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Abstract. In this work, we present a statistical study of geo-
electric time series from three Mexican regions with recog-
nized different levels of seismicity. This study is made by
means of both the Higuchi’s method and the detrended fluc-
tuation analysis for the detection of fractal behavior. With
these methods we present scatter plots corresponding to scal-
ing exponents for short and large lags arisen from crossover
points in the geoelectric data. Through these scatter plots we
observe a reasonable segregation of clouds of points corre-
sponding to the three mentioned regions. These results per-
mit to suggest that a different level of characteristic seismic-
ity in one region is translated into a different level of geo-
electric activity.

1 Introduction

Since some decades ago the possible correlation between pat-
terns of electric self-potential of the ground and the prepa-
ration mechanism of earthquakes (EQ) have been investi-
gated with the aim of searching for possible precursory sig-
natures of EQ occurrence (Varotsos and Alexopodus, 1984a,
1984b). This investigation has continued until the present
day without conclusive results (Telesca et al., 2006, 2007;
Gotoh et al., 2003). Nevertheless the complexity of this prob-
lem, there are no reasons yet for abandoning this line of in-
vestigation. Searching for 1 to 1 correspondence between
anomalies in electromagnetic signals and earthquakes with
relatively large magnitude was the main goal in the stud-
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ies in this field (Varotsos et al., 1984a; Ramı́rez-Rojas et
al., 2004a, b; Telesca et al., 2003; Hayakawa et al, 1999;
Hayakawa and Ito, 2000). The analysis techniques of anoma-
lous electromagnetic patterns have evolved from visual in-
spection (Varotsos and Alexopodus, 1984a, b) until more so-
phisticated approaches such as fractal and multifractal meth-
ods, and others stemming from chaos theory and nonlinear
dynamics (Varotsos et al., 2002; Varotsos et al., 2003a, b;
Nikolopoulos et al., 2004; Eftaxias et al., 2004; Abe, 2005).
For example, Smirnova et al. (2001) and Gotoh et al. (2003)
used spectral and fractal analyses to investigate ULF geo-
magnetic data associated to EQs at Guam and Izu penin-
sula, respectively. Telesca et al. (2001, 2005a, b) investigated
EQs at southern Italy by means of Hurst exponent and mul-
tifractal spectra of geoelectric signals. On the other hand,
the generation of transient electric potential prior to rupture
has been also demonstrated in a number of laboratory ex-
periments involving both dry and wet rock specimens (Vil-
lianatos et al., 2004; Freund, 2002; Sobolev, 2004). Thus,
in principle, there are evidences from laboratory to field
observations about the possible link between electromag-
netic anomalous signals and the mechanisms of rock fracture.
However, nowadays all this phenomenology lacks of a solid
theoretical basis regardless of interesting proposals such as
electrokinetic effect (Dobrovolsky et al., 1989), pressure-
stimulated currents (Villianatos et al., 2004) and other theo-
retical models (Stacey, 1964; Stacey and Johnson, 1972; Nit-
san, 1977). In the present article we perform a comparative
study of the global behavior of seismicity and geoelectric ac-
tivity in three Mexican regions of different level of seismic-
ity (see Fig. 1) linked to the Middle American trench, which
is the border between the Cocos and the American tectonic
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592 A. Raḿırez-Rojas et al.: Ground geoelectric activity of three seismicity regions

Fig. 1. Map of the three Mexican seismic regions considered. Re-
gion I of low seismicity level, II with medium seismicity level, and
III with high seismicity level.

plates. The regions considered in this paper are constituted
of composite terrains with both undersea volcanic and sedi-
mentary sequences (Ramirez-Guzman, 1996; Angulo-Brown
et al., 1998). Our approach is global in the sense that we
do not search for correlations between extreme events, but
we only observe the general behavior of geoelectric activity
of the three regions by means of fractal dimensions and de-
trended fluctuation analysis. Our results suggest that regions
of different seismicity also have global different geoelectric
behavior independently of singular events, that is, seemingly
the global differences between stress fields, tectonic struc-
tures and crust features are expressed as global differences
in geoelectric activity. The paper is organized as follows: In
Sects. 1 and 2, we present the methodology used, in Sect. 3
we introduce the method of data processing; in Sect. 4 the re-
sults of the application of the methods of analysis are showed
and finally in Sect. 5 the discussion and concluding remarks
are presented.

2 Methodology: Higuchi’s dimension and DFA

First, we provide an outline of the fractal technique devel-
oped by Higuchi (1988). This method gives stable indices
even for a small number of data. Higuchi (1988, 1990) con-
siders a finite set of time series of length N, taken at a regular
interval:

x(1), x(2), x(3), · · · · · · , x(N)

From the given time series, a new time series,xm
k is obtained

and defined as follows

xm
k : x (m) , x (m + k) , x (m + 2k) , ... , x

(

m +
[

N−k
k

]

k
)

wherem=1, 2, . . . , k, and [ ] denotes the Gauss’s notation.
Herem andk are integers that indicate the initial time and
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Fig. 2. Pre-processed time series of Acapulco station, 1993.(a) NS
channel,(b) EW channel.

the time interval respectively. For a time interval equal tok,
one getsk sets of new time series. Higuchi defines (1988)
the length of the curve associated to each time seriesxm

k as
follows:

Lk
m=

[

N−m
k

]

∑

i=1

[x (m+ik) −x(m+(i−1)k)]

(

N−1
[

N−m
k

]

k

)

1

k
(1)

where the term (N−1)
[

N−m
k

]

k
is a normalization factor. The length

of the curve for the time intervalk is taken as the average
value 〈L (k) 〉 over k sets ofLm (k). If the average value
obeys the scaling law:

〈L (k)〉 ∝ k−D (2)

then the curve is fractal with dimensionD (Higuchi, 1988).
This algorithm can be applied even to non-stationary time
series and this fact represents an advantage over the spectral
techniques (Cervantes de la Torre et al., 1999). The fractal
dimensionD, taken from Eq. (2) is calculated as the slope
of the double log plot of〈L (k) 〉 againstk. Applying the
Higuchi’s algorithm to data as those of Figs. 2, 3, and 4, sta-
ble scaling exponents are obtained.

The second technique that we applied was introduced by
Peng et al. (1994, 1995), and it consists of a modified root
mean square analysis of a random walk termed detrended
fluctuation analysis (DFA). The DFA has advantages over
conventional methods because it permits the detection of
long-range correlations embedded in a seemingly non sta-
tionary time series, and also avoids the spurious detection of
apparent long-range correlations that are an artifact of non-
stationarity. Briefly the DFA algorithm is described as fol-
lows: Consider a time seriesx(1), x(2), x(3), · · · · · · , x(N).
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Figure 3 
Fig. 3. Pre-processed time series of Chilpancingo station, 1993,(a)
NS channel,(b) EW channel.

A new time series{y(k)} is obtained by integration of the
original time series,y(k)=

∑k
i=1 (x(i) − xave) wherexave is

the average of the data set. Next, the integrated time series is
divided into boxes of equal lengthn. For each box of length
n, a least-squares line is fitted to the data, (representing the
trend in each box:yn(k)). Next, the integrated time series is
detrended by subtractingy(k)−yn(k) in each box. The root
mean-square fluctuation of this integrated and detrended time
series is calculated by

F(n) =

√

√

√

√

1

N

N
∑

k=1

[y(k) − yn(k)]2. (3)

This computation is repeated over many time scales (box
sizes) to provide a relationship betweenF(n), and the box
sizen. Typically F(n) will increase with box sizen. A lin-
ear relationship on a double log graph indicates the presence
of scaling, that is:

F(n) ∝ nα (4)

The value of the scaling exponentα, characterizes the corre-
lation in a time series. For example white noise hasα=0.5.
Two special cases areα=1 corresponding to a 1/f noise
and α=1.5 to a Brownian noise. Values into the interval
0.5<α≤1, indicate persistent long-range power-law corre-
lations. In contrast, 0<α<0.5 indicates a different type of
power-law correlation such that large and small values of the
time series are more likely to alternate.

3 Data processing

Electric self-potential data consist of the measurements of
potential differences,1V, between two electrodes buried 2 m
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Fig. 4. Pre-processed time series of Puebla station, 1992.(a) NS
channel,(b) EW channel.

of depth into the ground and separated 50 m of distance. A
couple of electrodes was oriented in North-South direction,
NS channel, and other couple in East-West direction, EW
channel (Yepez et al., 1995), as it indicates VAN method-
ology (Varotsos and Alexopodus, 1984a, b). This survey
project has consisted in six monitoring stations and had been
in operation from 1992 to 1996. The data considered in this
study correspond to three monitoring stations located at the
cities of Acapulco (A) (16.85◦ N, 99.9◦ W), Chilpancingo
(C) (17.11◦ N, 99.24◦ W) and Cholula Puebla (P) (19.1◦ N,
98.3◦ W) (see Fig. 1). The data acquisition discussed in this
work was made during the years 1992 and 1993, although
Puebla station worked only some months of 1992. At each
electroseismic station two time series were simultaneously
recorded (NS and EW channels). Due to technical adjust-
ments, two different sampling rates (1t=4 s or1t=2 s) were
used in different time intervals along the mentioned period
(Yepez et al., 1995). Some problems were present in the
data acquisition, like lacks of data and outliers, among others
inherent to the storage process; therefore, in order to mini-
mize these problems, a pre-processed procedure was applied.
First, the small lacks were filled and the higher frequencies
were removed by means of a moving average each two min-
utes (30 or 60 samples), because the seismic phenomenon is
given in the ultra low frequencies range. The elimination of
outliers was performed in order to have the same reference
level, leading to more homogeneous data. Finally, the local
tendencies of (1V/L) were removed by a detrending proce-
dure withµ=0. In Figs. 2, 3 and 4 some pre-processed time
series are depicted.

www.nat-hazards-earth-syst-sci.net/7/591/2007/ Nat. Hazards Earth Syst. Sci., 7, 591–598, 2007
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Fig. 5. Some examples of crossover observed in DFA of the Aca-
pulco station time series. The crossover point corresponds to a lag
of about 6 h.

4 Results

The aim of this work is to establish a characterization of the
electric self-potential fluctuations monitored at sites located
on regions I, II and III showed in Fig. 1. The first considered
region is located at the state of Puebla México, where we in-
stalled a station at P (19.1◦ N, 98.3◦ W). Gonzalez-Pomposo
and Valdez-Gonzalez (1995) have reported seismicity mea-
surements in this region, which is characterized by seisms
with Mc<4. The number of microseisms in this zone is
in the order of one hundred per year. This microseismicity
level is remarkably lesser than that of Guerrero state (region
III) (Singh et al., 1983). In region III we installed the sta-
tion A (16.85◦ N, 99.9◦ W). In this region are very common
seisms with M>4, which are quite infrequent in region I.
Both considered regions have similar surfaces (in the order of
3–6×104 km2). Region II corresponds to a zone of interme-
diate seismicity (Singh et al., 1983), where we installed the

Fig. 6. Some examples of crossover observed in DFA of the
Chilpancingo station time series. The crossover point corresponds
to about a lag of 6 h.

C station (17.11◦ N, 99.24◦ W). We consider that the level
of seismicity should be correlated with the natural electric
activity. Nevertheless, the anthropogenic activity represents
an important component of noise; therefore the methodology
employed must have the capacity to distinguish the most im-
portant characteristics. The Detrended Fluctuation Analysis
(DFA) and Higuchi algorithm were applied to data sets as
those of Figs. 2, 3 and 4. We have chosen nonoverlapping
time windows of five days (3600 points) to compute the frac-
tal dimensionD (Eq. 2) and DFA exponents,α, (Eq. 4).

In the case of the first method, DFA, Figs. 5 and 6 show
representativelog-log plots ofF(n) vs.n. For Acapulco sta-
tion a crossover in the scaling exponent is observed in both
channels, over short scalesα1 is close to one (see Fig. 5).
For Chilpancingo station, we observed a more accentuated
crossover which reveals changes in the fractal dynamics or-
ganization (see Fig. 6). In this case, for short scales the ex-
ponent remains close to one but over large scales theα value

Nat. Hazards Earth Syst. Sci., 7, 591–598, 2007 www.nat-hazards-earth-syst-sci.net/7/591/2007/
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Fig. 7. Scatter plot ofα2 vs. α1. A clear separation between Aca-
pulco and Chilpancingo data is shown(a) NS Channel,(b) EW
Channel.

is smaller than 0.5, indicating antipersistent behavior. The
pre-processed time series of Puebla (Fig. 4) had several im-
portant lacks of data such that it was not possible to calculate
representative DFA exponents.

To go further inside in the comparison of our data sets,
we constructed scatter plots of DFA exponents for Aca-
pulco and Chilpancingo data,α1 vs. α2, and for both chan-
nels. Those are depicted in Fig. 7,α2 and α1 are the
scaling exponents associated with large and short window
sizes respectively. In this case we observe segregation be-
tween the points corresponding to the high level seismic-
ity region (III) and the intermediate level seismicity re-
gion (II). The average values ofα2 andα1 for both chan-
nels are<α2>NS=1.225±0.380, <α1>NS=1.142±0.120,
<α2>EW =1.139±0.370,<α1>EW =1.219±0.140 for Aca-
pulco respectively. For Chilpancigo station the average re-
sults are<α2>NS=0.227±0.090, <α1>NS=1.064±0.190,
<α2>EW =0.260±0.090, <α1>EW =1.028±0.250 respec-
tively.

Fig. 8. Log-log plot of<L(k)>vs. k for representative cases of the
three regions. A clear crossover is observed for Chilapancingo and
Puebla data.

When Higuchi’s algorithm was applied, a crossover is also
observed in thelog-log plots of<L(k)> vs k (Eq. 2) and two
fractal dimensionsDS andDL can be determined. Here,DS

andDL means fractal dimension of short and large scales.
In Fig. 8 representative cases of the crossover behavior are
described. For Acapulco data, a weak change in the scal-
ing exponent value is observed whereas for Chilpancingo and
Puebla a clear crossover is identified.

We notice that for Puebla data, we observed a more
evident crossover, which indicates a clear separation
in the fractal dimension of short and large scales. In
Fig. 9, we present the scatter plot constructed withDS

vs. DL. For this case we also observe a reasonable
segregation of points for the three regions considered.
The average valuesDS and DL are: Chilpancingo
(<DS>NS=1.611±0.150,<DL>NS=2.019±0.044,
<DS>EW =1.753±0.174, <DL>EW =2.043±0.040); Aca-
pulco (<DS >NS=1.912±0.033,<DL>NS=2.058±0.145,
<DS>EW =1.859±0.043, <DL>EW =2.063±0.017) and
Puebla (<DS>NS=1.299±0.152, <DL>NS=2.066±0.053,
<DS>EW =1.347±0.120,<DL>EW =2.019±0.041).

5 Discussion and concluding remarks

Some authors (Telesca et al., 2001) have reported a good
correlation between the dynamical mechanism governing the
seismic and geoelectric phenomena. In the case of Telesca
et al. (2001) the Hurst exponent of seismic sequences and
the spectral power-law exponent of geoelectric time series at
southern Italy were used to establish such a good correlation.
We did not present a comparative study of geoelectric and
seismic activities in the sense of Telesca et al. (2001) because
at the present day we have not the seismic catalogues for the

www.nat-hazards-earth-syst-sci.net/7/591/2007/ Nat. Hazards Earth Syst. Sci., 7, 591–598, 2007
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α α

 

Figure 9a 

 

Fig. 9. Scatter plot ofDSvs. DL. In general, it is observed a sep-
aration between the corresponding points of the three regions con-
sidered.(a) NS Channel,(b) EW Channel.

monitored regions. In the present study the different levels
of seismicity for three Mexican regions are taken as given in-
formation and then the difference in the geoelectric activity
is explored through the DFA-method and the Higuchi frac-
tal dimension, in Fig. 7 we depicted the DFA scatter plots of
α1 vs.α2, for both Acapulco and Chilpancingo stations (NS
and EW channels). A clear segregation between the points
(α1, α2) corresponding to the high seismicity region III, and
those of the intermediate seismicity region II, is observed for
both channels (NS and EW). Nevertheless the wide scatter-
ing of points pertaining to the both separated clouds we cal-
culate the average ofα1 andα2 (NS and EW). For the case of
Chilpancingo station (region II), both,<α2> in NS and EW
directions result smaller thanα=0.5 (white noise) with an an-
tipersistent behavior (Peng et al., 1995). For the case ofα1,
that is, the DFA-exponent for lags smaller than six hours, the

Chilpancingo data behaves as a good scale-free flicker noise
(α∼=1). In the case of the DFA – analysis of Acapulco station
data, we find that the average DFA-exponents are reasonably
near of 1/f noise for both directions. Thus, within the DFA
context the main difference between both data sets is that
for lags larger than six hours Chilpancingo losses its 1/f be-
havior becoming a series with near white noise behavior. By
means of the Higuchi’s analysis in Fig. 9 we depict the scatter
plots ofDSvs. DL for the three regions considered. We see
that the three clouds of points (DS, DL) corresponding to the
three seismic regions are approximately segregated. Regard-
less the wide scattering of these points, we calculated their
average values obtaining the numerical results mentioned in
the previous section. We observe that under this analysis all
the fractal dimensions for large lags result approximately un-
correlated white noise. For short scales Acapulco is near 1/f

noise and Chilpancingo and Puebla are near Brownian noise
(short-range correlations). For short scales, in the case of
Puebla station we obtained the Higuchi dimensions given in
Sect. 4, which by means of the so-called Berry’s equation,
D=

5−β
2 (Berry, 1979; Turcotte, 1992), give the spectral ex-

ponentsβs,NS=3.402 andβs,EW=2.306 representing a non-
stationary series with strong persistence (Malamud and Tur-
cotte, 2001). In summary, although both methods produce
wide scattering of points, one can qualitatively see that geo-
electric data for the three regions have a reasonable separa-
tion in both the DFA and Higuchi scatter plots. Thus, under a
first approximation we can assert that the global differences
in seismicity levels are translated into differences in global
geoelectric activity. We must remark that the present analy-
sis is only a first approximation because as it is well known,
Earth has a very rough electrical conductivity structure and
scaling exponents possibly provide a measure of heterogene-
ity in the distribution of the underlying electrical conductiv-
ity. Evidently our approach does not permit to distinguish
any particular geological structure as major faults for exam-
ple. However, other geoelectric approaches (Makris et al.,
1999; Eftaxias et al., 2002; Balasis et al., 2002; Balasis et
al., 2005; Varotsos et al., 1996) address the problem of link-
ing geoelectric signals with the geoelectrical structure of the
area that hosts the stations as well as the regional structure
between the station and the seismic focal area.
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