The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles
E. Dinar, T. F. Mentel, Y. Rudich

To cite this version:
E. Dinar, T. F. Mentel, Y. Rudich. The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles. Atmospheric Chemistry and Physics Discussions, European Geosciences Union, 2006, 6 (4), pp.7835-7867. <hal-00302064>
The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles

E. Dinar¹, T. F. Mentel², and Y. Rudich¹

¹Department of Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
²Institute for Tropospheric Chemistry, Research Center Jülich, Jülich, Germany

Received: 25 July 2006 – Accepted: 7 August 2006 – Published: 11 August 2006
Correspondence to: Y. Rudich (yinon.rudich@weizmann.ac.il)
Abstract

Atmospheric aerosols play significant roles in climatic related phenomena. The density and shape of particles dominates their fluid-dynamic parameters which in turn dictate their transport and lifecycle. Moreover, density and shape are also related to the particles optical properties, influencing their regional and global radiative effects. In the present study we have measured and compared the densities of humic like substances (HULIS) extracted from smoke and pollution aerosol particles to those of molecular weight-fractionated aquatic and terrestrial Humic Substances (HS). The density was measured by comparing the mobility and aerodynamic diameter of aerosol particles composed of these compounds. Characterization of chemical parameters such as molecular weight, aromaticity and elemental composition allow us to test how they affect the density of these important environmental macromolecules. It is found that atmospheric aging processes increase the density of HULIS due to the oxidation, while packing due to the aromatic moieties plays important role in determining the density of the aquatic HS substances.

1 Introduction

Tropospheric aerosols alter climate (Hansen et al., 2005; Kaufman et al., 2002, 2005; Koren et al., 2005; Lohmann et al., 2006; Pöschl, 2005; Ramanathan et al., 2001), visibility (Cheng and Tsai, 2000; Malm et al., 2003) and human health (Huang et al., 2003; Kappos et al., 2004; McDonnell et al., 2000). The key for understanding how atmospheric aerosols affect these issues depends on our knowledge of their physical and chemical properties. Aerosols properties such as size, shape, density, hygroscopic growth under subsaturation (SubS) conditions, activation to cloud condensation nuclei (CCN) under supersaturation (SS) conditions and optical properties are all ruled by the coupling between the chemical composition of the particle and the physical processes the particle undergoes.
It is now recognized that organic compounds comprise a substantial mass fraction of tropospheric aerosols, up to 90% in some cases (Jacobson et al., 2000; Kanakidou et al., 2005; Novakov and Penner, 1993). The organic fraction is composed of hundreds to thousands of individual species (Saxena and Hildemann, 1996), many of them contributing only a small fraction towards the overall particle mass. The organic fraction is often classified on the basis of water solubility, with the water soluble organic carbon (WSOC) fraction making up the major portion of atmospheric organic matter (Facchini et al., 1999; Saxena and Hildemann, 1996; Zappoli et al., 1999). Between 20–70 wt% of the water soluble organic carbon (WSOC) fraction are high molecular weight (HMW) polycarboxylic acids (Graber and Rudich, 2006 and references therein); a heterogeneous mixture of structures containing aromatic, phenolic and acidic functional groups (Decesari et al., 2001; Diallo et al., 2003; Gysel et al., 2004; Kiss et al., 2002; Krivacsy et al., 2001; Mayol-Bracero et al., 2002; Varga et al., 2001). These heterogeneous structures bear a certain resemblance to humic substances (HS) from terrestrial and aquatic sources. Therefore, these aerosol-associated compounds are referred to in the atmospheric chemistry literature as HUmic-LIke Substances (HULIS).

The chemical and physical properties of aquatic and terrestrial humic substances (HS) have been extensively studied due to their important role in affecting soil properties and their presence in water bodies. However, to the best of our knowledge, measurements of their bulk densities are scarce and were mostly performed in solution, hence they are affected by pH and ionic content. As far as we know the bulk density for both terrestrial and aquatic HS has never been measured directly. Since these species are inhomogeneous mixtures, and often are not separated from other soil components and since they are assumed to be dissolved in the water, the literature usually refers to their partial specific volume (Benedetti et al., 1996; Jones et al., 1995; Reid et al., 1990). In the last decade, the interest of atmospheric sciences in these substances has expanded due to the resemblance of atmospheric HULIS to HS in chemical nature and physical properties (Gelencser et al., 2000; Hoffer et al., 2004; Kiss et al., 2002).
The chemical properties of both terrestrial and aquatic HS and atmospheric HULIS have been investigated during the last decade. A few experimental and modeling studies have tried to connect chemical characterization to physical atmospheric properties such as: 1) CCN activity (Dinar et al., 2006b; Svenningsson et al., 2005), 2) hygroscopicity (Badger et al., 2006; Brooks et al., 2004; Chan and Chan, 2003; Dinar et al., 2006a; Gysel et al., 2004; Svenningsson et al., 2005) and 3) optical properties (Hoffer et al., 2005; Schkolnik et al., 2006). Even though terrestrial and aquatic HS have long been studied and the importance of HULIS in atmospheric aerosol is recognized, as far as we know, no report of their density have been published.

Generally, the density of a particle is an important physical property, because it relates the aerodynamic diameter with the Stokes diameter, which equals the geometric diameter in case of a compact sphere. It relates the particle’s volume (which is typically calculated from sizing measurements) with the mass or with the number of moles of the substrate. Thus density of a particle dominates all its fluid-dynamic parameters which dictate its transport and lifecycle (such as: velocity, coagulation, distance of transport from source, dry deposition). Density of particles is related to: 1) the solute effect in the (mass based) Köhler equation for droplet activation, 2) the water content of particles, 3) particle optical properties (Tang and Munkelwitz, 1994), and finally 4) the density can be used as a tool to monitor chemical transformation in the particle (Katrib et al., 2005). Nevertheless, until recently very few studies report on aerosol densities, probably due to technical limitation in direct experimental measurements. Up to date, the density of a particle was deduced based on knowledge of its chemical composition (Hasan and Dzubay, 1983) or derived separately by measuring aerosol mass and aerosol volume (Hanel and Thudium, 1977; Pitz et al., 2003). In recent years, new methods have been applied for measuring particles’ effective density mostly by combining different aerosol measurements techniques (McMurry et al., 2002; Murphy et

---

The most recently used approach for measuring particles density is based on combined measurements of the electric mobility diameter ($d_b$) and the aerodynamic diameter ($d_a$), from which the particle effective density $\rho_{\text{eff}}$ can be derived (DeCarlo, 2004). The effective density can be related to particles’ bulk density under some assumptions about the particle average dynamic shape factor $\bar{\chi}$ (DeCarlo, 2004; Jayne et al., 2000; McMurry et al., 2002; Slowik, 2004; Zelenyuk et al., 2005; Zelenyuk and Imre, 2005), which is a measure of how spherical the particle is.

In the present study we report on the measured effective densities for HULIS isolated from atmospheric aerosols, for Fulvic Acid and for Humic Acid samples from aquatic and terrestrial sources. Since these samples have been chemically characterized and intensively studied for their sub-saturation hygroscopic growth (HG) (Dinar et al., 2006a) and CCN activity under supersaturation conditions (Dinar et al., 2006b), we aim here on correlating between measured density of the particles to their chemical and physical properties.

2 Experiment

2.1 HULIS samples

Atmospheric HULIS compounds were isolated from collected aerosol particles. Aerosols were sampled during an aerosol sampling campaign which started on the night of an extensive, nation-wide wood burning event and continued later into the summer with sampling of pollution particles. The collected samples were: 1) Fresh smoke particles (termed hereafter LBO-night) sampled throughout the night (26–27 May 2005) with average PM10 mass concentrations near the sampling location of 300–400 $\mu$g m$^{-3}$, 2) slightly aged wood burning smoke particles (termed hereafter LBO-day) which were sampled during daytime, following the nighttime fires (27 May 2005), with PM10 mass concentrations of 60–180 ($\mu$g m$^{-3}$) and, 3) Pollution particles (called hereafter 3WSFA) which were collected during daytime only over a three week period (26–30 June 2005).
July to 16 August 2005), with average PM10 mass concentration of about 25 µg m⁻³. The LBO-night sample is dominated by freshly emitted smoke particles, without photochemical processing. The LBO-day sample is dominated by smoke particles (as concluded from the high aerosol mass concentrations and the dark color of the collected particles), but could have undergone moderate processing via photochemical reactions and mixing with photochemical pollution. The 3WSFA sample contains the prevailing local photochemical pollution aerosol particles, and is assumed to represent aged particles. Operationally-defined fulvic acids (FA) were extracted from the filters and separated from the other particles’ components by an isolation procedure developed on the basis of the scheme used by the International Humic Substances Society (IHSS) for aquatic humic substances (http://www.ihss.gatech.edu), and adapted for airborne particulate matter collected on quartz fiber filters. Briefly, filters are subjected to consecutive water and water-base extractions; FA HULIS (by definition soluble at any pH) were separated from other water soluble and base-soluble aerosol organic and inorganic species by preferential absorption onto an XAD-8 resin, followed by elution in a basic solution. The eluant was cation-exchanged on an H⁺-saturated cation-exchange resin (AG MP-50, Bio-Rad Laboratories) to produce protonated acids, and then freeze-dried. At stages where oxidation can occur, an inert atmosphere (N₂) was applied. The freeze-dried samples are stored at room temperature in darkness under vacuum. 18 MOhm Mill-Q water was used for all solutions throughout the study. For detailed sampling and extraction procedures see Dinar et al. (2006b).

2.2 Humic Substances samples

Two Humic Substance (HS) reference samples were also used as model for atmospheric HULIS, Suwannee River Fulvic Acid (SRFA, IHSS code 1R101F) and Pahokee Peat Humic Acid (PPHA, PP soil, IHSS code 2BS103P, for extraction procedure see Dinar et al. (2006b), Swift (1996) and the protocol of the IHSS, http://www.ihss.gatech.edu/). The SRFA was chosen since several previous laboratory
studies referred to it as a representative of atmospheric HULIS (Abdul-Razzak and Ghan, 2004; Brooks et al., 2004; Chan and Chan, 2003; Fuzzi et al., 2001; Haiber et al., 2001; Kiss et al., 2005; Mircea et al., 2002; Nenes et al., 2002; Rissman et al., 2004; Samburova et al., 2005; Svenningsson et al., 2005). Both HS samples were de-ashed and cleaned from low molecular weight organic acids and inorganic species (Dinar et al., 2006b). This was verified by ion chromatographic analysis.

Both samples contain compounds with a distribution of molecular weights. To study how density depends on molecular parameters, the samples were coarsely divided according to effective size of molecules in solution using ultra filtration. Five size fractions of water-soluble material denoted F1, F2, F3, F4, and F5, from low to high MW respectively, were obtained for each sample (SRFA and PPHA).

2.3 Aerosol generation

All investigated aerosols were prepared by nebulizing aqueous solutions: 20–50 mg/L for ammonium sulfate (AS), ammonium bisulfate (ABS), glucose, and HS samples (bulk and fractions), and 10–20 mg/L for atmospheric HULIS samples. Monodisperse polystyrene latex spheres (PSL, Duke Scientific, density 1.05 g/cm$^3$) solutions were prepared by diluting the commercial stock. The solutions were atomized using a TSI constant output atomizer (TSI-3076) operating at 30 PSI ($\sim$3 Standard Liters per Minute (SLM)) with dry particle-free synthetic air (mixed liquid nitrogen and oxygen, Linde 6.0) generating a polydisperse distribution of droplets of mean diameter $\sim$0.3 $\mu$m.

2.4 System setup and the measurement principles

Aerosols’ effective density was measured based on the relationship between electric mobility and vacuum aerodynamic diameters ($d_b$ and $d_{va}$ respectively). The aerodynamic diameter $d_b$ for particles of arbitrary shape at any pressure is given by Hinds
where $d_{ve}$ is the particle volume equivalent diameter, $\rho_p$ and $\rho_0$ are particle and unit densities, $\chi$ is the dynamic shape factor, $C_c(d)$ is the Cunningham slip correction factor (DeCarlo, 2004; Jayne et al., 2000; Slowik, 2004; Zelenyuk et al., 2005). When the aerodynamic diameter is measured under vacuum, i.e. in the so called molecular regime, Eq. (1) can be simplified for spherical particles ($\chi=1$) to: (DeCarlo, 2004; Slowik, 2004; Zelenyuk et al., 2005)

$$\rho_p = \rho_0 \frac{d_{va}}{d_b}$$

(2)

For aspheric particles there is need to account for shape effects on $d_b$ and $d_{va}$. When $\chi>1$, $d_b$ increases (since the drag forces of the drift in the electrical field increase with asphericity), and $d_{va}$ decreases (since with increasing irregularity the effective density decreases due to the internal voids). This behavior makes the ratio $d_{va}/d_b$ very sensitive to changes in particles’ $\chi$. If $\chi$ is unknown, it is still possible to define an effective density, $\rho_{eff}$, (Jimenez et al., 2003) where $\rho_0$ is the standard density (1 g cm$^{-3}$):

$$\rho_{eff} = \rho_0 \frac{d_b}{d_{va}}$$

(3)

Detailed discussion of the relations between particles density, morphology and their effect upon electromobility and aerodynamic diameters is discussed by DeCarlo et al. (2004), Zelenyuk et al. (2005), Slowik et al. (2004), Katrib et al. (2005), McMurry et al. (2002), and Park et al. (2003, 2004).

The experimental apparatus is shown in Fig. 1. A humid polydisperse droplet flow is produced by nebulizing aqueous solutions. In previous experiments we identified the need to let the particles equilibrate for a few minutes in a buffer volume after nebulizing.
and before drying (Dinar et al., 2006a, b). The conditioning step affected the particles diameter of activation under supersaturated conditions, and avoided compaction of the particles upon drying in dehydration experiments at sub-saturated conditions (i.e. reaching growth factors less than one) (Dinar et al., 2006a). Therefore we employed conditioning also in the present experiments; the fresh flow of droplets reached equilibrium with the surrounding environment in a 10-Liter conditioning bulb before entering a silica gel diffusion drier. The resulting dry polydisperse aerosol flow (relative humidity (RH) <3%) was directed to a $^{85}$Kr neutralizer, and then size selected by a differential mobility analyzer (DMA, TSI Inc., Model 3071). This yields a narrow monodisperse size distribution with a known electromobility diameter $d_b$. Particles ranging between $d_b$ of 85–150 nm were selected by the DMA, which was operated with 3 SLM dry sheath flow of RH <3%. Upon exiting the DMA, the dry monodisperse aerosol flow of 0.38 SLM was split, 0.3 SLM was directed to a second DMA operating as a scanning mobility particle sizer (SMPS, TSI Inc. 3071) in conjugation with a condensation particle counter (CPC, TSI Inc., Model 3022A), and 0.08 SLM were directed to an aerosol mass spectrometer AMS (Aerodyne Research Inc.) (Jayne et al., 2000). The SMPS determined $d_b$ of the selected particles, while simultaneously the $d_{va}$ of the particles was determined in particle time of flight (TOF) mode by the AMS.

3 Results and discussion

3.1 DMA and AMS calibration and system setup validation

The first DMA and the SMPS DMA were calibrated for measuring mobility diameters ranging from 50 to 199 nm using a set of certified polystyrene latex (PSL) spheres (Duke Scientific; 50, 81, 102, 152, 199 nm). By careful control of the flows and relative humidity, the aerosol size mode was 100% reproducible. It is noted however that the DMA transfer function has a systematic error of ±3% from the mean diameter.

The AMS alternated between acquiring mass spectra (MS) and the time of flight
(TOF) mode (Jayne et al., 2000). In the MS-mode the mass range 10–300 amu was scanned over the entire narrow particle population, while in the TOF mode the size-dependent velocity distribution of the particles after expansion into the vacuum was determined by detecting a few specific masses. Using the MS-mode, the composition of the non-refractory fraction of the particles was measured and a few selected mass peaks that represent the material studied were selected. Then, the quadrupole mass spectrometer (QMS) was tuned to these molecular peaks and the time of flight between a chopper and MS-detector was measured. The conversion of TOF to aerodynamic diameter employs an empirical calibration curve (Jayne et al., 2000; Jimenez et al., 2003). Calibrated polystyrene latex spheres of 81, 102, 152 and 199 nm were used for generating a calibration curve every day. The calibration curves were verified using ammonium sulfate (AS), ammonium bisulfate (ABS) and glucose particles which have known bulk densities. Table 1 summarizes the measured densities and $\chi$ for 60–230 nm AS, ABS and glucose particles. The derived densities agree well with literature values hence confirming the calibration procedure.

3.2 Verification with ammonium sulfate and effects of aerosol generation

Using transmission electron microscopy (TEM) (Dick et al., 1998; Li et al., 2003; Perry et al., 1978), multi-angle light scattering (Dick et al., 1998; Perry et al., 1978) and by measuring particle beam divergence (Huffman et al., 2005) it was shown that by spraying and drying AS solutions, mildly aspherical particles with some significant variability form. Huffman et al. (2005) noticed that the lift shape factor of such AS particles increases with particle size ranging from 110 to 320 nm. The decrease in $\rho_{\text{eff}}$ (caused by an increase of $\chi$) with increasing particle size have recently been demonstrated also by Zelenyuk et al. (2006) for AS particles with 160–500 nm mobility diameter. Figure 2 presents the change in $\chi$ as a function of particle size for AS particles ranging from 65 to 230 nm (mobility diameter) as observed in this study. In the size range 60 nm to 120 nm, our data scatter ±2% around the literature value. For sizes >160 nm, our results show excellent agreement with Zelenyuk et al. (2005).
In previous experiments (Dinar et al., 2006a, b) we recognized the importance of conditioning the AS, SRFA and HULIS aerosol prior to drying (Sect. 3.3). In the present study it was found that conditioning had the same effect on AS, HULIS and SRFA particles, but a different effect on ABS particles. In the TOF mode of the AMS, single and multiple charged particles of the same electromobility class are separated according to their different mass. Unconditioned AS particles yield a complex, multi peak size spectrum, they exhibit wide peaks with shoulders and a shift to shorter flight times compared to conditioned AS particles (Fig. 3). This behavior was eliminated by conditioning, yielding narrower and more stable size distributions. This indicates changes in particle morphology as discussed also in Zelenyuk et al. (2005). For ABS, conditioning resulted in different relative intensities of the single and multiple charged particles (Fig. 4). This can be attributed to high hygroscopicity of ABS, which retained residual water even at low relative humidities <3% (Tang and Munkelwitz, 1994). This is corroborated by the fact that densities obtained from particle measurements are slightly lower ($\rho = 1.74 \text{ g/cm}^3$) than for crystalline ABS ($\rho = 1.79 \text{ g/cm}^3$).

The agreement of our effective densities with literature values (Sect. 4.1) and the sensitivity to second order effects of the conditioning step (Sect. 4.2) give us confidence that we are able to determine the densities of HS and atmospheric HULIS sample to better than 1.5%.

### 3.3 The density of SRFA bulk and fractions

In previous investigations we compared between molecular weight-fractionated SRFA samples and HULIS samples for their: 1) ability to act as CCN (Dinar et al., 2006b) and 2) subsaturation water uptake (Dinar et al., 2006a). In the present study we measured the particle density of particles of the same samples. It is inherently assumed here that the SRFA, PPHA and the atmospheric HULIS samples are spherical (i.e. the particle shape factor is assumed to be $\sim 1$). This assumption relies on a study by Hoffer et al. (2005) who showed SEM image of spherical HULIS dry particles produced in a
similar manner to this study (i.e.; they were extracted from biomass burning aerosols and were nebulized).

Table 2 summarizes the calculated densities, average molecular weight and aromaticity for all SRFA samples. We also measured the densities of two fractions (F2 and F5) of PPHA (Table 3).

Figure 5 presents the correlation between the measured SRFA fractions density values and the average molecular weight (A) and aromaticity (B). It can be seen that the density of the SRFA fractions increases with its average molecular weight (5A) and with the extent of aromaticity of the fraction (5B). Figure 6 shows correlation with the carbon to oxygen ratio (C/O) (A) and with acidity (B). Since intermolecular interactions are the basis for molecular arrangement and packing which determine functional properties of agglomerates of molecules and the morphology of solids, it is expected to find correlations between the particles’ chemo-physical properties and its density. Overall there is a tendency of the density to increase with increasing oxygen content and the oxygen to carbon ratio (Fig. 6a) and to decrease with increasing acidity (Fig. 6b). These observations together with previous results (Dinar et al., 2006a, b) are consistent with an overall behavior where the higher molecular weight fractions are less hygroscopic, more aromatic and better packed.

The trends in the correlations between density and these physical and chemical parameters are consistent with having less H-or more O-atoms with increasing MW. If we take acidity as a measure of the number of carboxylic groups, which can form H-bonds of some strength, and thus of overall H-bond importance, the increase of the density with decreasing acidity suggests that H-bonds are either not the major intermolecular interaction which affects the particles’ compaction trend or the H-bonds lead to looser structures owed to directional requirements of H-bonding. The second strongest intermolecular interactions may be attributed to the presences of aromatic moieties which are known to be weaker and less defined. These interactions have multiple points of intermolecular contact with variable geometries and may contain a vast range of different functional groups (Hunter et al., 2001.) Moreover, these interactions play a crucial
part in biomolecules and pure organics self-assembly (Azriel and Gazit, 2001; Hunter et al., 2001; Whitten et al., 1998). Harmate et al. (1993) who also studied the packing and density of complex organic molecules concluded that the high densities observed indicate the efficiency of the packing, which are dominated by edge-to-face stacking of aromatic moieties.

3.4 The density of HULIS

In addition to the SRFA samples, Fig. 5 also presents the correlation observed between the densities and the average molecular weight and the aromaticity of the three HULIS samples (see Table 5). This comparison supports our earlier conclusions (Dinar et al., 2006a, b) that SRFA and HULIS probably represent two different and distinct chemical populations. This distinction between SRFA and atmospheric HULIS is further demonstrated in Fig. 7 which shows the relation between the CCN dry diameter of activation at super-saturation 0.2, 0.52 and 1.03% to density for both SRFA and the HULIS samples extracted from ambient particles. Both samples show correlation between average molecular weight and aromaticity. However, while SRFA densities increase with the average molecular weight and aromatic percent, the HULIS samples have an opposite tendency showing a reduction in density with increasing average molecular weight and aromatic percentage. Unfortunately, due to the small amount of these samples we were not able to conduct elemental analysis. However, we postulate that as the samples age (mostly by oxidation) in the atmosphere, there is a reduction in the aromaticity and increase in the oxygen content. As a result, the role of aromaticity decreases and the change in the oxidation state increases the hygroscopicity and the density. A similar trend in increasing density with photochemical aging may explain the observation of Pitz et al. (2003) who also observed an increase in particles’ density from morning to the afternoon.

Only a few studies focused so far on determination of the density of ambient aerosol particles and its change due to aging in the atmosphere. All of them, though, estimated and measured the density of aerosol particles without detailed analysis of the chemical
composition of these aerosols (McMurry et al., 2002; Pitz et al., 2003). Some of the studies focused on soot which has a low effective density, due to its “fluffy” structure (McMurry et al., 2002; Slowik, 2004). As far as we know our results about the density of HULIS from biomass burning and pollution aerosols can be compared only to a recent study by Hoffer et al. (2005) who measured the density properties of HULIS extracts from day time and nighttime biomass burning smoke particles from Brazil. Hoffer et al. (2005) found that HULIS extracted from the nighttime smoke particles have a lower density than the daytime HULIS extracts, 1.50±0.02 and 1.57±0.03, respectively (Hoffer et al., 2005). The density of HULIS extracted from the pollution practices in this study (1.57±0.03 g cm\(^{-3}\)) is close to the mean apparent particle density measured for urban aerosols in Germany by Pitz et al. (2003) (1.6±0.5 g cm\(^{-3}\)).

Comparison between the fresh wood burning HULIS extracts (LBO-Night) with the nighttime sample studied by Hoffer et al. (2005) indicate that both night samples have similar density, 1.50±0.02 g cm\(^{-3}\). These values are close to the density of cellulose (1.5 g cm\(^{-3}\)) and its derivatives, starch (1.53 g cm\(^{-3}\), CRC handbook), sugar (1.59 g cm\(^{-3}\), CRC handbook) levoglucosan (1.6 g cm\(^{-3}\), ALDRICH) and other carbohydrates such as glucose (which was measured by us to be 1.53±0.02 g cm\(^{-3}\)), possibly implying the presences of carbohydrates-like components in the LBO-Night HULIS extract. The HULIS extracted from the daytime smoke samples have a higher density. The day sample from Brazil increased to a density of 1.57±0.03 g cm\(^{-3}\). The LBO-day sample in this study had a higher density, 1.72±0.03 g cm\(^{-3}\). The difference may be related to mixing between fresh and photochemically aged smoke in Brazil, while our collected particles during day time did not contain fresh smoke particles. As far as we know direct measurements of the density of daily average air pollution HULIS have not been conducted.

Acknowledgements. This work was supported by a grant from the Israel Academy of Sciences (grant #162/05) and the Minerva Foundation. E. Dinar acknowledges a grant from the ESF-program INTROP.
References


Dick, W. D., Ziemann, P. J., Huang, P. F., and McMurry, P. H.: Optical shape fraction measurements of submicrometre laboratory and atmospheric aerosols, Measure. Sci. Tech., 9,


Harmata, M. and Barnes, C. L.: 5-alpha,8-beta,14-alpha,17-alpha,5,6,8,9,14,15,17,18-octahydro-5,17/8,14-diepoxy-dibenzo[e,e']benzo[1,2-a-4,5-a']dicyclocloctene, Acta Crystallogr.

7850


Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van...


Table 1. Densities measured for the validation compounds. The ratio between the bulk densities to the effective densities is the correction factor, also known as the Dynamic Shape Factor, $\chi$.

<table>
<thead>
<tr>
<th></th>
<th>Effective density (g/cm$^{-3}$)</th>
<th>shape/correction factor $\chi$</th>
<th>Bulk density (g/cm$^{-3}$)</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium sulfate (AS)</td>
<td>1.75±0.03</td>
<td>1.01±0.02</td>
<td>1.77</td>
<td>Depends on particle size Zelenyuk et al. (2005)</td>
</tr>
<tr>
<td>Ammonium bisulfate (ABS)</td>
<td>1.74±0.02</td>
<td>1.03±0.01</td>
<td>1.79</td>
<td>1.74 Tang et al. (1994)</td>
</tr>
<tr>
<td>Glucose</td>
<td>1.53±0.02</td>
<td>1.00±0.02</td>
<td>1.54</td>
<td>1.56 CRC handbook 1.54 MSDS</td>
</tr>
</tbody>
</table>
Table 2. Summary of the measured densities for SRFA fractions and bulk sample. Both average number molecular weight ($M_N$) and aromaticity are estimated based on UV correlation see Dinar et al. (2006b).

<table>
<thead>
<tr>
<th>SRFA samples</th>
<th>$M_N$</th>
<th>Aromaticity (%)</th>
<th>Density (g cm$^{-3}$)</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk</td>
<td>570</td>
<td>20</td>
<td>1.47±0.02</td>
<td>~ 1.5 (IHSS)</td>
</tr>
<tr>
<td>F1</td>
<td>450</td>
<td>12</td>
<td>1.39±0.02</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>520</td>
<td>16</td>
<td>1.42±0.01</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>620</td>
<td>23</td>
<td>1.49±0.02</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>720</td>
<td>30</td>
<td>1.52±0.01</td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td>740</td>
<td>32</td>
<td>1.51±0.01</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Summary of the measured densities for PPHA fractions and bulk. Average molecular weight and aromaticity of these samples were not determined since the UV correlation used are based and suited only for FA samples (Dinar et al., 2006b).

<table>
<thead>
<tr>
<th>PPHA samples</th>
<th>Density (g cm(^{-3}))</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk</td>
<td>1.52±0.02</td>
<td>Estimated as ~1.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Benedetti et al., 1996)</td>
</tr>
<tr>
<td>F2</td>
<td>1.56±0.01</td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td>1.58±0.03</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. The organic components elemental analysis of all SRFA samples (Dinar et al., 2006b).

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>C</th>
<th>H</th>
<th>S</th>
<th>O</th>
<th>C/O</th>
<th>H/C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>0.54±0.01</td>
<td>54.78±0.03</td>
<td>5.24±0.05</td>
<td>n/a</td>
<td>39.44</td>
<td>1.85</td>
<td>1.15</td>
</tr>
<tr>
<td>F2</td>
<td>0.63±0.003</td>
<td>50.86±0.11</td>
<td>4.71±0.06</td>
<td>0.44±0.17</td>
<td>43.37</td>
<td>1.56</td>
<td>1.11</td>
</tr>
<tr>
<td>F3</td>
<td>0.67±0.006</td>
<td>50.63±0.35</td>
<td>4.33±0.11</td>
<td>0.31±0.11</td>
<td>44.07</td>
<td>1.53</td>
<td>1.03</td>
</tr>
<tr>
<td>F4</td>
<td>0.77±0.05</td>
<td>52.17±0.71</td>
<td>4.56±0.19</td>
<td>0.31±0.18</td>
<td>42.20</td>
<td>1.64</td>
<td>1.05</td>
</tr>
<tr>
<td>F5</td>
<td>0.73±0.01</td>
<td>49.71±0.34</td>
<td>4.01±0.13</td>
<td>0.40±0.24</td>
<td>45.16</td>
<td>1.47</td>
<td>0.97</td>
</tr>
<tr>
<td>Bulk</td>
<td>0.68±0.02</td>
<td>53.36±1.03</td>
<td>4.88±0.05</td>
<td>0.26±0.12</td>
<td>40.82</td>
<td>1.75</td>
<td>1.10</td>
</tr>
</tbody>
</table>
**Table 5.** Summary of the measured densities for FA-HULIS samples. Both average molecular weight and aromaticity are estimated based on UV correlation as the SRFA samples (Dinar et al., 2006b).

<table>
<thead>
<tr>
<th>HULIS samples</th>
<th>Mn</th>
<th>Density (g cm(^{-3}))</th>
<th>Aromaticity (%)</th>
<th>Literature value (Hoffer et al., 2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBO-Night</td>
<td>610</td>
<td>1.50±0.01</td>
<td>20</td>
<td>1.50±0.02</td>
</tr>
<tr>
<td>LBO-Day</td>
<td>410</td>
<td>1.72 ± 0.03</td>
<td>10</td>
<td>1.57±0.03</td>
</tr>
<tr>
<td>3WKS</td>
<td>500</td>
<td>1.57±0.03</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. A schematic illustration presenting the system setup used for density measurements. The top box presents the aerosol generation part from solution to a dry and charged poly-disperse aerosol flow. The flow is then introduced to the size selection DMA resulting with a narrow size-selected aerosol flow which is split to the AMS (measures the vacuum aerodynamic diameter) and the SMPS (measures the electromobility diameter).
Fig. 2. The effect of particles shape on the AMS TOF values can be seen by the above figure emphasizing the relation between AS particles effective density and its dynamic shape factor $\chi$, as a function of particle mobility diameter (tested for particles ranging from 65–230 nm). The lines are to guide the eye.
Fig. 3. The effect of conditioning on different size selected (84–171 nm) AS particles vacuum aerodynamic diameter spectrum. The black line represents the vacuum aerodynamic diameter of size selected AS particles following conditioning. The red line shows the spectrum without conditioning. Multiply charged particles are indicated by +.
Fig. 4. The effect of conditioning after atomizing on different size selected (V, 84–129 nm) ABS particles vacuum aerodynamic diameter spectrum. The black full line presents the vacuum aerodynamic diameter of size selected ABS particles which have undergone conditioning followed atomizing. For each size selected figure the red dashed line shows the spectrum without conditioning. Multiply charged particles are indicated by +.
Fig. 5. Correlation between measured density values of SRFA fraction (i), SRFA bulk (i), and HULIS samples (i) to average molecular weight (a) and aromaticity (b). The lines are freely drawn to guide the eye.
Fig. 6. Correlation between the measured density of SRFA samples to their C/O ratio (a) and their number of acidic groups (b). The lines are freely drawn to guide the eye.
Fig. 7. Correlation between the measured densities of SRFA fractions (A), SRFA bulk (B), and HULIS samples (C) to average CCN dry diameter of activation at supersaturation 0.2% (a), 0.52% (b), and 1.03% (c) (note the different X-scale).