Passive tracer patchiness and particle trajectory stability in incompressible two-dimensional flows - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nonlinear Processes in Geophysics Année : 2004

Passive tracer patchiness and particle trajectory stability in incompressible two-dimensional flows

Résumé

Particle motion is considered in incompressible two-dimensional flows consisting of a steady background gyre on which an unsteady wave-like perturbation is superimposed. A dynamical systems point of view that exploits the action-angle formalism is adopted. It is argued and demonstrated numerically that for a large class of problems one expects to observe a mixed phase space, i.e. the occurrence of "regular islands" in an otherwise "chaotic sea". This leads to patchiness in the evolution of passive tracer distributions. Also, it is argued and demonstrated numerically that particle trajectory stability is largely controlled by the background flow: trajectory instability, quantified by various measures of the "degree of chaos", increases on average with increasing , where is the angular frequency of the trajectory in the background flow and I is the action.
Fichier principal
Vignette du fichier
npg-11-67-2004.pdf (5.73 Mo) Télécharger le fichier
Origine : Accord explicite pour ce dépôt

Dates et versions

hal-00302292 , version 1 (18-06-2008)

Identifiants

  • HAL Id : hal-00302292 , version 1

Citer

F. J. Beron-Vera, M. J. Olascoaga, M. G. Brown. Passive tracer patchiness and particle trajectory stability in incompressible two-dimensional flows. Nonlinear Processes in Geophysics, 2004, 11 (1), pp.67-74. ⟨hal-00302292⟩

Collections

INSU EGU
342 Consultations
29 Téléchargements

Partager

Gmail Facebook X LinkedIn More