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Abstract. A general coupling coclticient for three wave
interactions in an ideal MHD plasma is presented. Using a
special stratified background atmosphere, an explicit
symmetric [orm of the coupling coefficient is derived.

1 Introduction

The dynamics of planetary atmospheres includes many
different nonlinear phenomena. Various model equations
governing the low-frequency fluid motion have been
derived. They can have solitary and vorticity like solutions
(Stenflo, 1986, 1987a). In particular, Stenflo and
Stepanyants have shown that strongly localized two-
dimensional solitary acoustic-gravity vortices can exist in
regions with strong temperature gradients (Stenflo,
1987b; Stepanyants, 1989, 1991; Gryanik and Dobritsyn,
1990), Similar structures can also exist in dusty gases
(Shukla and Shaikh, 1998). Furthermore, the transport
properties of turbulent media consisting of such solitary
structures are changed (Pavlenko and Stenflo, 1992).
Numerical studics result in ¢haotic solutions (Zhou et al.,
1997a, 1997b).

It is well-known that similar nonlinear structures occur
in magnetized media. Two-dimensional solitary Alfvén
wave dipolar vortices have thus been studicd {c.g. Shukla
and Stenflo, 1997). They can account for the different
nonlinear localized clectromagnetic structures that have
been observed by the Freja satellite in the ionosphere of
the Earth.

A fundamental nonlinear process in fluids and plasmas
is the resonant three-wave interaction process. Calculation
of three-wave coupling coefficients for weakly nonlinear,
resonant interactions between waves in fluids and plasmas
have received much attention by numerous authors (e.g.
Dong and Yeh, 1988, 1991; Lindgren, 1982; Stenflo,
1994; Yeh and Liu, 1981). Due to the algebraic
difficulties, the coupling coefficients have in general not
been presented in a explicit symmetric form. The

Hamiltionian approach to wave coupling has however
recently proved to be very useful for deriving general and
symmetric coupling coefficients for interactions between
atmospheric waves (Axelsson et al., 1996a, 1996b).

In the present paper we will consider resonant
interactions between MHD waves in an inhomogeneous
media,. We then take advantage of the Hamiltonian
property of the MHD equations to derive general
cxpressions for the wave coupling coefficients. One
particular case of special interest, relevant for the
ionosphere of the Earth and the atmospheres of stars, is
the case with an exponentiatly stratified background state.
For a special stratified magnetic field distribution the
magneto-acoustic-gravity waves can be described by a
global dispersion relation with constant coefficients, Then
the simplified coupling coefficients can be written in an
explicit Manley-Rowe symmetric form.

2 Hamiltonian models and wave coupling

Ideal MHD can be written in Hamiltonian form in terms
of a generalised noncanonical Poisson bracket (Morrison
and Greene, 1980). In the present paper we choose to start
from a corresponding generalisation of Hamiltons
canonical equations (e.g. Olver, 1993)

au=xw =1, B (1)
du

Here, the Hamiltonian H{u) of the fluid is the system
energy, u is the vector of field variables and &/&u is the
functional derivative. The Poisson structure [ is a linear
operator such that the Poisson bracket is
oF = &G

—> (2)

F.G}=(=—.1,
tF.Gy <6u du

Thus, the Poisson structure must be antisymmetric
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(f.3.8) = -(J,1.9). (3)

The Jacobi identity now follows by requiring

N d .
(gt 5ot0)
3 _
+<g,JuEE<h,Jul)> =0 (4)

Here F and G are arbitrary functionals and f, g and h are
arbitrary fields. Now we want to study the small
amplitude expansion of the right-hand side of equation
(1). Thus, assuming that the unperturbed stationary statc
u,is given by

du, =0, X(uo) =0, (5)
we write

1 .
d.8u = x{}rjau + EX,(J?])(SU, duj + ... . (6}

Furthermore, we consider three linear independent
resonant normal modes uy, u, and us, i.e.

iXVu; = wu;, j=1,23 (7

Uy 1
W, +0, +w; =0, (8)

where the waves are assumed to be Hamiltonian per-
turbations of the background state (cf. Morrison and
Pfirsch, 1992; Larsson, 1996, 1998a). Then the conjugate
fields £ ; will he defined in terms of the linearised ficld
variations as

Uj :J“néj' (q)

The concept of dynamical accessible perturbations is also
discussed in Morrison (1998). Now using the the Ansatz

3
u=u, +Z[Cj(t)ui exp(—iw;t} + comp. conj.],
1=l

(10)
the stowly time varying amplitudes C; can be shown to

satisfy the coupled mode equations {Larsson, [998h)

d = \'% d = A\

—C, = -, —C,C,, —C, = —iw cC.,

dtrl ]Wl 243 dt 2 1 2W2 1%~3

d— v

—C; = —in,—C,C,, 11
de fw, P ub
where
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W, = —{€. %), (12)
and
v = =(8 X0 (), (13)

where {,) denotes an inner product and the overbar the
complex conjugate.

The coupling coefficient (13) is written in terms of the
operators

dH

Hy=< (14)

H.(2) = —{a.H,) (15)

1 Su u »

H (a b)zi< H (h)>... (16)

u(a.0) = =(a.H, ,

. 8

T.(a,b) = —{a.I b}, (17}
0]

T (a,b c)EfL(aT (b c))... (18)

aahic)==(ad, (b, ,

where a and b are arbitrary fields. Thus, using the expan-
SIOMS
X(uy +8u) = X, +ng(5u)+axﬁ, '(Bu,8u)+...

(19)
and

Toise = Jo +I0(Bu)+ 15 (8u, 8u), (20)

u, +8u

where the subscript () represents unperturbed quantities,
the different terms in (19) are derived from

Xy (@) = JH, () + 35 (a)H,, 2D

X (a,b) = ToHq (a,b)+ T ()H (b) + 1 (b)H) (a)

+15(a,b)H,, (22)
(a,JE,”(b)a) = (b.Jy(@.0)). (23)
and
(a, 17 (b,0)d) = (b,Ty(e.a,d)). (24)

where again the arguments a, b, ¢ and d are arbitrary
fields. Morcover, to investigate the Manley-Rowe
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symmetries of the coupling coefficients, it turns out to be

convenient to express the general result (13) in terms of
the conjugate field £ . Using the linear relations (9) and

— 08 = Hy(To8)+T,(Ho.5), (25)

ogether with (22), (23) and (24) we write (13) as

V=V +V,+V; (26)
with
V) = (Jo C],H'{; (Joc..zs Jogz))= (27)

V, = 0, (Tt Jo (& Be ) +i05{Joka To(1:61))
(28)

and

V, = (Joaz,J'O(ﬁl,Jb(Hb,E_‘3))>+(JO§3J‘0(E..I J()(Hoiz)»

—%(Joiz,JB(J0§3,ﬁ,.Hﬁ))—%(Joéz»JE}(J(léz,él,H.n))-

(29)
The symmetry of V, follows from the equality of mixed

partial derivatives, wherc in this case (aHO(bc)) is un-
changed by permutations of (a,b,c¢). Furthermore, it can
be shown that thc second contribution V5 also has the

required symmetry property by using the Jacobi identity,
expressed in the form

(&0 30T0(82-8a)) + (€ ToT (61, 82)) + {0 T (85.61)) = O

(30)
and the resonance condition (8). The last coefficient V,
requires a little bit more manipulations, but it is straight-
forward to show that this also is symmetric by using the
Jacobi identity and the background condition (5). Thus,
we conclude that the coupling coefficient (13) satisfies the
Manley-Rowe relations,

3 Evaluation of the coupling coefficient for a stratified
atmosphere

In scction 2 we derived a general expression for the wave
coupling coefficient. Our main purpose in the present
study is to present a formulation for three-wave
interactions between waves in a stratified and ideal
conducting atmosphere. We shall here consider a spccial
background magnetic fleld distribution when both the
sound speed and the Alfvén speed are constant (Thomas,
1983), In this case the magneto-acoustic-gravity waves
can be described in terms of a global dispersion relation.
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Thus, in our stratified, isothermal atmosphere at rest, the
equilibrium pressure and density are supposed to be
cxponenlially decreasing with altitude according to

0 = Pee exp{—z/H), pg =pgexpl-z/H), (31)

where oo, pop and H are constants. Moreover, in order for
the Alfvén speed to be uniform, the background magnetic
field will be given by

B, = B, (z)x = By exp(~z/2H)X, (32}

where By, is constant. The set of equations governing the
dynamics of the magneto-acoustic-gravity waves in the
atmosphere consists of the usual ideal MHD cquations

N avu-tvp o lpx(uxBy-e (33
a p p

3,8 =-u-Vs, 34)
ﬂ}—=V><(u><B), (35)
ot

% = ¥-(pu). (36)

together with the adiabatic pressure model

P = Sp¥, (37
where the constant 7y is the ratio of specific heats. A
constant gravitational force has also been included in the
momentum cguation. Under the plane-wave assumption,
i.e. p ~ exp(ik r—z/2H), the magneto-acoustic-gravity

waves are then described by the dispersion relation
(Thomas, 1983, Axelsson, 1998)

mﬁ_[(cg- A 2)+v§kg]m4
1
2 2 2 k?_[kl _)
+[VA( 2 +vi) t o
-z g~ —3\1(k2+k )+k2g Y o’
H H
212 2212 2 1 zkzk -0,
_VAkx CoVaky + 4H2 ! g_H ( + )

(38)
. Now it is

where k? = k2 +k§+k§ and ¢, = (“}'Polpo)”2
useful to describe the linear and nonlinear dynamics in
terms of the theory introduced in section 1. The
Hamiltonian form of the set of equations (33)-(36) is then
derived [rom the Poisson structure (Morrison, 1982, 1998)
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| | 1
-V +—6VS + —fx(Vxu) - —Bx(Vxa)
P p P
Lgys
p

x(leB]
P

~-V-B

(39)

operating on the Hamiltonian {unctional
H(u) = J‘(%Plul2 +pU(p, S)Jr%B2 +pgz)dr. (40)

Here we have used the notations u=(uS,B,p),
£=(B.8,x,), where B, 6, o and m are standard
conjugate field variables (Larsson, 1996), and denoted the
inner energy by U, noting that P=p* U,. From (39} and
(40) we can then calculate explicit expressions for the
operators that occur in the different terms in {26). Thus,
we immediately find (from now on we will for notational
simplicily suppress the space integrations)

V, = permzpu, 'ufi+perm3HlppS(lplp253+H‘ppp0plp2p3 .
(4h)

V, = i@, [LGNSO —LBUX(VXGB)}-VX(LB] xﬁz}
Po Y Po

0

e ““{ [pop) '[ﬁﬁ‘ezﬂ

+ Vx[éﬁ?\ XBOJ'[F}J& x(Vxay) ~ pLBZ X(anl)]

0

1 i
- V'B{_zelﬁz 'VSO __292B1 'VSD

0 0

+ Lz(l-)’z xBy) (Vxea,) - Lz(Bszo)'(VXO‘J)H

Pa Po

+(263)
(42)
and

V, = L[3;,,-VSO'\7 { B,V { HagoB, J:l
Po Po

—Vx[&xB ] .LBI % {VX [LBZ x(VxBn)H
Po Po Po

+ B%‘V'B_% Bi-By X|: Vi [éﬁz X(VXBO)J]
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1 I
+—5 VBB 'Vsov{p—Hsoﬁz}
0

0

1 |
= Eﬁz 'VSOV'{EHSOBIV'BBJ

- %VX[&XBO
2p4 Po

+V-B, {L_;V'By&ﬁl By x{VxBy)

J'V'Bfiﬁl x(VxBg)

| &
- —Vx B, xB JB x(VxB
202 (Po 3 xBy 1By x( 0)

- 1
+ z_p-éHsoBJ 'V[Eﬁa 'Vso]

1 .
- < V-B3Hso By 'VSO:' +(2 & 3).

0
(43)

Here the notation perm; is used to represent the sum of

the cyclic permuted terms, the subscripts p and S denote

functional or partial derivatives, c.g. H'p =0H/8p and
H'pS = BH'D/ a8, and (2 < 3) denotes the terms with
index 2 and 3 exchanged. The symmelry property of the
coupling coefficient terms (41), (42) and (43) has been
confirmed by straightforward, although lengthy
manipulations. Thus, using the background relations (31},
(32), (37), partial integrations guided by previous
calculations (Axelsson et al., 1996a) and the resonance

condition (8) we derive the completely symmetric
expression

o ¥-2 (v=2)c?
V = permapu, -uy + permsypy Tpip,S; + pp_ P1P2P3
0

+_pum6w1“ aﬁ] x(Vxa,)

Po

=~V [ BB, ] B,-Va, —%penn3w2|3]B3:VVa2-B0
Po P

_Lapenn_%ﬁl VB, B, VBV [Lﬁz]
0 [

Q 0

+L2perm6[33 VB, [Lﬂl VB, VB,
Po

4]

+V'[LBIJBO'VB2 -B, VB, V(Lﬁz]jl
Po Po

~(1+2)
permge,By - Vpy

b
{p()ﬁl 'V[El'ez]‘v . B291:|
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1
2p3Y
(B1-Vpo)(Ba-Vpo)(Bs Vi)

—2—;p§[2c§(v—l)—wi]

+

[2cf(l+y—272)+wi]

permy (B, -V, )(B, —VpO)V : [LBXJ

Po
(44)
Here we have used permy to denote the sum of the totally
permuted terms, and the symbol : to represent tensor
operator contractions. Using the lincar relations

i
By = lu,, (45)
)
1
8, = _gPSUV u; (46)
]
and
Lo !

the coupling coefficient is finally written in the form

1
V = permspiu, -uy + p_z(Y_z)CprPZPE
o

-0l -]

Polz U Uy

¥ H'oy 0,005
[2(v-1)(2 - v)e? + yvi] u,, U,
+ 5 perm;p, —2= 2=
2vH 0, Wy
i(y — 1)l ol 1
ST TS permal v — -
+Hpo permy | Y 0,0, o, Uz1P2P3
— el .
+ v —Ne; permg I (Pa"' Pu Uz?.}“l'vuzz
vH 0,50 Hw,
+ ipova
(0,404

1 ]
—perm :VVIiB,V- +—B V-
{Bo p {“1“3 ( 0 “12) AHZ oUzilzo “3}

+perm,

1 1 - -
|:E-(-]~axu2 ‘U, 'V[— ﬁBouxlz +ByV-ux — Boaxulj

a3
+

i . 2
V. | —-—0 Z+ 0. Vux-o
o0 (pousu,) [ o Moz + 9,V u,X ("uzj
W,
) S v V(B.V.
@,p,B, (Po“aul) (0 “iz)
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Lo 1
TR [axul Vu, + ﬁuzlaxu2 - du,V-y ]H

. (48)
With further use of the linear rclations, the wave activities
(12), related to the wave energies, are wrillen as

W, = 2f pgu; - Tar. (49)

Thus there is equipartition between the kinetic- and
poten-tiat energics of the waves.

4 Conclusions

In this paper we have derived a coupling coefficient for
waves in a stratified and magnetized ideal atmosphere,
This is a significant generalization of the theory for three-
wave interactions between acoustic-gravity waves. Thus,
in the limit of vanishing magnetic field, the result reduces
to eq. (9) in Axelsson et al. (1996a). Another interesting
limit is the case with wave coupling of MHD waves in a
homogeneous plasma. Thus, dropping all derivatives of
the unperturbed density and magnetic field, we reconfirm
the results in the paper by Brodin and Stenflo (1988). For
example, using the linear relations for the wusual
magnclosonic wave, the coupling coefficient reduces to
(21} in Brodin and Stenflo (1988} for interactions between
three magnetosonic waves,

In section 3 we considered a particular background state
where the Alfvén velocity was constant. For more general
background atmospheres it is still straightforward to find
an explicit expression for the wave coupling coefficient,
because the equations {(41)-(43) are valid also in the
general case and we may use the linear relations (45)-(47)
to obtain the coupling coefficient. We know from general
theory (as discussed in section 2) that the resulting
coupling coefficient is symmetric. However, the explicit
symmetric form is presented only for the above mentioned
special case.

In presence of strong magnetic fields and when the
collision rates are sufficiently small, the pressures can be
significantly different parallel and perpendicular to the
magnetic field direction. This occurs for instance in the
subsolar magnetosheath plasma (Hau et al., 1993), Tt is
then neccssary to replace the isotropic pressure model
with the Chew-Goldberger-Low (CGL) pressure model or
the generalised CGL model used by Duhau and Gratton
(1975). It is straightforward lo write down explicit
expressions for the coupling coefficient for wave
interactions also for this anisotropic and inhomogeneous
atmosphere, thus generalising the work of Brodin and
Stenflo (1989). This is possible because the MHD
equations including the CGL pressurc meodel is within the
¢lass of Hamiltonian models (Larsson, 1996).
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