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Abstract. Based on quasilinear theory, a closure scheme
for anisotropic mulli-component fluid eqnations is de-
veloped for the wave-particle interactions of ions with
electromagnetic Alfvén and ion-cyclotron waves prop-
agating along the mean magnetic field. Acceleration
and heating rates are calculated. They may be used
in the multi-fluid momentum and energy equations as
anomalous transport terms. The corresponding evolu-
tlon equation for the average wave spectrum is estab-
lished, and the effective growih/damping rate for the
spectrum is calculated. (GGiven a simple power-law spec-
trum, an anomalous collision frequency can be derived
which depends on the slope and average intensity of the
spectrum, and on the gyrofrequency and the differential
motion {with respect Lo the wave frame) of the actual ion
species considered. The wave-particle interaction terms
attain simple forms resembling the oncs for collisional
friction and temperature anisotropy relaxation (duc to
pitch angle scattering) with collision rates that are pro-
portional Lo the gyrofrequency but diminished substan-
tially by the relative wave energy or the fluctuation level
with respect the background field. In addition, a set of
quasilinear diffusion equations is derived for the reduced
(with respect to the perpendicular velocity component)
velocity distribution functions (VDFs), as they occur in
the wave dispersion equation and the related dielectric
function for parallel propagation. These reduced VIDFs
allow one to describe adequately the most prominent ob-
served features, such as an lon beam and temperature
anisotropy, in association with the resonant interactions
of the particles with the waves on a kinetic level, yet
have the advantage of being oniy dependent upon the
parallel velocity component.

1 Introduction

It is well known that in the high-speed solar wind in in-
terplanetary space the heavy lons move faster and have

higher temperatures than the protons. For reviews of
these solar wind phenomena see, e.g., Marsch (1991),
concerning the early in situ measurements made by He-
lios, and von Steiger et al. (1995), with respect to the
recent observations of Ulysses. These two space mis-
sions explored the heliosphere in the ecliptic near the
Sun and out of the ecliptic. Obviously, the minor ion
species can be considered as test particles, which probe
the Alfvén waves and MHD turbulence in the wind and
are heated and accelerated by wave-particle interactions.
They are usnally strongest among the waves with fre-
quencies near the ion gyrofrequencies and those particles
moving at speeds that enable them to stay in resonance
with the wave electric field and to exchange thereby en-
crgy and momentum with the waves. If the relative
wave amplitudes are sufficiently small, which 1s the case
in the solar wind kinetic regime, then quasilincar theory
(QLT), e.g. Davidson (1972}, is adequate to describe
the wave-particle coupling processes and the evolution
of the particle distribution functions (VDFs), their de-
rived moments and the wave spectra.

QLT is quadratically nonlinear in the coupling terms
between the fluctuations of the velocity distribution fune-
tions and the clectromagnetic lields, bul linear in the
sense, that these two types of fluctuations enter linearly
in their product. Ilence the name QL'I" has been coined
for this weak kinetic turbulence theory, in which only
the reaction ol the zeroth-order VDDFs on the broad-
band wave spectrum is considered, while the wave-wave
interactions and higher-order wave-particle interactions
are neglected. The wave properties (such as dispersion
and growth) are evaluated from linear dispersion the-
ory with slowly time-varying VDFs. Possible nonlinear
cffects in the solar wind still need to be investigated.
Their potential impact has only recently been analyzed
by Daughton et al. (1998) in numerical hybrid simula-
tions of the electromagnetic proton-proton instability.

For the solar wind case, Hollweg (1974, 1978), Holl-
weg and Turner {1978), Revathy (1978), McKenzie et
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al. (1978}, Dusenbery and Hollweg (1981), McKen-
zie and Marsch (1982), Marsch et al. (1982a), and
Isenberg and Hollweg (1983) have calculated and mod-
elled the AHvén-wave related nonresonant and the ion-
cyclotron-wave assoclated resonant heating and acceler-
ation. These calculations require usually the full knowl-
edge of the detailed wave spectrum and thus involve
complicated integrals over the velocity distributions and
spectral densities, which were usually assumed to be
given by bi-Maxwellians and power-laws, respectively.
Isenberg and Hollweg (1982) also analysed this prob-
lem from the multi-ion-fluid point of view and general-
1zed the concept of wave-action conservation. McKenzie
et al.(1993) studied more recently the subtleties of the
wave dispersion and couplings in case of ion differential
streaming.

We derive here the basic and related formulae of quasi-
linear theory in a new way with the aim to obtain closure
of the multi-fluid equations with simple relaxation-time
forms of the heating and acceleration rates. We will
specify the quasilinear diffusion equation to the special
case of wave propagation along the mean field and then
develop a coupled set of diffusion equations for the two
relevant reduced velocity distribution functions to be de-
fined below. The heating and acceleration rates can be
expressed in terms of these functions and transport co-
efficients involving wave-vector integrals over the wave
power spectrum. These coeflicients can be cast into a
simple form for rescnant interactions, involving just the
spectrum at the resonant wave vector. The relevant
timne scale is proportional to the respective gyroperiod
of any ion species considered, but is modified by the av-
erage wave fluctuation level and turns out to be of the
order inferred from in situ solar wind measurements by
Marsch and Richter {1987).

The main purpose of this paper is to establish the
reduced diffusion equations and to develop a set of com-
paratively simple closure relations usable in anisotropic
multi-fluid equations, in order to describe the cyclotron-
resonant interactions of ions with Alfvén and ion-cycle-
tron or fast magnetosonic waves in the solar wind and
the Sun’s corona. Recent spectroscopic observalions of
the widths of Extreme Ultraviolet (EUV) emission lines
as obtained from measurements made on the Solar and
Heliospheric Observatory (SOHQ) indicate that coronal
heavy lous, coming in various icnization stages in the
corona, are rather hot (Seely et al., 1997; Kohl et al.
1997; Wilhelm et al., 1998), particularly in the polar
coronal holes where the electrons are cold, and seem
to show some ordering of their kinetic temperatures ac-
cording to the Jocal gyrofrequencies (Tu el al., 1998),
a result which hinis to wave-particle processes as being
responsible for the coronal heating.

Many years ago, Marsch et al. (1982a) and Isenberg
and Hollweg (1983} have modelled alpha-particle and
heavy-ion temperatures in the near-Sun solar wind al
distances beyond 10H, thereby employing the quasi-
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linear heating rates. Recently Hu et al. {1997), Li et
al. (1997) and Czechowski et al. (1998) have done
anew anisotropic multi-fluid calculations, yvet with ad-
hoc mass-proportional heating functions for the heavy
lons in the corona and wind. ‘This paper will provide
a more detailed physical picture of the wave heating
process and give simple algebraic expressions for the
hcating and acceleration rates, which may be employed
in the multi-fluid equations for future modelling pur-
poses. If the detailed features of the observed VDFs
are to be accounted for in kinetic models incorporating
the relevant wave-particle interactions {for a Coulomb-
collisional wind medel of the protons see Livi and Marsch,
1987), then the reduced or full diffusion equations are
certainly to be used.

2 Quasilinear theory

Quasilinear theory was developed more than twenty years
ago (see e.g. Davidson, 1972) and did not evolve any
further lately, because direct numerical simulations of
the Maxwell equations and the particles’ equations of
motion have become more fashionable and convenient.
This is true for homogeneous systems but much less so
for inhomogeneous systems, such as the solar corona and
wind, for which multi-fluid models are mainly in use, in
particular if multiple species are to be modelled. We
reiterate shortly the main equations of QLT. Usually,
the wave fields are decornposed in plane waves with fre-
quency wy and wave vector k, assumed to be directed
here parallel to the background field, By = Bge,. The
Fourier component of the magnetic field is 6Bx. The
spectral energy density of the magnetic field is given by
Bi = & | 6By |? and evolves according to

0 By =2 1
55k = i B (1)

which follows from the Fourier decomposition

§B(z,1) = f dhoByeitee o (2)

e}

where x is the coordinate along Bp, and & > 0 means
parallel and & < 0 anti-parallel propagation. The growth
rate, v, or damping rate if it 1s negative, logether with
the recal frequency, wy, give the complex frequency, zx =
wi + ik, whereby one has wy = —w_g, 9w = 474,
and thus z; = —z_g, and also 6]3; = §B_y, since the
magnetic field in equation (2} must be real. The mag-
netic fluctuation energy density can be normalized to
the background value such that 8, = B_f/kﬁr with By =
B_ by definition. Of course the distribution function
LV W)isreal,ie. fr = f;. Tt is often more adequate
to use the Doppler-shifted frequency, 2z, = zy — kU,
as measured in the species j {rame of reference moving
with its bulk speed U;, drifting along Bq. In this proper
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frame of species j, the velocities are obtained by replac-
ing the inertial frame coordinates as follows: V; — wy,

Vi = W — U; = w). A particle which moves in that

frame with Lhe resonance speed
i__z,i:l:ﬂj__zk—kUinj .

YT TR T k )

sees a stationary electric field and, thus being in cy-
clotron resonance, does very effectively exchange energy
and momentum with the wave. The diffusion cquation
describes the evolution of the velocity distribution func-
tion in the inertial frame of reference, in which the par-
ticles and waves are supposed to propagate, and is after
Davidson {1972) and Marsch et al. (1982a) given as

a 4 1 o .
atf (wi,wy,t) QjZZJ dkBy,
+’_ -0

o i — Zf_k + i U
"8 "\ F ) Wl dul
1 J 2 a ] .
(= wF(B)) [wL oy ( k w”> g R

Remember that the frequency zy might be complex for
strong damping or growth, and thus the imaginary part,
indicated by the symbol & in front of the brackets, refers
to the resomant denominator as well as to the com-
plex frequencies in the differential operators. Since in
a multi-component plasma each species countributes its
own wave mode (see e.g. Mann et al.,, 1997}, we may
tacitly assume that the sum in (4) includes a summa-
tion over the various dispersion branches, whereby the
random-phase approximation ensures that no construc-
tive interference occurs between different modes. We
omit the summation index here for the sake of lucidity.

3 Heating and acceleration rates

We take velocity moments of %fj as given in equation
(4). The zeroth moment is

J o i d
< ﬁfj >= QFA dwlwl ./_m dwnafj =0 (5)

Note that the distribu-
tion function vanishes at infinity, which implies that
fi(wy,+oo) =0 and f;(oc,w)) = 0. The first moment
gives the bulk acceleration:

8 R
at J =< w“a.t f.j‘ (0)

expressing conservation of n;.

The heating rates are defined by the second moments
and given as

g 20fi

atVJII i ot > (7)
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92 wl 0f;
Evjl =< 5 at> {8)

By sumuming up equations (6,7,8) we obtain the to-
tal rate of change of the thermal and kinetlic energy
for the particles of species j. This relation can be fur-
ther summed up over all particle spectes and, by using
the dispersion relation, [urther modified to obtain the
total energy conservation law within QLT for a multi-
component plasma (see Davidson, 1972). By taking the
limit (V,4/¢)? — 0 the total energy conservation law may
be written in the form:

3 oy dkaBz B
a5 Zng(\/“+ Vii+ U+ | dkegE 0 =0(9)

Note that this relation does not depend on the de-
tails of the VDF or the wave spectrum or the dispersion
characteristics, a property which shall be used later on
to impose energy conservation on the closure relations
to be derived. The mean thcrmal speed parallel and
perpendicutar to the field are defined by the second mo-
=< w} >; and V}J_ =< = >;j. Here the
brackets stand for the full velocity space integration and
the index j refers to the respective VDT,

ments, V32

4 Dispersion relation and dielectric function

The dispersion cquation for parallel propagating left {(—
sign) and right (4 sign) handed circularly-polarized elec-
tromagnetic waves reads, e.g, after Dum et al. (1980),
as follows:

(—) —1+Z(°::) £ (0 k) (10)

with the speed of light denoted by c¢. The dielectric
constant involves the resonance integral over the distri-
bution function and reads

(o] [o.0] p 2
&t 27rf0 dlULT.U_L/ dw||#wl/i

—co W T W
zp, O a
K ((UJ“ —;)Mw‘wla—w) fJ(wJ_,w“,t) (11)

To evaluate this function only the knowledge of two
reduced distribution functions (after Dum et al., 1980)
is required. They are discussed in the next section.
The distribution function f; is understood to be nor-
malized Lo the number density ny. The following defi-

nitions hold: The ion charge is €, the mass is my;, and

o 4mwe? R

the plasma frequency 1s wj = . The ion gyrofre-

Ty

quency, given by the deﬁmtion carrying the sign of the
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charge, reads as follows ; = %’lic” Note that the dis-
k)

persion equation (10} can also be rewritlen as

) () (W) e

where the fractional mass density of species j has been
used, which is defined as f; = njm;/ 3, nemy, and the
Alfven velocity based on the total mass density, Vi=
Bj/(47p), has been used to normalize the phase speed

properly.

5 Diffusion equation for the reduced distribu-
tion functions

The evaluation of the dispersion equation and the heat-
ing and acceleration rates do not involve the full two-
dimensional VDF but only the two reduced velocity dis-
tributions defined as follows:

Fj“(w”) = 271"/(; dw;_wlfj(lt}l, w“) (13)

Fii(wy)) = 2”/ duuwlzvaﬁ(m;wn) (14)

In terms of these VDF the diclectric function (11} can
be written as

oo ] Z}‘
e
&g = f ) — ((wll“ T ()
7

+ VA 36 JJ_{HJ”)) {(15)

Note that the first is a genuine particle VDTI' and the
second corresponds to the distribution of the perpen-
dicular plasma beta in dependence upon the parallel
speed. The temporal rates of change of the reduced
distribution functions are calculated by taking the cor-
responding moments of the diffusion equation (4) with
the result:

i} . o v}
EFJ-” = 271'[0 dwlurlafj(wl, w|, t) (16)

! 2

d °° a
En Jlﬁbr/o 'dwlwlﬁ Efj(wl,w“,t) (17)

By partial integration the evolution equation for the par-
allcl reduced VDF defined in equation (13) reads
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It depends also on the reduced perpendicular VIIF de-
fined in equation (14) and thus the corresponding diffu-
sion equation is also required. It is quoted below. [t is
meaningful to define the "transport” functions for diffu-
sion and acceleration, respectively deceleration, by the
wave-vector integrals:

VZ
i) = 95 Z] dkBkd{m} (19)

oo N 2k —w
A;’(w”) = Q?é;/_wdk&c%{(T“/T&:))} {20)

These dilfusion coefficients and acceleration rates, which
of course still depend on the parallel speed, |, through
the resonance denominator, describe in a transparent
way the diffusive broademng of the VDV and the acceler-
ation of a particle, which ceases if the particle co-moves
in the wave frame of reference with the wave having a
phase velocity z; /k. The net effect of these processes is
obtained by integration over the entire wave spectrum.
Note that the imaginary part of the denominator in-
volves nonresonant as well as resonant particles which
travel at the speed 'w;t(k) If v becomes vanishingly
small, then the imaginary part becomes a delta func-
tion and thus the resonance gets sharp. For the parallel
VDF we obtain a transport equation in the form

o ) 3
En j“(wﬂ) = a—wlTDj(w”Ja v, _;u_("w”)
d
T Buy (A (o) £ () (21)

For the perpendicular VDT' we obtain a transport equa-
tion in the form

d d a
e o) = Dy o) 5o ()

8wH
d
— QM(A;A(H"H)FJ'J-(MH))
t AI("U|1)5—1(ZHF,M(W||J — G EyCey) - (22)

which involves two more coefficients, having the dimen-
sion of an acceleration and temporal rate of change.
These are again functions of w) and read

} Lulk 4wy

A7 () Z/ dk By 3{ (u:“—m;t(k'))} (23)
_ /vy

Hi(uy) = 22] dkBk\s{ Fluy — W (7))
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In {22) we were forced to introduce another higher-order
reduced VDF given by

> wh
F.(f_)(w“) :271'[ dwlwl—%fj(wbw”) (25)
! 0 4V,

for which in principle another evolution equation must
be derived to obtain its time evolution. Apparently, we
are facing the difficult problem of closure for the rednced
VDFs. An infinite chain of evolution equations would re-
sult if no approximation would be made. Therefore, the
advantage of nsing 1-D VDF's instead of the 2-D original
one would be lost. To break the chain of higher-order
moments we thercfore make the Gaussian approxima-
tion

D () = 28; L F 1 (wy) (26)
which would be exact for a bi-Maxwellian. Of course,
this does not imply that ) 1+ is Gaussian. With the
relation (26) being inserted, the equations (21,22} now
form a closed sel of diffusion equations, which can be
solved given the transport coefficients, ie. the wave
spectrum, s known. The price to be payed for closure
is that the evolution equation for F;, is now an integro-
differential equation, since the plasma beta 13 defined
by the first parallel moment of Fj;. The dependence
on U; is not essential, since it can be removed by go-
ing into the plasma (center-of-mass) frame. The two
reduced VDFs allow one to describe still adequately the
most prominent and relevant observed features, such as
an ion beam and variable temperaturc anisotropy along
the field (Marsch et al., 1982b,c) in association with the
resonant interactions of the particles with the waves on
a kinetic level, yet they have thc advantage of heing
only dependent upon the parallel velocity component.
Their linked evolution equations (21,22) are less com-
plex than the original two-dimensional diffusion equa-
tion (4). This result is particularly advantageous if one
seeks numerical solutions. Note that by definition the
following normalizations hold:

f_m dw) Fy (wy) = 1 (27)

The definition of the bulk speed implies that the first
moment

/ dwywy Fy) () = 0 (28)

vanishes. The squared parallel thermal speed is calcu-
lated as the second moment of the reduced distribution

(s
/_w duywij Py (wy)) = Vi (29)

Because of the definition (14) the constraint on Iy,

o0 V_?
/ dwi Fj 1 (wy) = =55 = Bis (30)
—_00 A

is obtained. Higher-order moments, such as heat fluxes,
will not be considered here.
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6 Heating and acceleration rates as reduced ve-
locity moments

With the preparations of the previous sections, it 1s now
straightforward to evaluate the rates of change of the
thermal speeds (or lemperatures) and of the bulk speed
of species j by taking the first three parallel velocity
moments of equalions (21, 22}, with the results:

3 aFy 2,
@iU =< w”d— = o= —< DJ@ FiL >

+ < ATFy >H (31)
8 aFy g
pn V:,‘T‘ =< wﬁ Er o= —2< w”Dv1 3w Fi1 >y

+ 2 <u AT Fy) >iJ (32)
léj aF;) 9 é
Btv“”‘ =< Vi (7; > = Vi ((A T FiL >

- < H;Iy >||) (33)

Here the brackets with index || refer to an integration
over w) only. These rates are mathemalically entirely
equivalent to the rates based on the dielectric functions
as given in Marsch ct al. (1982a). However, note the
different cmphasis here, where the character of the ve-
locity moments is retained and the waves appear only
through the transport coefficients. In contrast, the for-
mer version stresses the waves and indicates that the
particle heating and acceleration is obtained by an inte-
gration over the wave spectrum, whereby the imaginary
parts of the diclectric functions represent a kind of wave-
energy absorption coeflicients and depend sensitively on
the shape of the VDVFs.

7 General transport coefficients

For non-dispersive or Alfvén waves only the diffusion
coefficient is essentially needed, and the other coefli-
clenls can be expressed by it. In the general dispersive
case with a finite 44, l.e. for dissipative and nonres-
onanl wave-particle interactions, we can also formally
write the transport coefliclents in a way which 1s physi-
cally transparcnt and gives immediately the Alfvén-wave
limit. For this purpose let us define a weighted average
over the full spectrum defined as follows:

o f(k)
Z/ By { Fwy — w:.t(k)) }

1
/ ‘”“B““{A(wn - wﬁk))}

< F(k) 3j= (34)
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which is defined for any complex-valued function f(k)

and normalized to unity for f(k} = 1. The general re-
laxation time can be defined as

1 21 = 3 <3 —_1— 5
‘r_?-(w“) N Qj?;./;m kB {k(w“ - w;t(k))} (3 )

With these definitions we can write the transport coef-
ficients as

V2
Dten) = Tj(;u) (#6)
AT (wy) = = (an) (’f‘i i}:i > Flwy + U.:‘)) (37)
1 i z |2
Hi(wy) = e V2 (« | ;:2| >
— Q(w“ -+ Uj) & % 2 +(w“ -+ Uj)z) (38)

These last threc equations have a particularly simple
form, in which everything is reduced to the associated
time scale (35). The case of resonant wave-particle inter-
actions corresponds to weak growth or small damping,
i.e. to the hunit v, — 0. The functions Dj,Aji and H;
all depend on the imaginary part

1 Tk
S = 39
{k‘(w“—w;-l:)} (wk:I:Qj—kw“——kUj)2+'yﬁ (39)
which can be re-written in the resonant limit by help of
the delta function properties. This limit reproduces the
well-known form,

w
Dj(w) = Vg
x Z/ dkBeb(wy = Q5 — kwy — kU;))  (40)
+ — —_— 00

of the diffusion coefficient. Similar expressions can be
derived for the other two transport coefficients.

8 Closurc relations for anisotropic multi-Auid
equations

8.1 Phase velocity in a multi-ion plasma

We derive the phase velocity of low-frequency waves
propagating along the magnetic field in a multi-ion plas-
ma. This velocity can also be obtained directly from
the multi-fluid equations (Isenberg and Hollweg, 1982,
1983). For a recent derivation within the context of
Alfvén-wave minor-ion interactions see the paper of Mc
Kenzie (1994). The warm plasma dispersion relation for
a multi-component plasma was also discussed in Dum
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et al. (1980). The dispersion relation for a multi-ion
plasma was recently discussed extensively by Mann et
al. (1997). We start below from our general dispersion
relation (10}. The large-resonant-speed expansions of
the normalized dielectric constants, in the Limit v — 0
in which z, — wj, holds, yield the result

ke 2 ~1 + Z Wy 2 UJL_
Wi - ; Wi w}c + Qj
2 2 \7.2

(Vi) — Vi) (1)
PAESTAE
This can be simplified by exploiting that the background
plasma bears no current and is quasineutral. It is con-
venient to define the center of mass velocity, U, =
Zj #;Uj, and the differential speed, AU; = U; — Uy,
with which each species moves relative to the center of
mass frame. Remember that j; = p;/p is the fractional
mass density of species j. The drift kinetic motion en-
ters in the same way as the parallel thermal speed, and
one obtains a quadratic equation for the phase speed:

ws \* kY Un
kVy kVa) Va

VI_VA 4 AU sy N2
. 1] il M ™ ¢
M

which has the solution

1/2

75} .
T Un VA=Y (V- VA AU Y ()
J

This is the phase velocity of an Alfvén wave in a differ-
entially drifting multi-ion plasma in the inertial frame.
The factor in the brackets is the generalized firchose
correction.

8.2 Transport coefficients for Alfvén waves

We are now in the position to write the transport coeffi-
cients for non-dispersive waves in a simple way. The
phasc velocity {43) can be inserted in the equations
(36,387,38). Since it does not depend on k the aver-
aging procedure < ... ; is trivial. The so simplified
transport coefficients for the resonant case are given as

Vi

T (w”)

Dj(wy) = (44)

for the diffusion coefficient, which also defines the reso-
nant relaxation time according to (40), and

1 [N

Af(wy) = & - Uj =) (15)

Tj(w”) &
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for the de/acceleration or wave-induced friction and fi-
nally

11
7w} Vi

Hj(wy) = — (25— U — wy)? (46)

k

for the specific heating. The phase speed, Vp’ =V, -
Un=%—Un in the center of mass frame, is assumed
to be much larger than the speed wj| in the species’ frame
of reference, which is consistent with (Vj) o [Va)t =
Bsi,1 < 1 and was also used in the expansion of the
dielectric function. Therefore, we may use 7;(0) to eval-
uate the transport coefficients in lowest order of 5y 1,
in which case the remaining parallel velocily integra-
tion can be casily performed. To discriminate this rate
against the more general w)-dependent rate, we intro-
duce the anomalous wave-particle collision frequency,

v; =1/m;(0).

8.3 Closure relations for the heating and acceleration
rates

The special rate equations for particles interacting with
Alfvén waves are obtained by insertion of (44, 45, 46) in
the general rate equations (31, 32, 33) and by performing
the corresponding moment integrations. We obtain

8

5 Ui =—vil = 13) (47)
18,

3 B vl =~ Vi) - Vi) (48)
8 .

Vi = = (VA = Vi = (0 - %) (19)

This result is intuitively very satisfying and compara-
tively simple, yet seems to retain essential physics of
the resonant interaction of lons with Alfvén waves in a
multicomponent plasma. Inspection of these equations
shows that the waves exert a friction force, which ceases
if the particles move at the phase speed of the wave, in
which case the electric field of the wave has been trans-
formed away such that no de/acceleration can occur.
The parallel heating rate looks like a simple pitch an-
gle scattering term acting on the temperature relaxation
time scale 7;. The perpendicular heating rate contains
a similar anisotropy-relaxation term but more impor-
tantly a wave heating term, which again goes to zero
if the particles move in the wave frame. Note that
the heating is always positive, whereas the tempera-
ture relaxation term has a sign which depends on the
anisotropy.

Trivially, the state where all particles have isotropic
pressures i the wave frame of reference is a stable equi-
librium. Ions surfing the waves are not heated any more
and kept by wave friction at the phase spced. It should
be stressed here, that such a state has been observed
with the protons and alpha particles in the solar wind
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{Marsch et al., 1982b,c) and with the heavier ions as
well (von Steiger et al.,, 1995). The isotropic heating

rate Is

148
QJ_pJQd (VJ”'}‘ZVJ_)—VJPJ(V U;)* (50)
This means that the acceleration a; = %Ui is related

to the volumetric heating Q; rate by the simple equa-
tion, a;(V, — U;) = @Q;/p;, a relation obtained before
by Isenberg and Hollweg (1982, 1983}, which holds for
any nondispersive wave and also follows directly from
equations {31,32,33). From the equations (48,49) it is
clear that the specific heating rate, -, is proportional
to the mass m; and thus favours the heavier ions. Given
all species have the same speed, and given a power-law
spectruim as below in equation (53) holds, then the ratio
of the accelerations for species ¢ and j is

(51)

which favours preferential acceleration of those minor
ions that have the largest Z;/A; ratio. The physics re-
sulting from this scaling behaviour and the consequences
for the interplanetary solar wind have been discussed
by Isenberg and Hollweg (1983). The consequences for
the nascent solar wind in coronal holes still need to be
worked out.

Finally, we need to address the time change of the
magnetic field fluctuation energy. Since we deal with
the limit v — 0 here, we have no evolution equation
for the wave spectrum. On the other hand we can ex-
ploit the overall energy conservation equation (9) and
the equations (47 — 49} to calculate the rate of change
in time of the integrated spectrum as

d < &8>
5 R = —va (V, = Uj)

~V5 2 pi EUJ (52)
i

Apparently, all species contribute here to the energy
change in the magnetic field fluctuations, and particles
which move faster than V, give energy to whereas those
moving slower take energy from the waves. Note that
the brackets used above mean an integration over that
region of k-space, i.e. < §B? >= jku dk JBk, in which
significant wave-particle intercatmns take place. With-
out information on the spectral shape, the last equation
cannot be evaluated any further. In the next section we
shall assume that the spectrum obeys a simple invariant
power law.
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8.4 Relaxalion lime for a power-law spectrum

In interplanetary space magnetic ficld fluctuations of-
ten obey simple power laws (for a review see, e.g., Tu
and Marsch, 1995) with a spectral index, «, which may
range observationally between 1 and 2. Let us assume,
therelore, that the spectrum cbeys

Be = B, (-jg"_) (53)

with some free reference wave vector ky. In the resonant
limit and for nondispersive waves, the fundamental time
scale, 7;, depends upon the combination

. o (1-2)
ko | =L

B, D(k())

Q.

J

kn(vp s UJ - w“)

B, | k;j| =

. (1-a)
= Bkoko

(54)

which also gives implicitly the definition of the resonance
wave-vector k;. We recall that By ko ~< (8B/15)? >,
and thus scales with the average relative fluctuation am-
plitude in the dissipation domain. lere kg i1s a free ref-
erence wave vector for k, for which the proton inertial
length, ko = ©,/V4. is a good choice. Then we cbtain

the time scale
(2—-a) (l—e)

(53)

i
2

_ Ve
Ve = Ui —w

=7}, Bko ko

()

Note that this time scale implies a preferential accel-
eration and heating of the various species according to
their charge/mass ratio, i.e. with (Z;/A;)1%=%), result-
ing from the gyrofrequency ratio. If @ = 1, then the rate
is directly proportional to Z;/A;, otherwise the spectral
slope is decisive for the differential effects, as discussed
in some length in the solar wind model of Isenberg and
Holiweg (1983), who derived similar scaling relations
and found in their wind models that slopes with o > 2
are required in order to accelerate and heat heavy ions
such as iron ions preferentially by non-dispersive waves.
The recent coronal hole chservations from SOHO {Tu et
al., 1998; Seely et al., 1997) seem to indicate a scaling of
£2; with o which corresponds to e« ranging between 1.5
and 2. This is similar to the spectral exponents mea-
sured in situ in the inner heliosphere (Tu and Marsch,
1995).

From equation {53) we can, by an integration between
some upper limit, kyy, and lower limit, &z, obtain the
relation

dB 5 1
<Cpy> = Bk (0o
i} - 0
kr —a N , ~
- (k—;)“ >) = By, kySa (56)

Marsch: Closure of multi-fluid and kinetic equations

For oo = 1, the factor S, on the right hand side is equal
to ln{ky /kr) and gives the number of dyades contained
in the spectrum. Otherwise, 5, is a sensitive function of
the slope «. Apparently, a £~ spectrum has the same
energy content in each logarithmic spectral segment. We
can now define the collision {requency associated with
the wave-particle interactions as follows:

(2—a) (x—1)

5B 1
v — Ter < (— = (57)

'R
2 2
B(J ) ” Sa

2

Vo Ui
Va

The strength of this anomalous collision frequency de-
pends on the relative drift and the charge-per-mass ratio
of the species j, and most importantly, on the average
wave amplitude. If the spectral slope is steeper than 1,
then v; approches zero, if it is flatter than 1, then vy
goes to infinity, while the particles’ bulk drift speed, U;,
along the mean field approaches the wave phase speed.
Of course, this singularity is somewhat artificial and will
be removed 1f a finite w) is considered, i.e. if finite 3;
effects are accounted for in the relaxation rate.

8.5 Closure relation for the average wave amplitude

We can now use the anomalous collision rate i#; on the
right-hand side of equation (52), in order to derive an
cffective damping or growth rate for the average wave
energy density. For this purpose it is convenicnt to re-
place B3/(87) by 1/2pV} in the last equation. After
somme algebra we obtain

(2—a)
— LY Ui = Ve |9
YB = ﬂ'Qp SQ VA - (pJ VA QP
Ve = Uj

(o-1)
) (58)

The wave energy develops according to the evolution
equation

% <{6B)* >=2vp < (6B)* > {59}

Va

which 1s constructed similarly to the original equation
(1) for the relative spectral density at a given k. This
last equation is the required closure relation. Note that
~p may have either sign. If all species lag behind the
waves then vp is negative and the wave energy is damped.
If they all run faster than the wave, then vg 1s positive,
leading to wave growth and particle deceleration. If all
particles surf the waves, then vg would formally be zero.
Yel, not all particles together can surf the waves, unless
the plasma [rame phase speed, V), is zero, which is triv-
ial. Note that yg differs from the rate v; by a factor
of the order of the average fluctuation level. If this is
small, the wave field changes much more rapidly than
the particles’ drift and thermal velocities and the wave
cnergy will be readily depleted, resulting in weak and
slow effects on the particles.
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9 Approximate rates for dispersive and dissipa-
tive waves

A refined closure scheme is obtained for dispersive and
dissipative waves if we make the assumption that the
w)j-dependence in the phase velocity average accord-
ing to (34) and the relaxation time (35) can be ne-
glecled. This approach gives further insight into the
wave-particle interactions. Let us define the average
speeds (that may be taken at ) = 0 or any other typi-
cal speed for the bulk of the species j, like their thermal
speed) as follows: V; =< 4% 3, W; =« 3% »;, and
AV? =< 20 5 _(« = 50)?, which is positive,
Note that the averaging 1mphcs taking the imaginary
part of the integrand, and thus the imaginary unit i can-

not be taken out in front of the brackets. With these
definitions we can write the rates as

4 U, = ! (TUs — Vs — W) {60)
ot Jj - T}(U) 3 . J

19, 1 2 2

ga0 = "oyl Vi) (61)

9.0 1 2
o' = 5w (4

According to these equations the waves will force the
particles to move at their average phase velocity, which
has a dissipative and dispersive component. The parallel
thermal heating rate remains unchanged. Let us assume
that the particles "surf” the waves while moving at their
average phase speed V; + W,;, and that they have an
isotropic temperature. The corresponding heating rate
can then, after some algebra, be written as:

Vi - AVE - (U; - vy)?) (62)

QV'_Z — 1
gt 9L 7 (0)

w
(<< (f— & “;ﬂ—" )2 3

+ <<i Te_ gk >>Jl >:>J) (63)

This result gives a clear intuitive picture of the remain-
ing isotropic heating of the particles, which is due to the
variances in the real and imaginary parts of the complex
phase speed. For non-dispersive and undamped waves
these variances vanish, otherwise they will remain finite
and the heating ceases only if the wave spectrum is dec-
imaled, in which case the rate 1/7;(0) tends to zero. As
a result, particles surfing at their mean phase speed on a
broad-band dispersive wave field will always be heated.

10 Summary and conclusions

We have described in this article the interactions be-
tween lons and electromagnetic waves propagating along
the mean magnetic field. A closure scheme has been es-
tablished for the heating and acceleration rates of the
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ions in association with cyclotron-resonant or nonreso-
nant interactions with the waves. In the low-3; situa-
tion, which prevails in the solar corona and near-Sun so-
lar wind, the general transport coefficients may be sim-
plified by taking the relaxation time and the averaged
phase velocity at the speed w) = 0. For non-dispersive
or Alfvén waves this treatment of the phase speed is
exact. Then the general iransfer rates can easily be
calculated without detailed knowledge of the particles’
VDFs, which results in the simple approximations given
in the previous sections, by which closure of the multi-
fluid equations is achieved. This set of equations is sup-
plemented by the evolution equation for the magnetic
fluctuation cnergy, averaged over the range of wave vec-
tors that are involved in the wave-particle interactions.
Assuming a power-law for the wave spectrum, one can
deline a single growth/damping rate for the wave energy
contained in the dissipation regime and a corresponding
evolution equation.

If the completc physics of weak turbulence theory
within the framework of QLT is to be retained, one needs
to caleuate the full dispersion properties of the waves,
which requires the knowledge of the two reduced VDFs
defined in equations (13, 14). These evolve according to
reduced diffusion equations (21, 22), which form a closed
set if the plausible Gaussian approximation (26) is made.
The reduced VDFs can be advanced in time solving the
diffusion equation, which requires the knowledge of the
transport coeflicients. They require the actual disper-
slon propertics, which in turn may change with the tem-
peratures and bulk drifts of all species. In principle, all
preparations to solve this closed loop of equations have
been made in this paper. In practice, we believe that the
simple closure schemes established here may provide a
reasonable [irst step to describe the wave-particle inter-
actions i a fluid-type picture, for which various levels
of physical sophistication have been discussed.

The equations derived here may have various applica-
tions in the solar wind and corona in particular, where
evidence (stated in the introduction) has been recently
found for the possible role of cyclotron-resonant inter-
actions between waves and protons or heavy ions. The
observed excessive broadenings of EUV emission lines
in the solar transition region and corona, especially in
the direction perpendicular to the magnetic field, may
indeed be indicalive of wave heating of the kind dis-
cussed here. Qur equations should be incorporated in
future multi-fiuid models of the solar corona and wind,
improving the kinds of models put forward recently by
Hu et al. (1997), Li et al. (1997), and Czechowski et
al. (1998), or years ago in the solar wind context by
Isenberg and Hollweg (1983).

In meodelling the behaviour of minor ions in the so-
lar wind, there has been a detailed debate (see e.g.
Marsch et al., 1982a; Isenberg and Hollweg, 1983) about
whether dispersive waves are able to produce sizable dif-
ferential speeds and what the influence of dispersion is in
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this process. The general transport coeflicients, if being
put into a relaxation time form, clearly illustrate that it
is the spectrum-averaged phase speed which determines
the individual differential ion speed and heating. This
specles-specific phase speed may indeed differ substan-
tially from the one obtained at k¥ = 0, which is given by
equation (43) that gives V)] m V4, since the fractional
mass densities of all heavy ions are rather small. A de-
talled study will be carried out in the future to evaluate
quantitatively the effects of wave dispersion and damp-
ing on the differential ion speed and temperature a given
species might attain in the solar corona and wind.
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