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Abstract

Space borne infrared limb emission measurements by the Michelson Interferometer for
Passive Atmospheric Sounding (MIPAS) reveal the formation of a belt of polar strato-
spheric clouds (PSCs) of nitric acid trihydrate (NAT) particles over Antarctica in mid-
June 2003. By mesoscale microphysical simulations we show that this sudden onset5

of NAT PSCs was caused by heterogeneous nucleation on ice in the cooling phases
of large-amplitude stratospheric mountain waves over the Antarctic Peninsula and the
Ellsworth Mountains. MIPAS observations of PSCs before this event show no indication
for the presence of NAT clouds with volume densities larger than about 0.3µm3/cm3

and radii smaller than 3µm, but are consistent with supercooled droplets of ternary10

H2SO4/HNO3/H2O solution (STS). Simulations indicate that homogeneous surface nu-
cleation rates have to be reduced by three orders of magnitude to comply with the
observations.

1. Introduction

Nearly twenty years ago, the important role of polar stratospheric clouds (PSCs) in15

polar ozone depletion began to be appreciated (Solomon et al., 1986; Toon et al., 1986;
Crutzen and Arnold, 1986). In addition to the activation of chlorine from its reservoirs
HCl and ClONO2, PSCs can remove NOy from the lower stratosphere by incorporation
of HNO3 from the gas phase and subsequent sedimentation. This denitrification leads
to a slower conversion of active chlorine back to ClONO2.20

In the Antarctic winter, Tabazadeh et al. (2000) have shown that denitrification occurs
before significant dehydration. In the Arctic vortex, Fahey et al. (2001) discovered large
nitric acid containing particles (likely nitric acid trihydrate, NAT) that, via sedimentation,
are now generally believed to be the major cause of denitrification.

However, the nucleation processes of nitric acid hydrate PSCs still remain unclear25

(Tolbert and Toon, 2001). Three possible processes have been discussed: heteroge-
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neous nucleation on ice particles, homogeneous freezing of particles of supercooled
ternary H2SO4/HNO3/H2O solutions (STS), and heterogeneous freezing induced by
solid material other than ice.

There is a wealth of evidence for the nucleation of nitric acid hydrate particles on
ice from observations of mountain wave PSCs over the Scandinavian mountain ridge5

and the east coast of Greenland (Carslaw et al., 1998; Wirth et al., 1999; Tsias et al.,
1999; Rivière et al., 2000; Voigt et al., 2000; Larsen et al., 2002b; Dörnbrack et al.,
2002; Hu et al., 2002; Voigt et al., 2003; Luo et al., 2003; Fueglistaler et al., 2003;
Reichardt et al., 2004; Eckermann et al., 2005b). Modeling by Carslaw et al. (1999)
indicated that mountain waves were a significant source of solid nitric acid-containing10

particles on a synoptic scale in the Arctic, persisting thousands of kilometers down-
stream of the wave event that formed them. These clouds, which consist of a large
number of relatively small particles, may lead to the formation progressively larger NAT
particles and subsequent denitrification through a mechanism proposed by Dhaniyala
et al. (2002) and Fueglistaler et al. (2002). Recently, using parameterizations based15

on this scheme, Mann et al. (2005) showed that a large part of the air with tempera-
tures below the NAT threshold can be populated with particles sedimented from these
clouds. Such “mother cloud” NAT growth and sedimentation processes (Fueglistaler
et al., 2002) could account for up to 80% of the observed denitrification in their model
simulations of the 1999/2000 Arctic winter.20

Despite the evidence for NAT formation through heterogeneous nucleation on ice,
there are observations which cannot be explained by this process (Pagan et al., 2004;
Irie et al., 2004; Larsen et al., 2004; Voigt et al., 2005) and, thus, require freezing
mechanisms operating above the ice frost point.

Tabazadeh et al. (2001) predicted a “polar freezing belt” forming at temperatures of25

190–192 K around the edges of Antarctica at 20 km altitude on the basis of homoge-
neous nucleation of nitric acid trihydrate (NAT) or nitric acid dihydrate (NAD) from STS.
The magnitude of the applied freezing rates, however, have been discussed (Knopf
et al., 2002; Tabazadeh, 2003). Also Tabazadeh et al. (2002) proposed a surface-
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M. Höpfner et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

based homogeneous nucleation from reanalysis of laboratory data. Using this process
measured amounts of denitrification in the Arctic stratosphere could be reproduced (Irie
et al., 2004). However, Larsen et al. (2004) parameterized this surface based mecha-
nism in modeling of early PSC observations over northern Scandinavia in December
2002. They found that a reduction of the freezing rates by a factor of 10–20 was nec-5

essary to produce agreement with the observations. Calculations by Svendsen et al.
(2005) indicate that lidar observations of PSCs in the Arctic winter 1999/2000 can best
be reproduced by a combination of mountain wave-induced and homogeneous NAT for-
mation. During the same winter, Drdla and Browell (2004) argued that neither volume
nor surface dependent homogeneous freezing can reproduce observed PSC develop-10

ment and denitrification. They concluded that another freezing mechanism, such as
heterogeneous freezing on solid impurities, was needed to explain early solid phase
formation. This is in agreement with Voigt et al. (2005) who explained their observations
of HNO3 containing solid particles formed at low supersaturations by heterogeneous
nucleation on meteoritic dust.15

In this paper we analyze hemispheric PSC measurements by the Michelson Inter-
ferometer for Passive Atmospheric Sounding (MIPAS) on Envisat (Fischer and Oelhaf,
1996; ESA, 2000). MIPAS is a limb-sounder which measures the mid-infrared spec-
tral radiance emitted by the constituents of the Earth’s atmosphere with high spectral
resolution and covering a broad spectral range. MIPAS measurements continuously20

monitor PSCs throughout the polar stratosphere even at night.
Spang et al. (2005) describe MIPAS PSC observations during the Arctic winter

2002/2003. MIPAS also probed the development of PSCs over Antarctica in 2003
quasi continuously apart from 19–20 May, 25 May–4 June and 5–7 September when
no measurements were available. In the present study we concentrate on MIPAS ob-25

servations in May and June 2003 to investigate the initial phases of PSC formation in
the Antarctic polar stratosphere.
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2. Identification of PSC composition

In a companion paper, Höpfner et al. (2005) demonstrate how the composition of PSCs
can be inferred from MIPAS spectra. In particular a prominent spectral band at around
820 cm−1 facilitates detection of NAT particles. Höpfner et al. (2005) show that unam-
biguous identification of NAT and ice observations is possible by use of a color-ratio5

method first introduced by Spang et al. (2001). Comparisons between PSCs simul-
taneously measured by MIPAS and a ground-based aerosol lidar at McMurdo station
during 2003 reveal consistent correlations between NAT, STS, and ice composition
identified by MIPAS and Type 1a, Type 1b and Type 2 PSCs, respectively, identified in
lidar aerosol backscatter and depolarization.10

Figure 1 plots color ratios for all the MIPAS PSC observations over Antarctica during
May/June 2003. The different regions R1–R4 represent the typical color-ratio classes
which have been assigned to different PSC compositions (Höpfner et al., 2005). R1
contains NAT particles with mean radii smaller than 3µm. Ice PSCs are located in R3.
R2 data are most likely STS, but large NAT or thin ice layers cannot be excluded. In R415

it is difficult to distinguish among ice, STS and large NAT. The color scale of the data
points in Fig. 1 is used in the plots to follow to depict the location of each measurement
or model result on this color-ratio graph.

3. The Antarctic NAT belt

We have used MIPAS observations in May and June 2003 to investigate the initial20

phases of PSC formation in the Antarctic polar stratosphere. Figure 2 shows the
geographical distribution of PSCs at an altitude of around 21 km for selected days.
PSCs were first observed on 21 May. On that day and during the following period until
10 June, there is no sign of NAT particles. (No MIPAS data were acquired from 25
May until 4 June so we cannot exclude NAT formation during this period. However,25

the McMurdo Lidar detected no solid particles during a PSC observation on 2 June.)
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The PSC maps at these times are populated with blue-green color ratios of region
R2 in Fig. 1, and thus appear to be mostly STS. The green contour in Fig. 2 shows
the STS formation threshold temperature, derived from European Centre for Medium-
Range Weather Forecasts (ECMWF) analysis. It is remarkable how well the region of
detected PSCs is enclosed within this area of possible STS existence defined by this5

temperature contour. There are very few PSCs detected between the NAT and the STS
threshold temperature contours in Fig. 2.

On 10 June (not shown) there is the first clear evidence for NAT in one MIPAS limb-
scan east of the Antarctic Peninsula. From Fig. 2 we see that on 11 June MIPAS
observed an extended zone of NAT between 45◦ W and 45◦ E at latitudes of about 70◦ S.10

On 12 June, a belt of NAT particles has formed that surrounds half of the Antarctic
continent, extending to a length of about 7000 km. On 15 June this NAT belt is nearly
closed right around the continent. Throughout the rest of the winter, NAT PSCs were
present in MIPAS observations throughout the polar vortex and often were the most
abundant type of PSC.15

We have investigated this sudden onset of NAT PSCs over Antarctica during 10–
12 June. It is striking that NAT first appeared slightly downstream of the Antarctic
Peninsula (Fig. 2), while upstream of the Peninsula there was no evidence for any
PSCs despite very similar synoptic stratospheric temperatures. Further, nearby and
slightly east of the coastline of the Peninsula, ice was observed on 11 and 12 June in20

regions which correlate with an oscillatory structure in the frost point contours based
on temperatures from the ECMWF analysis. Such structure was probably due to some
explicitly-resolved long-wavelength gravity waves in the analysis.

Since gravity waves are poorly resolved in global analyses (Hertzog et al., 2002;
Fueglistaler et al., 2003; Eckermann et al., 2005b), we have assessed the mountain25

wave contribution using the Naval Research Laboratory Mountain Wave Forecast Mod-
els (MWFM). The simulations were performed using both the standard validated ver-
sion 2 spatial ray model (Eckermann and Preusse, 1999; Jiang et al., 2004), and a
developmental next-generation version 3 model based on the high-resolution Fourier-
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ray solution method of Broutman et al. (2003): see Eckermann et al. (2005a)1. These
codes are hereafter referred to as MWFM-2 and MWFM-3β, respectively. The Fourier-
ray MWFM-3β dynamical core offers significant advantages over MWFM-2, including
use of unsimplified high-resolution topography, correction of spatial ray caustics, direct
simulation of wave phase, full free and trapped wave solutions, and more accurate5

wave action (amplitude) solutions (Eckermann et al., 2005a1). For the MWFM-3β runs
centered over Antarctica we used a 2048×2048 point Cartesian mesh centered over
the South Pole with a 6×6 km horizontal resolution and 0.5 km vertical resolution from
the surface up to 30 km altitude. To include a realistic geographical variation in wind
and temperature profiles across the domain, we subdivided this domain into 12×1210

(144) component subdomains each of 170×170 grid points. We then performed 144
separate 2048×2048 Fourier-ray calculations using the ECMWF wind and tempera-
ture profile at the center of the specific subdomain in question for initialization. Then,
only the solution within this 170×170 point subdomain was retained. Using this “jigsaw
puzzle” approach, we were able to synthesize a final 2048×2048 point mountain wave15

solution from these 144 individual runs using the additive linear properties of Fourier-
ray solutions, which incorporated realistic geographical variations in the wind profiles
across the domain. For validation, we also conducted companion MWFM-2 runs to
assess the robustness of the final results.

Figure 3 shows MWFM-2 peak ray temperature amplitudes at 40 hPa for various days20

in June at 12:00 UT based on ray-tracing through an atmosphere specified by analysis
from NASA’s Global Modeling and Analysis Office. A strong mountain wave event
over the Antarctic Peninsula starts on 9 June and lasts until 13 June with maximum
peak wave amplitudes of ∼15 K on 10 and 11 June. Figure 4 shows that backward
trajectories starting at the position of MIPAS NAT observations on 11 and 12 June25

encountered areas of strong temperature perturbations due to stratospheric mountain

1 Eckermann, S. D., Broutman, D., Ma, J., and Lindeman, J.: Fourier-ray modeling of short
wavelength trapped lee waves observed in infrared satellite imagery near Jan Mayen, Mon.
Wea. Rev., in review, 2005a.
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waves hindcast by MWFM-3β over the Antarctic Peninsula and Ellsworth Mountains.
The lack of NAT observations before this event is consistent with the absence of strong
mountain wave activity (Fig. 3).

We also simulated the observations with the Danish Meteorological Institute (DMI)
microphysical PSC model (Larsen et al., 2002b) running on vortex-filling trajectories5

(Larsen et al., 2002a; Knudsen and Grooß, 2000) based on ECMWF analysis data. Di-
abatic descent along the trajectories was calculated with the ECMWF radiation scheme
(Morcrette, 1991). The model was initialized with MIPAS high latitude mean values of
H2O and HNO3 from 17 May, a few days before the first PSCs were observed by MI-
PAS. Simulations started on 16 May. The model output of particle size distributions10

for NAT, STS, and ice at each measurement time and location was used to simulate
the limb-radiances that would be detected by MIPAS in the spectral regions used for
the color-ratio plots in Fig. 1. These calculations were performed with the Karlsruhe
Optimized and Precise Radiative transfer Algorithm (KOPRA). KOPRA has been used
in previous studies to simulate MIPAS measurements of PSCs (Höpfner et al., 2002;15

Höpfner, 2004) and has been validated in Höpfner and Emde (2004). For STS, refrac-
tive indices of Biermann et al. (2000) have been used. Composition were calculated
for thermodynamic equilibrium (Carslaw et al., 1994) based on ECMWF temperature
analysis, the initial high-latitude mid-May profiles for H2O and HNO3 from MIPAS and
0.3 ppbv of H2SO4. NAT observations have been simulated with the refractive indices20

derived from Biermann (1998) as described in Höpfner et al. (2005) and ice has been
simulated using the data of Toon et al. (1994).

The DMI model results, which have been color-coded in the same manner as the ob-
servations, are shown in Fig. 5 for the model run using ECMWF temperatures without
correction and including the MWFM mountain-wave temperature corrections. In these25

runs NAT was set to nucleate only via the ice phase. We could reproduce the NAT
observations only in the case where the mountain wave temperature correction was
applied. In the run where purely synoptic temperatures were used no extended area of
NAT was formed.
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Comparison of the observation and simulation in Fig. 5 over the central Antarctic
region reveals that on 11 and 12 June the DMI PSC model produces clouds with lower
values of the cloud index (darker blue) compared to the measurements. This is caused
by formation of water ice PSCs in the model. The measurements, however, indicate ice
confined mainly near the Antarctic Peninsula, very probably caused by the mountain5

wave activity there (see Fig. 3). From comparison with radiosondes a cold bias of −1
to −3 K has been found in the ECMWF temperatures between 490 and 570 K potential
temperature (P. von der Gathen, pers. comm.). Model calculations incorporating this
sonde-derived correction of the ECMWF temperatures produce fewer ice PSCs and
agree better with the measurements in the central vortex region (Fig. 5). A mountain10

wave-induced NAT belt also appears in this case, however, the correspondence with
the NAT observations is somewhat worse than for the uncorrected run. We assume that
this is caused by errors induced by application of a constant ECMWF temperature bias
independent of geolocation. The limited radiosonde data and comparison of ECMWF
temperatures with radio occultation measurements (Gobiet et al., 2005) in fact show a15

bias that is larger near the pole than away from the pole.

4. Homogeneous NAT nucleation

Due to the smooth synoptic temperature distribution preceding such a strong moun-
tain wave event, the Antarctic polar vortex is an ideal natural laboratory to constrain
NAT nucleation rates above the ice frost point (Tice). For this purpose we performed20

DMI PSC model runs in which homogeneous surface freezing of NAT out of liquid STS
was included as representative of a size-selective nucleation mechanism at temper-
atures above Tice. Homogeneous surface dependent nucleation of NAD (Tabazadeh
et al., 2002) was included in the model by assuming an instantaneous conversion of
NAD to NAT. Various surface nucleation rates have been tested: the original rates by25

Tabazadeh et al. (2002) have been reduced by a factor of 20 according to Larsen et al.
(2004), by 200, and by 2000.
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In the model run which is compatible with rates deduced from Arctic observations
(Larsen et al., 2004) NAT PSCs appeared with particle radii >3µm as early as 23 May.
By 5 June, most of the modeled PSC region was populated with NAT PSCs, which, due
to their large radius, cannot directly be distinguished from STS clouds in the MIPAS
measurements using the aforementioned analysis methods. However, model results5

including sedimentation show that these large particles denitrify the upper PSC levels
very quickly, preventing formation of extended regions of PSCs in mid-June as was
seen in our observations (Fig. 6). We had to reduce the nucleation rate further (by a
factor of 2000 with respect to Tabazadeh et al., 2002) to comply with the observations.

5. Conclusions10

We have shown that stratospheric mountain wave activity forming ice over the Antarctic
Peninsula and Ellsworth Mountains is the only mechanism that explains the sudden for-
mation of vortex-wide areas of NAT PSCs around Antarctica during 10–12 June. The
process operating here is the same mountain wave NAT formation model originally
proposed by Carslaw et al. (1999) for the Arctic winter stratosphere. Yet significant15

mountain wave-induced PSC formation has been largely discounted in the Antarctic,
due to fewer mountains and colder synoptic temperatures. Nonetheless, several obser-
vational studies from the late 1980s and early 1990s also reported PSCs forming ini-
tially near the Antarctic Peninsula, then rapidly filling out greater volumes downstream
(Cariolle et al., 1989; Ricaud et al., 1995). Since stratospheric mountain waves occur20

recurrently over the Antarctic Peninsula during winter (Wu and Jiang, 2002; Bacmeis-
ter et al., 1990), the localized mountain wave-triggering of synoptic-scale NAT belts
documented here may not be a rare or even unusual event, and so may explain these
earlier observations as well. This suggests a more significant role for mountain waves
in Antarctic PSC formation than has heretofore been appreciated.25

Our analysis of MIPAS measurements further demonstrates that the observation of
denitrification before dehydration (Tabazadeh et al., 2000) in the Antarctic stratospheric
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vortex is not necessarily due to a freezing mechanism of NAT above the ice frost point.
It can be initiated by formation of large “mother clouds” of NAT particles nucleated on
ice produced by mountain wave activity early in the Antarctic winter, which denitrify the
air masses through the mechanism of Dhaniyala et al. (2002) and Fueglistaler et al.
(2002).5

The fact that we have seen no indication for NAT in MIPAS observations before 10
June does not rule out the presence of NAT PSC particles with volume densities smaller
than about 0.3µm3/cm3 or with radii larger than 3µm which are the detection limits of
the color-ratio method (Höpfner et al., 2005). Nonetheless, we could still estimate an
upper limit for surface nucleation rates which is about three orders of magnitude smaller10

than the one proposed by Tabazadeh et al. (2002). These values are even much
smaller than those derived by Larsen et al. (2004) to explain the early appearance of
solid particles in December 2002 which was unusually cold (e.g. Goutail et al., 2005).
A second hint for a difference in NAT nucleation between the Arctic winter 2002 and
the Antarctic winter 2003 is MIPAS observations of PSCs over the Arctic in December15

2002 when, contrary to our measurements over Antarctica, NAT was detected only
a few days after the first PSC observation without hints of previous mountain wave
activity (Spang et al., 2005; Larsen et al., 2004). Whether this possible difference in
NAT nucleation rates above Tice between the Arctic and Antarctic is typical or related
to singular events is to be assessed by future monitoring of the initial stages of PSC20

development.

Acknowledgements. We thank P. von der Gathen for helpful discussions. Authors of this work
were supported by the German HGF-Vernetzungsfonds ENVISAT (BMBF 01SF9953/8). MIPAS
spectra were provided by the European Space Agency and meteorological data by ECMWF.
PSC model runs were funded by the EU project SCOUT-O3.25

References

Bacmeister, J. T., Schoeberl, M. R., Lait, L. R., Newman, P. A., and Gary, B.: ER-2 mountain

10733

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/10723/acpd-5-10723_p.pdf
http://www.atmos-chem-phys.org/acpd/5/10723/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 10723–10745, 2005

Antarctic NAT belt
caused by mountain

waves
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Fig. 1. Mean spectral intensity in the interval 819–821 cm−1 (I[819–821 cm−1]) divided by
I[788.2–796.25 cm−1] versus I[788.2–796.25 cm-1]/I[832.3–834.4 cm−1] of MIPAS PSC obser-
vations in May/June 2003 for tangent altitudes between 16 and 25 km. The color scale of the
data points denotes their relative position with respect to the different regions in the plot and is
used to describe MIPAS measurements and simulations in the following figures.
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Fig. 2. Distribution of PSC types derived from MIPAS measurements at tangent altitudes cor-
responding to potential temperatures around 490 K (max. range 460–525 K), i.e. around 21 km
altitude. The color scale of the data points is defined as in Fig. 1: red/orange squares are NAT
particles with radii <3µm, blue triangles are ice and blue-green circles are probably STS, but
could also be NAT particles with radii >3µm or thin ice clouds. The contour lines are based on
ECMWF analyses and enclose the ice existence region in blue, the STS region in green and
the NAT region in red. Black dots are PSC-free observations.
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Fig. 3. MWFM-2 hindcast of peak mountain wave temperature amplitudes at 40 hPa for various
days in June 2003 at 12Z, based on 1.25◦×1◦ 36-level analyses from NASA’s Global Modeling
and Assimilation Office. Blue contours show synoptic temperatures, green contour shows the
local NAT formation temperature based on a calculation using 10 ppbv of HNO3 and 5 ppmv of
H2O.
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Fig. 4. Color-coded MWFM-3 hindcast mountain-wave temperature perturbations for 12:00 UT
on 10 June (A) and 12:00 UT on 11 June (B). Overlaid backward trajectories (white lines) start
at the times and locations of MIPAS NAT observations (squares) on 11 June (A) and 12 June
(B) and end at 00:00 UT on 10 June (A) and 00:00 UT on 11 June (B). Note that the MWFM-2
solutions in Fig. 3 show peak wave amplitudes only, whereas the MWFM-3 runs in this figure
provide both amplitude and phase.
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Fig. 5. MIPAS measurements on 11 and 12 June in comparison with DMI microphysical PSC
box model simulations at the time and location of the observations The color scale is the same
as in Fig. 2. In the 2nd row the ECMWF temperatures are used, whereas model runs shown in
the 3rd row add the mountain wave corrections from MWFM-3. Rows 4 and 5 show equivalent
runs, but on basis on ECMWF temperatures which have been corrected for a bias with respect
to radiosondes (see text). 10744
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Fig. 6. MIPAS PSC observations at 570 K potential temperature (about 24 km) on 9 June 2003
in comparison with PSC model calculations including particle sedimentation. In (B) NAT forma-
tion was possible only via the ice phase. (C–E): homogeneous surface dependent nucleation
of NAD (Tabazadeh et al., 2002) assuming an instantaneous conversion of NAD to NAT is in-
cluded. In (C) surface nucleation rates of (Tabazadeh et al., 2002) have been multiplied by a
factor 0.05 as derived from measurements in the Arctic (Larsen et al., 2004). Further reductions
are 0.005 in (D), and 0.0005 in (E). Due to effective denitrification in the model runs (C) and
(D) PSC existence is strongly suppressed compared to (B) and (E). For all model runs ECMWF
temperature data have been corrected for a bias with respect to radiosondes (see text). The
color scale of the data points is defined as in Fig. 1.
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