0.15</td>
<td>−0.034</td>
</tr>
<tr>
<td>Dicarboxylic acids</td>
<td>7</td>
<td>10.1</td>
<td>−6.5</td>
<td>0.09</td>
<td>−0.051</td>
</tr>
</tbody>
</table>
Table 9. Numbers of compounds with $d\Delta H_{\text{vap,i}}/dT < 0$ at $T=333.15$.

<table>
<thead>
<tr>
<th>Class</th>
<th>total</th>
<th>$d\Delta H_{\text{vap,i}}/dT < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Compounds</td>
<td>433</td>
<td>305</td>
</tr>
<tr>
<td>Alkenes</td>
<td>64</td>
<td>44</td>
</tr>
<tr>
<td>Nonoxygenated alkenes</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hydroxy alkenes</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>Cyclic hydroxyl alkenes</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Dihydroxy alkenes</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Aldehyde alkenes</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Ketone alkenes</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Cyclic ketone alkenes</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cyclic hydroxyl ketone alkenes</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Carboxylic acid alkenes</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Cyclic carboxylic alkenes</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Amides</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>Primary amides</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Secondary amides</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Tertiary amides</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Cyclic amides</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Amines</td>
<td>41</td>
<td>38</td>
</tr>
<tr>
<td>Primary amines</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Secondary amines</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Tertiary amines</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Benzoic acid amines</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Aromatic amines</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Ketone amines</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Trihydroxy amines</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Aromatics</td>
<td>84</td>
<td>74</td>
</tr>
<tr>
<td>Nonoxygenated aromatics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Hydroxy aromatics</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Hydroxy alkene aromatics</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Phenols</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>Aldehydes aromatics</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Ketone aromatics</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Carboxyl phenol aromatics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Benzoic acids</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Carboxylic acid aromatics</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Carboxylic acid alkene aromatics</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Esters</td>
<td>42</td>
<td>41</td>
</tr>
<tr>
<td>Monoesters</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Diesters</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Cyclic esters</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Ether esters</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 9. Continued.

<table>
<thead>
<tr>
<th>Class</th>
<th>number of compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N_c</td>
</tr>
<tr>
<td></td>
<td>total $d\Delta H_{vap.}/dT < 0$</td>
</tr>
<tr>
<td>Ethers</td>
<td></td>
</tr>
<tr>
<td>Monoethers</td>
<td>1</td>
</tr>
<tr>
<td>Diethers</td>
<td>7</td>
</tr>
<tr>
<td>Alkene diethers</td>
<td>2</td>
</tr>
<tr>
<td>Cyclic diethers</td>
<td>11</td>
</tr>
<tr>
<td>Hydroxy ethers</td>
<td>2</td>
</tr>
<tr>
<td>Trihydroxy cyclic ethers</td>
<td>1</td>
</tr>
<tr>
<td>Ether cyclic ethers</td>
<td>2</td>
</tr>
<tr>
<td>Carboxylic acid aromatic ethers</td>
<td>6</td>
</tr>
<tr>
<td>Aromatic aldehyde ethers</td>
<td>1</td>
</tr>
<tr>
<td>Phenolic ethers</td>
<td>1</td>
</tr>
<tr>
<td>Cyclic ether and aromatic ethers</td>
<td>1</td>
</tr>
<tr>
<td>Carboxylic acid aromatic diethers</td>
<td>2</td>
</tr>
<tr>
<td>Nitrates</td>
<td>12</td>
</tr>
<tr>
<td>Saturated nitrates</td>
<td>7</td>
</tr>
<tr>
<td>Cyclic nitrates</td>
<td>2</td>
</tr>
<tr>
<td>Nitro trinitrates</td>
<td>1</td>
</tr>
<tr>
<td>Saturated trinitrates</td>
<td>1</td>
</tr>
<tr>
<td>Nitrate ethers</td>
<td>1</td>
</tr>
<tr>
<td>Nitros</td>
<td>39</td>
</tr>
<tr>
<td>Saturated nitros</td>
<td>2</td>
</tr>
<tr>
<td>Aromatic nitros</td>
<td>1</td>
</tr>
<tr>
<td>Hydroxy nitros</td>
<td>5</td>
</tr>
<tr>
<td>Cyclic hydroxy nitros</td>
<td>1</td>
</tr>
<tr>
<td>Nitrophenols</td>
<td>7</td>
</tr>
<tr>
<td>Dinitrophenols</td>
<td>3</td>
</tr>
<tr>
<td>Nitrophenol ethers</td>
<td>1</td>
</tr>
<tr>
<td>Carbonyl nitrophenols</td>
<td>1</td>
</tr>
<tr>
<td>Carbonyl nitros</td>
<td>1</td>
</tr>
<tr>
<td>Nitro esters</td>
<td>5</td>
</tr>
<tr>
<td>Nitrobenzoic acids</td>
<td>9</td>
</tr>
<tr>
<td>Nitrophenol benzoic acids</td>
<td>3</td>
</tr>
<tr>
<td>Peroxides</td>
<td>12</td>
</tr>
<tr>
<td>Carbonylperoxynitrates</td>
<td>1</td>
</tr>
<tr>
<td>Hydroperoxides</td>
<td>4</td>
</tr>
<tr>
<td>Peroxides</td>
<td>4</td>
</tr>
<tr>
<td>PeroxyAcids</td>
<td>3</td>
</tr>
</tbody>
</table>

11880
<table>
<thead>
<tr>
<th>Class</th>
<th>N<sub>C</sub></th>
<th>Total</th>
<th>dΔH<sub>vap</sub>,i/dT <0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated</td>
<td>82</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Nonoxygenated</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cyclic nonoxygenated</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Hydroxy</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cyclic hydroxy</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dihydroxy</td>
<td>12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trihydroxy</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aldehyde</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cyclic aldehyde</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ketone</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cyclic ketone</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Hydroxy ketone</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carboxylic acid</td>
<td>13</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Cyclic carboxylic acid</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Hydroxy carboxylic acid</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbonyl carboxylic acid</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dicarboxylic acid</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Table 9. Continued.
Fig. 1. Predicted vs. experimentally derived $p^0_{L,i}$ at $T=333.15$ K for compounds in the initial basis set.
Fig. 2. $\sigma_{FIT,i}$ at 333.15 K for the initial basis set compounds vs. experimentally derived $\log_{10} p_{L,i}^o(333.15)$.
Fig. 3. $\sigma_{SGN,i}$ at 333.15 K for the initial basis set compounds vs. experimentally derived $\log_{10} p_{L,i}^{o}(333.15)$.
Fig. 4. Predicted vs. experimentally derived $p_{L,i}^0$ at $T = 333.15$ K for compounds in the test set. Predicted values are based on the optimization using the initial basis set compounds.
Fig. 5. $\sigma_{FIT,i}$ at 333.15 K for the test set compounds vs. experimentally derived log$_{10} p_{L,i}^0$(333.15). Predicted $p_{L,i}^0$ values used in calculating the $\sigma_{FIT,i}$ are based on the optimization using the initial basis set compounds.
Fig. 6. $\sigma_{SGN,i}$ at 333.15 K for the test set compounds vs. experimentally derived $\log_{10} p_{L,i}^0(333.15)$. Predicted $p_{L,i}^0$ values used in calculating the $\sigma_{SGN,i}$ are based on the optimization using the initial basis set compounds.
Fig. 7. Predicted vs. experimentally derived $p_{L,i}^0$ at $T=333.15$ K for all compounds based on the final optimization using all of the compounds.
Fig. 8. $\sigma_{\text{FIT},i}$ at 333.15 K for all compounds vs. experimentally derived $\log_{10} p^0_{L,i} (333.15)$. Predicted $p^0_{L,i}$ values used in calculating the $\sigma_{\text{FIT},i}$ are based on the final optimization using all of the compounds.
Fig. 9. $\sigma_{\text{SGN},i}$ at 333.15 K for all compounds vs. experimentally derived $\log_{10} p_{\text{L},i}^o$ (333.15). Predicted $p_{\text{L},i}^o$ values used in calculating the $\sigma_{\text{SGN},i}$ are based on the final optimization using all of the compounds.
Fig. 10. σ_{FIT} as a function of T and compound class. Predicted $p_{L,i}^0$ values used in calculating the σ_{FIT} are based on the final optimization using all of the compounds.
Fig. 11. Experimental p_L^0 data for nitroethanol from the Beilstein PlusReactions Database BS070100PR (http://www.mdli.com/products/knowledge/crossfire_beilstein/) showing increase in uncertainty in data as temperature decreases. Solid line is fit to the data.
Fig. 12. The standard error σ_{FIT} at each T was calculated by sorting all compounds by increasing p_L^o, and then computing the average σ_{FIT} values and p_L^o values over decade ranges. E.g., at 333.15 K, each x-coordinate is the log$_{10}$ value of the p_L^o average for all compounds with 1×10^{-6} atm $\leq p_L^o < 1 \times 10^{-5}$ atm at that T, and the y-coordinate is the average of the corresponding $\sigma_{FIT,i}$ values.
Fig. 13. $\Delta H_{vap,i}$ at 333.15 K based on Eq. (10) and the final coefficients in Table 5, vs. $\Delta H_{vap,i}$ at 333.15 K based on Eq. (9) and the experimentally based $p_{L,i}^0 = f_i(T)$ functions.