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Abstract

The monthly mean shortwave (SW) radiation budget at the Earth’s surface (SRB) was
computed on 2.5-degree longitude-latitude resolution for the 17-year period from 1984
to 2000, using a radiative transfer model accounting for the key physical parameters
that determine the surface SRB, and long-term climatological data from the Interna-
tional Satellite Cloud Climatology Project (ISCCP-D2). The model input data were sup-
plemented by data from the National Centers for Environmental Prediction — National
Center for Atmospheric Research (NCEP-NCAR) and European Center for Medium
Range Weather Forecasts (ECMWF) Global Reanalysis projects, and other global data
bases such as TIROS Operational Vertical Sounder (TOVS) and Global Aerosol Data
Set (GADS). The model surface radiative fluxes were validated against surface mea-
surements from 22 stations of the Baseline Surface Radiation Network (BSRN) cover-
ing the years 1992-2000, and from 700 stations of the Global Energy Balance Archive
(GEBA), covering the period 1984—2000. The model is in very good agreement with
BSRN and GEBA, with a negative bias of 14 and 6.5 Wm_z, respectively. The model
is able to reproduce interesting features of the seasonal and geographical variation
of the surface SW fluxes at global scale, which is not possible with surface measure-
ments. Based on the 17-year average model results, the global mean SW downward
surface radiation (DSR) is equal to 171.6 Wm™2, whereas the net downward (or ab-
sorbed) surface SW radiation is equal to 149.4 Wm™2, values that correspond to 50.2
and 43.7% of the incoming SW radiation at the top of the Earth’s atmosphere. These
values involve a long-term surface albedo equal to 12.9%. Significant increasing trends
in DSR and net DSR fluxes were found, equal to 4.1 and 3.7 Wm’z, respectively, over
the 1984—2000 period (equivalent to 2.4 and 2.2 Wm™2 per decade), indicating an in-
creasing surface solar radiative heating. This surface SW radiative heating is primarily
attributed to clouds, especially low-level, and secondarily to other parameters such as
total precipitable water. The surface solar heating occurs mainly in the period starting
from the early 1990s, in contrast to the commonly reported decreasing trend in DSR
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through the late 1980s, found also in our study. The computed global mean DSR and
net DSR flux anomalies were found to range within £8 and :|:6Wm‘2, respectively,
with signals from El Nino and La Niha events, and the Pinatubo eruption, whereas
significant positive anomalies have occurred in the period 1992—-2000.

1. Introduction

Knowledge and monitoring of the Earth’s radiation budget (ERB) is essential for im-
proving our understanding of the Earth’s climate and potential climatic changes (IPCC,
2001), since the radiative energy exchanges at the top of the atmosphere (TOA) and
at the Earth’s surface regulate the redistribution of energy and determine the energy
balance of the Earth-atmosphere system. Rather than examining ERB as a whole,
it is very important to quantify its components, namely the Earth’s radiation budget
at TOA (TOARB), within the atmosphere, and at the surface (SRB). Attempts to con-
struct a global annual mean ERB date back to the beginning of the 20th century (Abbot
and Fowle, 1908; Dines et al., 1917). Meanwhile, there has been a long history of
other early studies (e.g. Houghton, 1954; Budyko, 1956; London, 1957), but all these
studies were severely limited by the lack of knowledge of planetary albedo. Satellite
observations, such as those from Nimbus-7 and the Earth Radiation Budget Experi-
ment (ERBE) have greatly improved our knowledge of TOARB. Nevertheless, satellites
do not measure directly radiative fluxes at the Earth’s surface. Therefore, at present
time, knowledge of SRB is far less advanced than the one for TOARB. The SRB, how-
ever, is a major component of the energy exchanges between the atmosphere and the
land/ocean surface, and hence affects temperature fields, atmospheric and oceanic
circulation, and the hydrological cycle. For example, about half of the solar energy ab-
sorbed at the surface is used to evaporate water, which eventually forms clouds (Li et
al., 1997). Besides, SRB data constitute a valuable resource for initialising and testing
climate and general circulation models (GCMs). The estimation of SRB represents one
of the most significant objectives of the World Climate Research Programme (WCRP)
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as demonstrated by its Global Energy and Water Cycle Experiment (GEWEX), and in
particular the GEWEX SRB project (Stackhouse et al., 1999; Gupta et al., 1999).

Due to the inability of directly measuring radiation at the Earth’s surface with satel-
lites, the SRB has to be derived. On the other hand, surface observations cannot solve
the problem, because of the sparsity and nonhomogeneity of stations (Li and Leighton,
1993; Li et al., 1997), especially over oceans. Thus, global atlases from surface-based
observations (Esbensen and Kushnir, 1981) suffer from this shortcoming. Therefore,
the modelling approach remains as the only alternative, provided that the model results
can be trusted through validation against quality measurements. One way to solve the
problem is to establish correlations between TOA and surface radiative fluxes in order
to derive surface fluxes directly using the satellite measurements of TOA fluxes (Ra-
manathan, 1986; Schmetz, 1989; Weare, 1989; Cess et al., 1991; Darnell et al., 1992;
Pinker and Laszlo, 1992; Li and Leighton, 1993). Although this technique was initially
shown to work quite properly for SRB (Cess et al., 1991; Li et al., 1993), a strong de-
bate was initiated by studies claiming that there is a substantial underestimation of solar
absorption by clouds (Cess et al., 1995; Ramanathan et al, 1995; Pilewski and Valero,
1995), while other studies have challenged this (Chou et al., 1995; Li et al., 1995; Ark-
ing et al., 1996). Thus, there is a serious uncertainty regarding the reliability of the
correlations for producing surface SW fluxes (Gupta et al., 1999). Another way to solve
the problem of estimating SRB is to develop algorithms and models to compute SRB
fluxes on a global scale using observations of atmospheric, cloud, and surface proper-
ties, preferably from operational satellite sources to provide global coverage. Following
the early work of London (1957), a series of modelling studies (Manabe and Strickler,
1964; Vonder Haar and Suomi, 1971; Sasamori et al., 1972; Raschke et al., 1973;
Ellis and Vonder Haar, 1976; Jacobowitz et al., 1979; Gautier et al., 1980; Stephens
et al., 1981; Budyko, 1982) made use of satellite data available at that time. Since
then, the amount and quality of satellite data have substantially improved, especially in
terms of clouds (whose some properties, such as cloud optical depth, represented the
most difficult parameters to be derived for many years) with the International Satellite
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Cloud Climatology Project (ISCCP, Rossow and Schiffer, 1991) that provides the most
complete and comprehensive existing global cloud climatology. Thus, in the last two
decades, a large number of studies estimating SRB have been published (e.g. Raschke
et al., 1987; Darnell et al., 1988; Rossow and Lacis, 1990; Kyle at al., 1990; Stephens
and Greenwald, 1991; Darnell et al., 1992; Hartmann, 1993; Li and Leighton, 1993;
Kiehl et al., 1995; Rossow and Zhang, 1995; Whitlock et al., 1995; Fowler and Randall,
1996; Del Genio et al., 1996; Chen and Roeckner, 1996; Wild et al., 1998a, b; Yu et
al.,, 1999). Gupta et al. (1999) derived an 8-year (July 1983—June 1991) climatology
of SRB by using satellite data from the ISCCP C-series, on a monthly mean basis.
Hatzianastassiou and Vardavas (1999, 2001) provided also an 8-year climatology of
the SW radiation budget of the northern and southern hemispheres, respectively, but
this was done only on a 10-degree latitude zonal and monthly mean basis. Further-
more, these studies have been performed by using data from the ISCCP-C2 series.
The new ISCCP D-series data include significant improvements, especially in terms
of cloud structure and cloud detection over highly reflecting surfaces (cf. Rossow and
Schiffer, 1999) and cover a longer time period, extending up to year 2000. This is
important, since the Earth’s radiation budget changes with time. Although the more
recent energy budget studies, including those from GCMs, but also results from re-
analysis projects (such as the National Centers for Environmental Prediction/National
Center for Atmospheric Research, NCEP/NCAR, or the European Center for Medium
Range Weather Forecast, ECMWF), show good agreement with observations at TOA,
there is a considerable variation for SW SRB (called henceforth simply SRB) within
about 20 Wm™2 (Kiehl and Trenberth, 1997). Moreover, estimated surface SW flux
values tend to be systematically higher than ground-based station observations by sig-
nificant amounts (Garratt, 1994; Wild et al., 1995, 1998a, b; Li et al., 1997; Kiehl and
Trenberth, 1997; Garratt et al., 1998). For example, the global and annual mean SW
flux absorbed at the surface is generally larger than 170 Wm™2, with the exception of
the European Center/ Hamburg (ECHAM) model, while the only direct radiative sur-
face flux measurements from the Global Energy Balance Archive (GEBA, Ohmura and
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Gilgen, 1993), which constitutes the “best” estimate of the globally averaged net SW
flux, indicates values that are lower by about 20-25 Wm ™2,

In this study we provide a 17-year (January 1984—-December 2000) climatology of
the Earth’s SRB, on a 2.5-degree longitude-latitude resolution, and on monthly mean
basis. A physical deterministic radiative transfer model is used to compute the SRB
components, i.e. the SW downward surface radiation (DSR) and the net downward
(or absorbed) SW radiation (called henceforth net DSR) at the Earth’s surface. More
specifically, the seasonal and geographical variation of SRB components is investi-
gated, whereas emphasis is given to patterns of averaged values over space and time,
specific local and temporal characteristics, and inter-annual variability. The model com-
putes the SW radiative fluxes in the atmosphere and the SW radiation budget at TOA
and is described in detail by Hatzianastassiou et al. (2004a). Climatological data for
the surface and atmospheric parameters which are relevant to the transfer of SW radi-
ation, were taken from existing complete global data sets. Data for clouds, but also for
other surface and atmospheric parameters were taken from ISCCP-D2, supplemented
by humidity and temperature data taken from NCEP/NCAR and ECMWEF reanalysis
projects. Model input data were also taken from other global data bases, such as
the Television Infrared Observational Satellite (TIROS) Operational Vertical Sounder
(TOVS), whereas aerosol particles were accounted for in the study, by using relevant
data from the Global Aerosol Data Set (GADS), as explained in Sect. 3. The model
computations are validated at the pixel level against quality data from the Baseline Sur-
face Radiation Network (BSRN) and GEBA. A brief description of the model is given
in the next section, while Sect. 3 describes the model input data. The model results
are given in Sect. 4, where patterns of seasonal and temporal distributions of SRB
components are discussed on the basis of pixel-level model results, while mean hemi-
spherical and global, along with mean annual SRB results are given and inter-annual
variations and trends are examined. Section 5 provides a sensitivity analysis of SRB
components to the various key surface and atmospheric parameters. The results of the
model validation at pixel level against BSRN and GEBA stations are given in Sect. 6,
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before the summary and conclusions (Sect. 7).

2. Model description

The SW radiative transfer model used is described in detail in the work by Hatzianas-
tassiou et al. (2004a), where it has been used to compute the top of atmosphere
(TOA) SW radiation budget. It was developed from a radiative-convective model
(Vardavas and Carver, 1984) and other versions have been used by Vardavas and
Koutoulaki (1995) and Hatzianastassiou and Vardavas (1999, 2001) to compute the
SW radiation budget of northern and southern hemispheres on a mean monthly and
10° latitude zonal basis. The model has been successfully tested (cf. Hatzianastassiou
and Vardavas, 1999, 2001) according to the Intercomparison of Radiation Codes in
Climate Models (ICRCCM) program, as well as against Earth Radiation Budget Exper-
iment (ERBE) S4 scanner data (cf. Hatzianastassiou et al., 2004a).

In brief, the radiative transfer model divides the SW radiation into two spectral
bands, one for the ultraviolet-visible (UV-visible) wavelengths (1<0.85 um) accounting
for about 60% of total solar radiation, and a second band for the near-infrared (near-
IR) wavelengths (0.85 um<A <5 um) accounting for about 40% of total solar radiation.
The model achieves a compromise between accuracy of spectral model computations
and speed of computation of parameterisation schemes. The monthly mean incoming
total solar flux at TOA for each 2.5-degree latitude-longitude pixel, is computed theoret-
ically, in the way explained in detail by Hatzianastassiou et al. (2004a). The computed
incoming solar radiation at TOA for each month and 2.5-degree pixel was compared
successfully against 5-year scanner S4 data from ERBE (model — ERBE differences
within 2.5 Wm’z) and is divided into the UV-visible and near-IR spectral bands. The
solar radiative transfer in the Earth-atmosphere system is treated separately in each
spectral band and accounts for absorption and multiple scattering. The model takes
into account the physical parameters and processes that affect significantly the solar
radiation transfer: ozone (O3), water vapour (H,0), carbon dioxide (CO,), aerosol par-
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ticles, Rayleigh scattering, surface reflection and clouds (low, middle and high-level).
For each pixel, the sky is divided into clear and cloudy fractions, and hence direct
and diffuse components are considered for solar radiation. The transfer of solar radi-
ation in the Earth-atmosphere system is treated separately for clear- and cloudy-sky
atmospheric conditions, by taking into account the presence of the relevant surface
and atmospheric parameters (for details see Hatzianastassiou et al., 2004a). The net

incoming solar radiation at TOA (planetary absorption), F the outgoing SW radi-

net,top’
ation (OSR) at TOA, F!  andthe planetary albedo R, are computed from

top’
! !
Fnet,top = athop (1)
T )
Ftop = (1 - Gp) Ftop (2)
T
F
t
Ry = — 3)
Ftop

where a,, is the planetary absorptivity. The a,, and hence the OSR (Eq. 2), has a clear-
sky component, a,, and three cloudy-sky components (corresponding to low, middle
and high-level clouds), a,;, and is expressed as

ap = (1-Ac)as+ z AciQci (4)
/
Both clear- and cloudy-sky components are computed by dividing the incoming solar
radiation into UV-visible and near-IR components, based on estimated transmissivities,
absorptivities, and reflectivities of the different atmospheric and cloud layers and the
Earth’s surface (see Vardavas and Koutoulaki, 1995; Hatzianastassiou and Vardavas,
1999, 2001). The reflectivity, transmissivity and absorptivity of each atmospheric layer,
due to O4, CO,, water vapour, and Rayleigh scattering, are computed by using param-
eterisations derived from laboratory measurements (Vardavas and Koutoulaki, 1995).
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More specifically, absorption by Oj in the visible between 0.45 and 0.85 um (Chappuis
bands) is taken into account by the model. The O4 layer also absorbs UV radiation be-
tween 0.2 and 0.35 um (Hartley-Huggins bands). The absorption of solar radiation by
CO, takes place throughout the atmosphere. We neglect the UV absorption by CO,,
which occurs below 0.2 um, where the solar flux is less than 0.01% of the total incom-
ing solar flux, while CO, absorption in the near-IR is accounted for in the model. The
water vapour absorption, which has significant bands in the near-IR, is parameterised
in the model as in Vardavas and Koutoulaki (1995).

For each cloud and aerosol layer, computations are performed using two-stream ap-
proximation for purely scattering clouds in the UV-visible, and a modified two-stream
approximation allowing for cloud absorption in the near-IR (Vardavas and Koutoulaki,
1995; Hatzianastassiou and Vardavas, 1999) and for aerosol absorption in the UV-
visible. For clear sky, Rayleigh scattering is taken into account by the model in the
UV-visible, while it is neglected for the near-IR component, given that the Rayleigh
scattering cross-section decreases rapidly with wavelength. For a cloudy sky, Rayleigh
scattering is neglected since cloud optical depth is much larger than the Rayleigh scat-
tering optical depth.

Reflection of incident solar radiation from the Earth’s surface is taken into account
and the surface reflectivity, Rg, for each 2.5-degree pixel, is computed considering four
general types of surface: land, ocean, snow and ice (frozen ocean). Then

Rg = f/andRIand + focean’qo + fsnOWRs + fice’qi (5)

where f; is the fractional coverage of the pixel’s surface by each type —i of reflecting

surface. The ocean reflectivity, R,, is computed using Fresnel reflection corrected for

a non-smooth surface for an incident angle qb:cos‘1 u from

. 2 2
R, =05 [(ﬁ) + (ta”a) ] +0.016cos @ (6)

sinb tanb
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where
a=@-sin”" [sing/1.333] (7)
b=2p-a (8)

For incident solar radiation onto a perfectly smooth water surface, the angle of reflection
equals that of incidence, and for normal incidence the reflectivity is 0.021. For an ocean
we correct the Fresnel reflectivity to take into account surface roughness, which leads
to a higher surface reflectivity of about 0.04 for incident solar radiation normal to the
water surface (Kondratyev, 1973). The correction factor 0.016cos@ goes to zero when
the radiation is parallel to the ocean surface in order to maintain a Fresnel reflectivity
of unity in this case. Furthermore, we include the condition that if Fresnel reflectivity
is greater than ice- or snow reflectivity, which occurs for low solar elevations, then
the reflectivities of ice or snow are set equal to the Fresnel one. Kuhn (1989) gives
observations that clearly show this behaviour for snow cover in Antarctica.

Snow albedo, Rg, is set equal to 0.85 and 0.65 (Dickinson et al., 1993) in the UV-
visible and near-IR, respectively, while sea-ice albedo, R;, is set equal to 0.7 and 0.5
(Roesch et al., 2002) in the UV-visible and near-IR, respectively, based on recent es-
timates. Given that land shows a strong spatial variability in terms of its type and as-
sociated reflectance values, the data used were derived from ERBE data for clear sky,
while overcast albedos were obtained by modifying the corresponding clear-sky values
for diffuse radiation conditions (Darnell et al., 1992). Alternatively, the land surface
albedo was also computed based on information on land cover, taken from the Inter-
national Satellite Land Surface Climatology Project (ISLSCP, Sellers et al., 1995). The
ISLSCP data were produced for the 24-month period (1987—1988) and are mapped to
1° by 1° spatial resolution, with a mean monthly temporal resolution. They describe
the geographical distribution of major cover types, based on inter-annual variation of
Normalized Difference Vegetation Index (NDVI). Information for fractional coverage for
each surface type (land, ocean, snow, ice) is obtained from ISCCP-D2 data (Rossow
et al., 1996), whereas suitable reflectivity values for each surface type are ascribed,
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based on values taken from literature (Henderson-Sellers and Wilson, 1983; Briegleb
et al., 1986), which allow for spectral dependence over the UV-visible and near-IR
range of wavelengths, which is very important (Wei et al., 2001), but also allow for
different values for the direct and diffuse components of solar radiation. A correction
was applied to land-surface albedo for high-altitude mountainous areas such as Tibet,
Rocky Mountains or Antarctica’s plateau, consisting in a reduction of the albedo, in
order to take into account the decrease of R, over mountainous non-forested areas,
especially during winter, due to the sub-grid orography (Roesch et al., 2001).

The downward SW radiation at the Earth’s surface (DSR) and the net downward (or
absorbed) SW radiation at surface, are finally computed from the incoming SW radia-

tion at TOA, Fttp, in terms of an effective atmospheric transmissivity, ¢*, with compo-

nents t; and ¢, for a clear-sky and cloudy sky covered by cloud type —i, respectively,

DSR =t"-Fy,_ (9)

where

t=(1-Ay) ti+ D Ayt (10)
i

The effective atmospheric transmissivities ¢ and £, are computed from estimated
transmissivities of ozone, Rayleigh, water vapour, carbon dioxide, aerosols, and low,
middle and high-level clouds, as well as reflectivities of surface, clouds and Rayleigh,
as given by Vardavas and Koutoulaki (1995).

3. The model data

3.1. Ozone, carbon dioxide and water vapour

The mean monthly 2.5-degree latitude-longitude pixel data of the total Oz column
abundance (in Dobson Units) covering the years 1984—2000, were taken from TOVS,
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archived in the ISCCP-D2 package. For CO, a fixed total atmospheric amount was
taken, equal to 0.54¢g cm‘z, corresponding to 345 parts per million by volume (ppmv).
The water vapour data used were taken from both the NCEP/NCAR and ECMWF
Global Reanalysis Projects, which provide long-term climatological data. The data
for specific humidity and atmospheric temperature were used to compute the total at-
mospheric water vapour content, W ,o. The gridded NCEP/NCAR and ECMWF data
are provided at surface and various atmospheric levels that extend from the surface up
to the stratosphere. Relative humidity data were also used to compute the humidity of
the aerosol layer. The differences, arising from the use of the two data sets, in terms
of surface SW radiative fluxes were found to be small (mostly within 1-2 Wm™2 at pixel
level), as discussed in Sect. 4.

3.2. Clouds

Mean monthly cloud properties on 2.5-degree equal-angle pixel resolution for the study
period (1984—2000) were taken from the latest D2 stage data of ISCCP (Rossow et al.,
1996; Rossow and Schiffer, 1999), which are improvements over the previous C-series
version (Rossow and Schiffer, 1999). Cloud properties are provided from ISCCP for
nine (9) cloud types which are grouped into three categories: low-level clouds having
top pressures greater than or equal to 680 mbar, high-level clouds with top pressures
less than 440 mbar and mid-level clouds in between (Rossow et al. 1996). Low-level
clouds are considered to be Cu, St and Sc clouds. The middle ones include Ac, As and
Ns, while Ci, Cs and deep-convective clouds are considered as high-level clouds. High
clouds are treated as cold clouds, while each of the above low and middle clouds are
subdivided into liquid- or ice-phase clouds, resulting in 15 cloud types for which proper-
ties such as cloud cover, cloud optical thickness, cloud-top temperature and pressure,
as well as liquid or ice water path are provided by ISCCP-D2. The values for the 15
independent cloud types were then appropriately averaged (see Hatzianastassiou and
Vardavas, 1999) to yield data for low, mid and high-level clouds needed by our model.
Note that in our study, the ISCCP-D2 individual cloud data are used, which are derived
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by using the visible/infrared (VIS/IR) analysis, rather than the low, mid and high-level
cloud data, also provided by ISCCP-D2, which are derived by using the IR-only anal-
ysis. This was done because the combined VIS/IR analysis is superior to the IR-only
during daytime (Rossow et al., 1996), which is more appropriate for SW radiation bud-
get studies. The VIS/IR (individual) cloud data were found to dramatically improve the
model results at both TOA and surface, in terms of comparison with ERBE-S4 satellite
and BSRN and GEBA site measurements, respectively.

Cloud cover fractions, A;, for low, mid, and high clouds are calculated from the sum
of cover fractions of the independent ISCCP-D2 cloud types, whereas the total cloud
cover fraction, A., is calculated from the sum of fractions for low, middle and high
clouds

Ac = ZACi (11)

For the computation of the cloud SW transmissivity and reflectivity, the model also
requires cloud absorption optical depth, 7, and cloud scattering optical depth, 5.
ISCCP-D2 provides, however, 7. only at the visible wavelength 0.6um. The 75(near-
IR) and 72 (near-IR) values were derived by using either Mie computations or existing
parameterisations (Slingo, 1989; Ebert and Curry, 1992) for ISCCP-D2 liquid and ice
clouds, by assuming the appropriate ISCCP-D2 cloud microphysics, as explained in
detail by Hatzianastassiou et al. (2004a). For the computation of cloud reflectivity and
transmissivity, the model needs values for the cloud asymmetry parameter, g., not
provided by ISCCP, which differ between liquid and ice clouds (Liou, 2002). Thus,
values of g, were computed separately for liquid and ice clouds, for both UV-visible and
near-IR range of wavelengths, by using both Mie computations and parameterisations,
as explained by Hatzianastassiou et al. (2004a). The computed g, values in the UV-
visible are equal to 0.85 and 0.78 for liquid and ice clouds, respectively, while the
corresponding values in the near-IR range are equal to 0.82 and 0.8.

4557

ACPD
5, 4545-4597, 2005

Earth’s surface
shortwave radiation
budget

N. Hatzianastassiou et al.

Title Page

Conclusions| References

Abstract | Introductionl

Full Screen / Esc

Tables | Figures
| e
I

Back | Close |

Print Version |

Interactive Discussion |

EGU


http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/4545/acpd-5-4545_p.pdf
http://www.atmos-chem-phys.org/acpd/5/4545/comments.php
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

3.3. Rayleigh scattering, surface reflection and aerosol particles

Rayleigh scattering is considered in the model as described in Vardavas and
Koutoulaki (1995). The surface reflection is computed with the model at each pixel
for each month in the period 1984—2000, by considering four types of surface: land,
ocean, snow, and ice (frozen ocean). Information on spatial and temporal variation of
the fractional coverage of the Earth’s surface by each type, was taken from ISCCP-
D2. The radiative effect of aerosols is computed with our model by using a modified
two-stream approximation allowing for scattering and absorption in the UV-visible and
near-IR ranges of wavelength. Our model requires aerosol optical properties, namely
aerosol optical thickness (AOT), single scattering albedo (®,.,), and asymmetry pa-
rameter (g,.,)- Currently, there is no data base providing such aerosol data for the
whole study period 1984—-2000 on a global scale. There are new satellite-based in-
struments (e.g. Moderate Resolution Imaging Spectro-Radiometer, MODIS, or Polar-
ization and Directionality of the Earth’s Reflectance, POLDER) performing accurate
spectral aerosol measurements on a global scale, but they have only started their op-
eration from year 2001. There are some AOT data for the whole period from the Global
Aerosol Climatology Project (GACP), but without global coverage as they only cover
the ocean areas. On the other hand, there are AOT data with global coverage from the
Total Ozone Mapping Spectrometer (TOMS, Torres et al., 2002), but no @,,,, and g,,,
data. New re-processed AOT data from TOMS, including @,,, data, that will cover the
period 1979-2000 will be released by NASA Goddard Space Flight Center (GSFC).
In the meantime, as a first step, the model-required aerosol data were derived from
the Global Aerosol Data Set (GADS, Koepke et al., 1997). GADS provides AOT, @,,,,
and g,,, data, at 61 wavelengths from 0.25 to 40 um, 27 of which lie in the SW range,
and for 8 values of relative humidity (0, 50, 70, 80, 90, 95, 98, and 99%). Given
the strong dependence of aerosol optical properties on ambient relative humidity, the
original GADS properties were then re-computed in a realistic way, for actual relative
humidity values for the aerosol layer, as explained in detail by Hatzianastassiou et
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al. (2004b) for each month in the period from January 1984 to December 2000. Sub-
sequently, the computed values of aerosol optical properties were averaged into the
UV-visible and near-IR ranges, weighted by the spectral distribution of the incoming
solar flux (Thakaekara and Drummond, 1971). A complete description of the treatment
of aerosols in the model, as well as of GADS aerosol data, can be found in the work by
Hatzianastassiou et al. (2004b).

3.4. Cloud-top pressure, cloud physical thickness and surface pressure

The cloud-top pressure, p., and physical thickness, dp., both determine the atmo-
spheric layer where water vapour absorption is replaced by cloud scattering and ab-
sorption. Values of p, were taken from ISCCP-D2 for low, mid, and high-level clouds.
The ISCCP-D2 does not provide dp, data, so these were estimated from Peng et
al. (1982) for the Northern Hemisphere, as explained in the work by Hatzianastassiou
and Vardavas (1999), while dp, values for Southern Hemisphere were estimated in
the way described by Hatzianastassiou and Vardavas (2001), by combining the values
from Peng et al. and those derived from Liou (1992). A complete topography scheme
(which is important for regions with high altitude, such as the Tibetan plateau, Antarc-
tica, Rocky or the Andes mountains) is included in the model, which uses surface
pressure, p,, data taken either from NCEP/NCAR or from ECMWF Global Reanalysis
Projects gridded in 2.5° by 2.5° pixels for each month of the 17-year period 1984—2000.

4. Model results
4.1. Seasonal and geographical distributions

The geographical distribution of the 17-year average downward SW radiation (DSR)

at the Earth’s surface is determined by the incoming SW radiation at TOA, and the

scattering and absorption processes taking place within the Earth-atmosphere sys-

tem, between the solar radiation and surface and atmospheric parameters (clouds,
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surface, water vapour, trace gases and particulate matter). The latitudinal gradient of
DSR is primarily determined by the incoming solar flux at TOA, and secondarily by
clouds, while the patterns of longitudinal variation are mostly determined by cloud and
surface properties. Therefore, large DSR fluxes are found in polar regions (Figs. 1a,
¢) during local summer, equal to about 300-350 Wm™2 over Antarctica in January and
200-250 Wm™2 over the Arctic in July. Our values are lower than those given by Gupta
et al. (1999), which are equal to 400—450 Wm™2 in Antarctica and 250-300 Wm™* in
the Arctic. Note, however, that Gupta et al. used ISCCP C-series data to derive a 8-
year (1983-1991) SRB against our 17-year (1984—-2000) averages. The larger values
over Antarctica than the Arctic are due to the larger incoming solar radiation at TOA
during perihelion (>500 Wm'z), but also to the smaller ISCCP-D2 summer cloudiness
in Antarctica than in the Arctic (#20% against ~60%, respectively). There is a gradual
DSR decrease from the summer to winter pole in January and July, leading to zero val-
ues poleward of mid-to-high latitudes. The white areas in Fig. 1 correspond to missing
ISCCP model input data, but they do not affect our results since they coincide with polar
night conditions. The latitudinal gradient of DSR is mitigated during spring and autumn
(Figs 1b,d). Overall, the DSR has maximum values over the subsidence regions asso-
ciated with anticyclonic conditions and small cloud amounts, such as oceanic areas in
low latitudes of the summer hemisphere, as well as over the polar areas of the summer
hemisphere. In contrast, small DSR values are found over regions with large cloud
amounts, such as the middle latitudes of the summer hemisphere. Thus, DSR values
as low as 140 Wm™2 are found over the storm-track zone of southern hemisphere (50°—
70° S) in January, whereas values down to about 100 Wm™2 are computed in October.
Corresponding features, with DSR values equal to 100-140 Wm=2in April and July, ex-
ist over northern Pacific Ocean’s areas with large cloud amounts (equal to about 90%).
In general, there is a strong anti-correlation between DSR and cloud amount. Note the
small DSR values off the western coasts of South America and South Africa in July,
being smaller than corresponding DSR fluxes in adjacent regions of the same latitude,
which are attributed to large cloud amounts (of about 80%). Also, note the relatively
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small DSR values over south-eastern Asia in July (~150Wm‘2), where large cloud
cover (~80%) exists, associated with monsoons. Apart from oceanic areas, there are
some extended continental regions with large DSR values, such as the United States,
South Europe, North Africa and middle-East in April and July, or South America, South
Africa and Australia in January and October. In general, the distribution of DSR has
very similar patterns with the outgoing SW radiation (OSR) at TOA (see Hatzianastas-
siou et al., 2004a), but with inverted minimum/maximum values. For example, the rela-
tively small DSR fluxes over the equatorial regions, caused by the cloudiness along the
inter-tropical convergence zone (ITCZ), are opposite to the relatively large OSR fluxes
there (Hatzianastassiou et al., 2004a).

The net DSR fluxes, given in Figs. 2a—d, are very similar to the DSR fluxes. Over
oceanic areas, with a small albedo, the differences are quite small, while the most
important differences are found over the highly reflecting surfaces, such as deserts
or snow- and ice-covered polar areas, having surface albedo values reaching 40 and
95%, respectively, leading thus to small net DSR values (<100 Wm'z) over Antarctica
in Januarg/ and the Arctic in July (the corresponding DSR values are about 350 and
250 Wm™). This is clearly illustrated by a comparison between the north African desert
and the adjacent Mediterranean Sea for July (Fig. 2c), which shows differences of about
125-150 Wm™2, while there are no significant differences in DSR fluxes (Fig. 1c).

Latitude zonal averages, over the 17-year period from January 1984 to December
2000, of monthly mean DSR and net DSR fluxes (Figs. 3a, b), show that DSR fluxes
vary from zero to 375 Wm'z, having maxima over sub-tropical and polar areas of both
hemispheres in summer, of about 310 and 370 Wm™2, respectively. The maximum val-
ues at the South Pole are slightly larger than those of the North Pole, due to the slightly
smaller Earth-Sun distance, smaller cloudiness and drier atmosphere. Small seasonal
variations exist in the tropics, where weak seasonal variation in solar declination and
cloudiness occur. The seasonal variability of DSR increases towards the poles, where
it can be up to 375 Wm™2, Large DSR values are found in northern hemispherical areas
extending from the equator to the North Pole in July, whilst in the southern hemisphere
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in January, there are relatively smaller DSR fluxes of about 150 Wm™2 from 50°S to
70° S, due to large cloudiness along the storm-track zone of South Hemisphere. In both
hemispheres, the maximum of DSR values occur in sub-tropical areas (between 10 and
35° of latitude) rather than in the tropics, apart from the poles. This is due to the fact
that total cloudiness has minimum values (of about 50%) over the above sub-tropical
areas, and not along the equator, where the ITCZ involves total cloud cover values
of about 60-70%, according to the ISCCP-D2 data. Our computed zonally averaged
DSR values agree with the corresponding 8-year averages given by Gupta et al. (1999),
but they are smaller in the polar areas by 30-80 Wm™2. In the tropics, (20° S—20° N),
maximum DSR values occur during spring and autumn, and not in summer as in sub-
tropical, mid-latitude and polar areas. This behaviour, which has been also reported
by Darnell et al. (1992) and Hatzianastassiou and Vardavas (1999), is attributed to
maximum values in the incoming solar radiation at TOA during these seasons over the
tropics, as well as to relevant features in the annual cycle of cloudiness and total precip-
itable water. Our maximum DSR and net DSR values in tropical and sub-tropical areas
(20° S—20° N) are slightly larger (by ~10Wm™2) than those given by Hatzianastassiou
and Vardavas (1999) and even larger than those of Vardavas and Koutoulaki (1995),
while over Antarctica they are smaller than those given by Hatzianastassiou and Var-
davas (2001) by 20-30 Wm™. The zonally averaged values presented here, however,
should be more reliable, since the earlier ones were computed using zonal averages
of model input data to produce zonal mean fluxes, rather than pixel-level input data.
Although the net DSR fluxes (Fig. 3b) show some similar features with the DSR values,
there are also some differences. Thus, the polar areas do not show maxima in net DSR
fluxes, while there is a significant inter-hemispherical contrast in terms of the magni-
tude of summer sub-tropical maximum net DSR values, due to the smaller surface
albedo of the South Hemisphere (smaller land-to-sea ratio).
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4.2. Time series

The time series of global zonally averaged monthly mean DSR and net DSR fluxes
over the entire 204-month period 1984—2000 indicate that the patterns shown in Fig. 3
are repeated over the 17-year period (Fig. 4). Thus, maximum DSR values of about
260-280 Wm™2 occur over sub-tropical regions (10°—40° N and S) during local summer,
whereas maximum values are also found in polar areas during summer, which are
slightly larger in the southern than northern pole. Local minimum values of about
200 Wm™2 are found in equatorial areas, induced by the ITCZ cloudiness, as well as
over both hemispherical middle-to-high latitudes (around 60° N and S), due to the large
stratiform cloud amounts over the oceans at these latitudes. The features of net DSR
are very similar to those of DSR, except in polar areas, where the net DSR drops down
to values of <100 Wm™2. Although there are some inter-annual trends in the surface
SW radiation fluxes, these cannot be clearly seen in plots such as those in Figs. 4a, b,
because of the extended scale of values.

The time-series of the mean monthly hemispheric and global average components of
the surface SRB, over the entire 204-month period from 1984 to 2000, reveal a strong
seasonal cycle for the hemispheric averages of DSR (Fig. 5a). The South Hemisphere
has a slightly larger amplitude (=125 Wm’z) than the North one (=1 10Wm’2). This
is due to the fact that the seasonal cycle of the net incoming SW radiation at TOA is
larger in the South Hemisphere (~300 Wm’z) than in the North one (~250 Wm‘z). An-
other reason is that, as shown by our analysis using both NCEP/NCAR and ECMWF
data, the total precipitable water of the Northern Hemisphere shows a stronger sea-
sonal cycle than that of the Southern Hemisphere, with very large values (up to ~#3.2g
cm'2) in July, against values of about 2.8 g cm~2 in the South Hemisphere, as also
reported by Wittmeyer and Vonder Haar (1994). Therefore, the summer-maximum
of DSR in the South Hemisphere reaches about 240 Wm™2, against 230 Wm~2 in the
North one. The hemispherical DSR averages balance each other to produce a monthly
mean global average DSR with a small seasonal variability (~10—-20 Wm'z), with pri-
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mary and secondary maxima and minima. The applied linear regression to the mean
global DSR 17-year time-series, shows an increasing trend in DSR, equal to 4.1 Wm™2
over the time period 1984—-2000, which is equivalent to a decadal increasing trend of
2.4Wm™2. This increasing trend in DSR is associated with a 17-year decreasing trend
in the reflected SW radiation at TOA, equal to 3.2 Wm'z, as shown by Hatzianastas-
siou et al. (2004a). Our analysis has shown that the trends in both DSR and OSR are
not attributed to the incoming SW radiation at TOA, since the latter shows an insignif-
icant trend of 0.1 Wm™2, but they are attributed to internal physical processes of the
Earth-atmosphere system. Apart from DSR, the net DSR flux has also increased by
3.7Wm™2 over the 17-year period from 1984 to 2000 (or by 2.2 Wm™2 on a decadal
scale).

We have performed an analysis that shows that the increasing trend in global mean
DSR arises, to a large extent, in tropical and sub-tropical areas. Therefore, our study
indicates that the change in tropical SW radiation budget at TOA (increasing plane-
tary heating), indicated by both satellite observations (Wielicki et al., 2002) and model
computations (Hatzianastassiou et al., 2004a; Fotiadi et al., 2005) is associated with a
significant increasing surface solar radiative heating, involving enhancements in both
downward and absorbed solar radiation at the Earth’s surface, especially in low lat-
itudes. It should be noted that since the long-term increase in net DSR (3.7 Wm‘z)
exceeds the corresponding long-term decrease in OSR (3.2 Wm‘z), there must be a
long-term decrease in SW atmospheric absorption (cooling) by 0.5 Wm™2, verified by
our study. Overall, our modelling study indicates that over the 17-year period from 1984
to 2000, a significant change in the SW radiation budget has taken place, consisting
in a planetary solar heating, resulting from a stronger surface solar heating combined
with a smaller atmospheric solar cooling. This should have affected the atmospheric
dynamics by strengthening the Hadley and Walker circulations (Chen et al., 2002),
altering the atmospheric temperature gradient and the formation of clouds and pre-
cipitation. Of course, further and more detailed investigations are necessary to draw
definite conclusions. For example, the model results, in terms of DSR and net DSR
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trends, have to be inter-compared with corresponding trends in station measurements,
and a relevant work is in preparation. Besides, the reasons of the apparent increasing
trend in DSR need to be more thoroughly investigated. A preliminary analysis was
performed, in which the correlation coefficients between long-term tendencies in DSR
and various physical parameters that determine DSR, were computed. In our model
these parameters are: cloud (low, middle and high-level) cover, cloud scattering and
absorption optical depths, surface albedo, total precipitable water, total column O4 con-
centration and incoming SW radiation at TOA. The results of our analysis show that a
decrease in cloud cover, especially low-level, is primarily responsible for the increasing
trend in DSR. We have also performed another study in which we have computed the
contribution of each one of the above relevant physical parameters to the computed
trends in DSR and net DSR, as in the works by Hatzidimitriou et al. (2004) and Fotiadi
et al. (2005). The results of this analysis show that about 70% of the total trend in sur-
face solar radiation comes from the low-level clouds. The results of these preliminary
analyses are in line with similar studies performed to investigate the physical sources
of the corresponding decreasing trend in OSR (Hatzianastassiou et al., 2004a).

The computed anomalies in hemispherical mean DSR fluxes over the 17-year period
(1984—-2000), vary from -9 to 9Wm™ (Fig. 6a), while the global mean DSR anomaly
has variations of up to 6 Wm™2, about the 17-year mean value. Large negative anoma-
lies, i.e. decreased SW radiation reaching the Earth’s surface, are found for the period
1991-1993, which can be attributed to the Mount Pinatubo eruption in June 1991,
and to the 1991/1992 El Nino event. During the same period, the outgoing SW radi-
ation has drastically increased by about 4Wm™ (see Hatzianastassiou et al., 2004a).
The induced rapid decrease in DSR is followed by a recovery period, with positive DSR
anomalies through 1994. There are also other interesting features corresponding to cli-
matic events, such as El Nino and La Nina, associated with negative and positive DSR
anomalies, respectively. For example, negative DSR anomalies as large as 6 Wm™2
follow the 1986/1987 EIl Nino event (Fig. 6a). The large negative DSR anomalies of
about -5 Wm™2 during 1984 can be attributed to the influence of the EI Chichon erup-
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tion that took place in 1983. Also, note that in 1998 the DSR anomalies pass from large
positive values (of about 4Wm‘2) to negative ones (equal to -2 Wm'2), which can be
attributed to the 1997/1998 El Nino event. In general, the variation of DSR anomalies is
similar but opposite in magnitude to that of OSR anomalies (see Hatzianasassiou et al.,
2004). The 4th order polynomial fit to 17-year time-series of global averages of DSR
anomalies shows significant positive DSR anomalies (increasing DSR) in the period
starting from year 1992 (Fig. 6). On the contrary, in the period 1984-1992, negative
DSR anomalies mostly occur, indicating a decreasing DSR flux at the Earth’s surface.
This is in agreement with most measurements and modelling studies, reporting a de-
creasing trend in DSR during the period between 1960 and 1990 (e.g. Gilgen et al.,
1998; Stanhill and Cohen, 2001; Liepert, 2002; Wild et al., 2004). Our model results,
however, show that the situation has changed after the early 1990s, since the surface
solar radiation is found to have increased, due to a decrease in cloudiness, especially
low-level, primarily in tropical and sub-tropical regions. Thus, it seems that during the
last decade of the 20th century, the effect of clouds has dominated any other effect.
This is expected, given that surface solar radiation is more sensitive to clouds rather
than other physical parameters, within the range of their natural variability (cf. Sect. 5).

4.3. Mean annual, hemispherical, and global surface SW radiation budget compo-
nents

Monthly mean 10-degree latitude zonal fluxes were computed by averaging first along
2.5°-width longitudinal circles, then along latitude, by considering the fraction of sur-
face area contained in each 2.5-degree zone. Subsequently, annual mean quantities
were computed by summing the corresponding monthly means for each 10-degree lat-
itudinal zone over the 12 months of the year. The latitudinal variation of mean annual
DSR flux has maximum values of about 230 Wm™2 in sub-tropical areas, while it drops
rapidly to about 80 Wm™2 towards the poles (Fig. 7a). The equator-to-pole variation in
DSR is primarily determined by the latitudinal variation of solar zenith angle, but it is
also influenced by cloudiness. Thus, there is a local minimum in mean annual DSR
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in the equator (equal to about 220 Wm‘z), which is caused by clouds associated with
the ITCZ. There is a local maximum of 230 Wm™2 in DSR around 15° N, in agreement
with previous studies (Liou, 1992; Hatzianastassiou and Vardavas, 1999) while Darnell
et al. (1992) reported a similar local maximum, but shifted poleward by 10° latitude.
Note that in the South Hemisphere, there are local minimum and maximum DSR val-
ues around 60° S and at the south pole, respectively, while in the North Hemisphere
there is a continuous equator-to-pole decrease in DSR. The local minimum in DSR
around 60° S, is caused by the persistent and extended cloudiness occurring over the
oceanic zone of South Hemisphere, and underlines the very important role of clouds,
apart from that of solar declination, in determining the DSR fluxes. The net DSR flux
decreases from about 210 Wm™2 in the tropics to 20-30 Wm~2 in the polar regions
(Fig. 7b). It is very similar to DSR (for example it has local sub-tropical maximum
values), except for the polar areas, but it has differences as well. Thus, the local min-
imum in DSR near 60° S, does not exist in the mean annual net DSR flux, since it is
smoothed out by the much larger absorption of DSR by the Antarctic ocean than the
adjacent Antarctic continent. Note that in contrast to larger DSR fluxes over Antarctica
than the Arctic (Fig. 7a), there are slightly smaller net DSR fluxes, due to Antarctica’s
larger surface albedo. Our values in the tropics are smaller by 5-10 Wm™? than those
given by Hatzianastassiou and Vardavas (1999). Also, our net DSR values are found
to be at the lower end of the range of values given by Li et al. (1997), based on various
observational and modelling estimates, in both tropical and polar areas.

The mean hemispherical DSR fluxes have opposite seasonalities, varying within
the range 110-230 Wm‘z, resulting thus in a mean global DSR flux ranging from 165
to 176 Wm™2 throughout the year (Fig. 7c). The corresponding seasonal variation in
global mean net DSR flux is equal to 8Wm™2 (Fig. 7d). There is a smaller seasonal
variation in net DSR than DSR for both hemispheres and the globe, which is attributed
to the effect of surface albedo. Nevertheless, for both DSR and net DSR, the seasonal
variability is slightly larger in the southern than in the northern hemisphere, which can
be attributed to the larger seasonal variation of the incoming SW radiation at TOA in
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the southern hemisphere (Hatzianastassiou et al., 2004a). The northern hemispherical
mean net DSR fluxes are smaller than the corresponding values given by Hatzianas-
tassiou and Vardavas (1999) by 10 and 15 Wm™2, in terms of their winter minimum and
summer maximum values.

The mean annual hemispherical and global average values over the 17-year period
from 1984 to 2000, for the downward and net downward (i.e. absorbed) SW radiation
at surface, along with corresponding values for the 4 mid-seasonal months of the year,
are given in Table 1, while in Table 2, our computed DSR and net DSR values are also
intercompared with other published values. Note that very few other studies give both
SRB components for the two hemispheres and the globe. On a 17-year basis (1984—
2000), the Earth’s surface is found to receive 171.6 Wm™2 and to absorb 149.4 Wm'z,
resulting in a long-term surface albedo equal to 12.9%. The inter-hemispherical differ-
ences are equal to 4.6 Wm~2 for DSR and only 0.3 Wm™2 for net DSR, implying slightly
larger northern than southern hemispherical surface solar radiative fluxes. Overall, ac-
cording to our 17-year model results using ISCCP-D2 data, on a mean annual basis
and at global scale, the Earth receives 50.2%, while it absorbs 43.7% of the incom-
ing SW radiation entering the Earth-atmosphere system. Our model-computed values
are very close to those given by surface observations (GEBA), with differences equal
to 2.6 and 1.6 Wm™2 for DSR and net DSR, respectively, while they are significantly
smaller than most estimates from other physical deterministic models, GCMs and cli-
matic models, as well as from reanalysis products, by up to 30 Wm™2. In contrast,
our model results seem to be close to those of the ECHAM model as well as those
of ECMWF-ERA. Note that in previous SRB studies, a significant overestimation of
net DSR flux has been reported, with respect to the surface-based estimate given by
Ohmura and Gilgen (1993), involving an uncertainty in the knowledge of SRB (Li et
al., 1997; Kiehl and Trenberth, 1997) of about 20-25 Wm™2. This overestimation has
been associated with extra atmospheric solar absorption (by clouds or aerosols) as in-
dicated by observational studies (Cess et al., 1995; Ramanathan et al., 1995; Pilewski
and Valero, 1995), but also verified by modelling studies (Garratt et al., 1998; Wild et
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al., 1998; Hinkelman et al., 1999). On the other hand, it has been argued that the
surface-based estimate by Ohmura and Gilgen (1993) was probably too low, since it
was derived by measurements taken at a limited number of stations, usually located
over land areas (Kiehl and Trenberth, 1997) and especially populated ones (Li et al.,
1997). Since then, the number of stations involved in GEBA and BSRN networks has
increased, and their spatial coverage expanded to cover remote areas, such as Green-
land and Antarctica. Recently, the “best” surface-based estimate of surface solar ab-
sorption (net DSR) has been revised to 151 Wm™2 for net DSR, close to our model
computed value of 149.4 Wm™2.

5. Sensitivity of surface SW radiation budget

The assessment and quantification of the role of various physical key parameters that
determine the DSR and net DSR fluxes at surface is very important for SW radia-
tion budget studies. To this aim, a series of sensitivity tests were performed with our
model. In each test, the relevant parameter, V, was modified by a certain amount,
AV, i.e. by 10% in most cases, in relative percentage terms, and the modifications of
the downward SW radiation at surface, A(DSR), and of the net DSR flux at surface,
A(NDSR), with respect to the defined reference cases, were computed and subse-
quently expressed either in absolute terms (in Wm'z) or in relative percentage values.
The results given in Table 3 provide values in absolute terms. The year 1988 was
chosen to represent the reference case. The tests were performed on a monthly basis
and at the pixel level, but results are given here in terms of globally and annually aver-
aged A(DSR) and A(NDSR) absolute values. Our model sensitivities are valuable for
assessing possible sources for the obtained discrepancies between model-computed
and surface-measured DSR and net DSR fluxes. The results of our model sensitivity
tests indicate that, on a mean annual and global basis, DSR is found to be primarily
sensitive to cloud parameters, namely the cloud cover, cloud optical depth (especially
the scattering one), cloud asymmetry parameter, as well as to total precipitable water.
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Increasing A, by 10%, separately for low, middle, or high-level clouds, resulted in a
decrease of DSR by up to 3.2 Wm™ (or about 2%). The DSR fluxes were found to be
more sensitive to low rather than to middle or high-level clouds. This is also valid for the
sensitivity of DSR to 7°; thus, increasing 73 by 10% reduced DSR by up to 1.2Wm™2,
Modifying the cloud asymmetry parameter, g., by 5% in relative values, modified DSR
by as much as 8 Wm™2. This shows that the surface solar radiation is very sensitive to
d., Which justifies the special care that was taken in modelling this cloud parameter in
our study. According to our modelling study, changes in the incoming solar radiation at
TOA by 1% (or by about 3.5 Wm™2) can modify DSR by 1.7 Wm™2 at the global scale,
which is important in terms of possible climatic change due to solar variability. It is
interesting that, based on our model sensitivity study, increasing the total precipitable
water by 10%, results in a globally averaged decrease in DSR by about 2Wm™ (or
about 1.1%), which can be important in view of the existing differences between avail-
able humidity data from different reanalysis products (e.g. NCEP/NCAR or ECMWF).
Much larger A(DSR) values are computed on a local scale in our sensitivity tests, as
can be seen in Table 3. The sensitivity A(NDSR) values are slightly smaller than the
A(DSR) ones, apart from the case of surface albedo.

In order to investigate the effect of using humidity data from different sources, we
have performed another sensitivity study, in which the model was run for the years
1985—-1993 by using data either from the NCEP/NCAR or the ECMWF ERA-15 re-
analysis projects, and compared the resulting DSR fluxes at pixel-level (2.5-degree
longitude-latitude) and on a monthly mean basis. The results are given in Fig. 8, where
one can see that overall, the DSR fluxes are highly correlated (R=99.96%), with a
standard deviation of 2.16 Wm™2 and a very small bias, equal to 0.07Wm'2, corre-
sponding to only 0.04% of the mean annual global DSR flux. This verifies that using
NCEP/NCAR or ECMWF data in our model, has generally little impact on the computed
DSR fluxes. Using ECMWF data generally leads to larger DSR fluxes than using data
from NCEP/NCAR. Nevertheless, our more detailed analysis has shown that some-
what larger differences in DSR are found at the pixel level, although in the majority of
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cases they do not exceed 2 Wm™2. For specific cases, however, DSR differences reach
values of 10Wm‘2; this is the case over areas with a significant topography, such as
the Tibetan plateau, Greenland, Rocky Mountains or the Andes. Over these areas,
the ECMWEF specific humidity is lower than that of NCEP/NCAR, by up to 10-20 g/Kg,
leading thus to larger DSR fluxes.

6. Comparisons with surface-site measurements

The model computed DSR fluxes have been validated through comparison with cor-
responding extensive measurements from stations. Such high-quality surface-based
data were taken from two sources, namely the Baseline Surface Radiation Network
(BSRN, Ohmura et al., 1998) and the Global Energy Balance Archive (GEBA, Gilgen
and Ohmura, 1999). The BSRN stations have to follow specific observational and cali-
bration procedures, resulting in standardized data of very high accuracy. The temporal
resolution of the data is also exceptional, of the order of minutes. All flux data in the
BSRN database are quality checked by WCRP. If more than 80% of the minute val-
ues in a specific day pass the quality control, they are subsequently averaged to yield
daily values. If this happens for more than 20 days in a month, then monthly values
are also computed. We then compare these monthly values with the monthly values
calculated by our model. The BSRN network was established in 1992 and the stations
from which at least one monthly DSR value in the period 1992-2000 is available, are
listed in Table 4. The comparison of observed versus calculated monthly mean DSR
fluxes within the 2.5°x2.5° cell containing the BSRN station for all 22 stations, is shown
in the scatterplot of Fig. 9a, while the summarised results of model-BSRN comparison,
in terms of bias, root mean square error (RMS) and the slope of the least-squares line,
for each station, are also listed in Table 4.

The scatterplot shows a bias equalto —14 Wm™2, with a relatively small scatter (RMS
equal to 30.6 Wm‘z). A more detailed analysis of the results of model validation against
BSRN, shows that the biases do not exceed 10 Wm™2 in tropical and mid-latitude areas
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of both hemispheres, while the corresponding RMS values remain smaller than about
20 Wm™2. Despite this quite good model performance, there is some underestimation
of DSR fluxes with respect to BSRN in stations situated in southern polar areas (67°—
90° S), as can be seen in Table 4. This was also found by comparison against GEBA
DSR data (Fig. 9b). Nevertheless, note that similar underestimation features of surface
solar radiation fluxes with respect to site measurements in polar areas, have been
reported also by others (e.g. Wild et al., 1998a, 2004; Wild and Ohmura, 1999). The
largest biases and RMS values are found at the stations of Syowa and Neumayer,
along Antarctica’s coast. Also, the least square line slope is significantly less than
unity in these stations, in contrast to values very close to unity for the rest of stations.
However, the South Pole station shows much less underestimation and a least-squares
line slope equal to one. This is evidence that the model underestimates DSR in the
Antarctic coast not because of model deficiencies related to the polar climate, but more
likely because of errors in model input data. Since the detection of clouds is problematic
over highly reflecting surfaces, such as the poles, and the good model performance at
the South Pole station, it seems that clouds might not be the problem. Given that over
Antarctica’s coastal areas, the model also underestimates OSR (see Hatzianastassiou
et al., 2004a), the situation is rather puzzling, and certainly a more detailed analysis is
necessary, including careful check of the site measurements. Apart from a few stations,
the model generally underestimates DSR with respect to BSRN, resulting thus in an
overall negative bias, though small. Examination of the seasonal behaviour of our
model performance against BSRN, shows that generally, zero bias is within the error
bars, except for the polar regions during summer, and most of the year in the southern
mid-latitude areas.

A similar comparison of measured against model computed DSR fluxes is performed
using another DSR database, the Global Energy Balance Archive (GEBA, Gilgen and
Ohmura, 1999). The GEBA contains quality checked monthly means of energy fluxes
at the Earth’s surface from sites all over the world. Data stored in the GEBA database
have been extracted from periodicals, monographs, data reports, and unpublished
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manuscripts. About 700 stations with at least one monthly DSR value in the period
1984-2000 were used in the validation of our model. In Fig. 9b is shown the scat-
terplot comparison of all monthly measured values against the computed values in
the 2.5°x2.5° pixel containing the specific GEBA station. Similarly to the BSRN com-
parison, our model underestimates DSR in the polar areas, but everywhere else the
agreement is very good, with an overall bias equal to —6.5 Wm™ and a RMS value of
23.5Wm™2. The GEBA polar stations show that our model underestimates the DSR,
similarly to the BSRN stations, but GEBA, in contrast to BSRN, does not show any
evidence of DSR underestimation in the southern mid latitudes.

7. Summary and conclusions

A physical deterministic radiative transfer model along with long-term climatological
data for various key physical surface and atmospheric parameters, taken from large
data bases such as ISCCP-D2, TOVS, GADS, NCEP/NCAR and ECMWF Global Re-
analysis projects, have been used to compute the SW surface radiation budget (SRB)
for the 17-year period from 1984 to 2000, on a mean monthly basis and 2.5° by 2.5°
longitude-latitude pixel resolution at global scale. The model results were validated
against quality BSRN and GEBA data for the periods 1992-2000 and 1984-2000, re-
spectively, showing good agreement with surface measurements, with an overall nega-
tive bias of 14 and 6.5 Wm™2, with respect to BSRN and GEBA measurements, respec-
tively. The differences between model-computed and surface-measured DSR fluxes,
are within 10 Wm™2 at most stations, i.e. close to the uncertainty of BSRN and GEBA
data, except for two stations along Antarctica’s coast, where systematically larger dif-
ferences in DSR fluxes were found. Uncertainties in model input data are assessed
to be the most likely source for this model DSR underestimation, whereas similar un-
derestimation features at the same stations have been reported by other modelling
studies, suggesting also an examination of the quality of site measurements.

The 17-year model results indicate that the Earth’s surface receives 171.6 Wm'2,
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while it absorbs 149.4 Wm™2, values that correspond to 50.2 and 43.7% of the incoming
SW radiation at the top of the atmosphere. These values involve a long-term surface
albedo equal to 12.9%. Our computed value of 43.7% for the part of solar radiation that
is absorbed by the Earth’s surface, is smaller than the values given in previous studies,
which are larger than 46%. In combination with a long-term planetary albedo equal to
29.6% (Hatzianastassiou et al., 2004a), our modeling study indicates a partial absorp-
tion of solar radiation within the terrestrial atmosphere, equal to 26.7%. Our values
of 43.7 and 26.7% for the surface and atmospheric absorption of solar radiation, are
significantly smaller and larger, respectively, than the corresponding values of about 50
and 20%, estimated by earlier studies. Our value of 149.4 Wm™2 for the net downward
surface solar radiation, is smaller than the values given by other models and reanalysis
projects, by at least 10-20 Wm™2, except for versions 4 and 5 of ECHAM GCM and
the ECMWEF reanalysis. It is very interesting that our model computed value is very
close to the revised “best” estimate of about 150 Wm™2 from surface measurements.
Comparable DSR and net DSR fluxes were computed for the northern and southern
hemispheres. The linear regression analysis applied to 204 global averages of monthly
mean DSR fluxes, reveals a significant decadal increase in SW radiation reaching the
Earth’s surface, equal to 2.4 Wm'z, associated with a corresponding decadal increase
in surface solar absorption of 2.2 Wm™2, over the 17-year period 1984-2000. The
performed analysis has shown that the increasing surface solar heating, indicated by
positive DSR and net DSR anomalies, started after the year 1992, and that it has been
caused by a significant reduction in cloudiness during the last decade of 20th century.
In contrast, mainly negative anomalies are found from 1984 through the early 1990s.
A further analysis has demonstrated that the reduction in low-level cloud amounts,
accounts for about 70% of the computed increasing trend in DSR. This is consistent
with the results of a sensitivity study, showing that the surface SW radiative fluxes are
primarily sensitive to cloud parameters, and more specifically to low, middle, and high-
level cloud cover (in that order), and secondarily to other parameters, such as total
precipitable water.
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In the future, it is desirable to use more advanced models to make such computations
of SRB using the same or similar input data. This can improve the accuracy of the
results, though it involves other problems, for example greatly increasing computing
time, which constitutes a problem in case of global scale studies. Further work is
undertaken in order to increase the spatial and temporal resolution of the performed
study, providing SRB fluxes at 1° by 1° latitude-longitude resolution or on a daily mean
basis. Besides, it is very important to perform similar validations of computed SRB
fluxes on as long as possible time periods, since SRB changes with time. Of course,
this is restricted by the availability of either model computed fluxes, and hence of quality
model input data, or of surface measurements.
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Earth’s surface

Table 1. Model computed mean annual hemispherical (NH is Northern Hemisphere, SH is TR e

Southern Hemisphere) and global averages of downward shortwave radiation (DSR) and net
downward shortwave radiation (net DSR) at the Earth’s surface for January, April, July, October, budget
and the whole year, for the 17-year (1984—2000) period. The radiative fluxes are expressed in

- : . o . . N. Hatzianastassiou et al.
Wm™2. Numbers in parenthesis are standard deviations and represent interannual variabilities

of the means.
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January 113.8(9.8) 234.8(20.7) 174.3(15.3) F—— | — |
April 209.8(16.5) 140.4(11.5) 175.1(14.0)
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<4 »
January  98.6(2.7) 204.5(6.5) 151.6(4.6)
April 177.0(4.6) 127.5(3.4) 152.2(4.0) Back |  Close |
Jul 193.6(5.1)  94.9(2.1)  144.2(3.6)
October 130.9(3.5) 171.6(4.3) 151.2(3.9) Full Screen / Esc |
Annual  149.6(3.9) 149.3(4.0)  149.4(4.0)
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Table 2. Model mean annual hemispherical and global averages of downward shortwave ra- ACPD
diation at the Earth’s surface (DSR), and net downward shortwave radiation (i.e. absorbed) at 5, 4545-4597, 2005
the Earth’s surface (Net DSR), as computed in this study, compared with values from others.

NH is Northern Hemisphere, SH is Southern Hemisphere. The radiative fluxes are expressed

in Wm™2, Earth’s surface
shortwave radiation
DSR Net DSR
Study NH SH  Globe NH  SH Globe budget
Present Study (1984-2000) 173.9 169.3 171.6 1496 149.3 149.4 N. Hatzianastassiou et al.
Liou (2002) 189.0 161.0
Hatzianastassiou and Vardavas (2001) 174.0 160.0
Hatzianastassiou and Vardavas (1999) 177.9 156.6
Global Energy Balance Archive (GEBA) 169.0 151.0 Title Page |
Gupta et al. (1999) (8-yr 1983-1991) 186.7 182.6 184.7 160.2 1615 160.9
CSU/GCM (Gupta et al., 1999) 202.3 200.5 201.4 1774 178.9 178.2 Abstract | Introduction |
NCAR/GCM2 (Gupta et al., 1999) 1791 1815 180.3
NCAR/GCM3 (Gupta et al., 1999) 1944 1944 194.4 169.0 1734 171.2 :
Wild and Ohmura (1999 — ARPEGE) 174.0 Conclusions | References |
Wild et al. (1999 — HadAM2b) 175.0
Wild (2004 — ECHAMS5) 180.0 156.0 Tables | Figures |
Wild et al. (1998a — ECHAM4) 170.0 147.0
Wild et al. (1998a — ECHAMS3) 189.0 164.0
GCM studies (Wild et al., 1998a) 164.0-182.0 1< | > |
Garratt et al. (1998) 190.0-201 160.0-174.0
Kiehl and Trenberth (1997) 168.0 < | > |
NASA/GEOS-1 (Li et al., 1997) 190.6
CCC/GCM2 (Li et al., 1997) 175.0 =— | p— |
ERBE/Li (Li et al., 1997) 157.0
ISCCP/Rossow (Li et al., 1997) 165.0
ISCCP/Pinker (Li et al., 1997) 171.1 Full Screen / Esc |
Del Genio et al. (1996) 172.0
Fowler and Randall (1996) 172.0
Li et al. (1995) 157.0 Print Version |
Rossow and Zhang (1995) 193.4 165.1
Vardavas and Koutoulaki (1995) 156.5 Interactive Discussion |
Hartmann (1994) 171.0
Li and Leighton (1993) 155.0 159.0 157.0
Ohmura and Gilgen (1993) 142.0 EGU
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Table 2. Continued.

ACPD
5, 4545-4597, 2005

DSR Net DSR

Study NH SH Globe NH  SH  Globe
Darnell et al. (1992) 173.0 151.0
Peixoto and Oort (1992) 171.0
Rossow and Lacis (1990) 169.0

Rossow and Lacis (1990) GISS GCM 158.0

Ramanathan (1987) 169.0
Schneider (1987) 154.0
Henderson-Sellers and Robinson (1986) 171.0
MacCracken (1985) 157.0
Budyko (1982) 157.0
Peng et al. (1982) 159.8

Stephens et al. (1981) 177.2

Ohring and Addler (1978) 177.9

Hoyt (1976) 150.3

Paltridge and Platt (1976) 174.0
National Academy of Sciences (1975) 174.0
Sasamori et al. (1972) 172.0 156.0

Manabe and Strickler (1964) 165.0

London (1957) 161.9

NCEP Reanalysis (1982-1994) 207.0 162.0
ECMWF Reanalysis (1985—-1993) 180.0 152.0
NASA Reanalysis (1981-1992) 219.0 191.0
NASA GEWEX Reanalysis (1983—-1992) 186.2 164.6
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Table 3. Global and annual mean differences, A(DSR) and A(NDSR) in Wm™2, in model com-
puted downward SW radiation at the Earth’s surface (DSR), and net downward SW radiation at
the Earth’s surface (Net DSR or NDSR), induced by variation (AV in relative percentage value,
%) of the variable V (A, cloud cover; 7., cloud scattering optical depth; 72, cloud absorption
optical depth; g, cloud asymmetry parameter; W,,,q, total precipitable water; W, total ozone
column abundance; W, total column carbon dioxide; Ry, surface albedo; ISR, incoming SW
radiation at TOA; AQT, aerosol scattering optical depth; @,,,, aerosol single scattering albedo;
J.¢r» @erosol asymmetry parameter). In parenthesis, is given the range of variation for A(DSR)
and A(NDSR) at pixel (2.5-degree latitude-longitude) level, for each sensitivity test. Year 1988
is the reference case.

ACPD
5, 4545-4597, 2005

Earth’s surface
shortwave radiation
budget

N. Hatzianastassiou et al.

reference 174.01 151.76

Y, AV A(DSR) A(NDSR)
Low-A, 10 -3.20 (-22.05-0.12) —-2.79 (-21.06-0.03)
Middle-A, 10 -2.24(-17.51-0.39) -1.87 (-16.46-0.12)
High-A, 10 -2.05(-15.30-0.85) —1.83 (-14.6-0.8)
Low-7J 10 -1.17 (-5.92-0) -1.04 (-5.64-0.1)
Middle-t, 10 -0.81 (-5.21-0) -0.69 (-4.9-0.1)
High-7J 10 -1.07 (-5.84-0) -0.96 (-5.53-0.02)
Low-72 10 -0.32 (-1.64-0) -0.30 (-1.56-0)
Middle-7Z 10 -0.20 (-1.52-0) -0.17 (-1.28-0)
High-12 10 -0.25 (-1.37-0) -0.22 (-1.11-0)
e 5 7.93 (0-20.64) 6.98 (—0.69-19.66)
W0 10 -1.94(-6.65-0.02) -1.73(-6.34-0.02)
Wos 10 -0.72(-3.37-0.01)  -0.61 (-1.55-0.01)
Weoo 10  -0.1(-0.51-0.01) -0.08 (-0.33-0.01)
Ry 10  -1.05(0.02-13.41) -3.53 (-94.52-0)
ISR 1 1.74 (0-4.63) 1.52 (0-3.22)
AOT 10 -0.16 (-2.62-0.01) -0.12 (-2.03-0.01)
@ 4o, 10 0.58 (0-11.81) 0.44 (-0.01-8.0)
Oaer 10  0.26 (-0.02-4.79) 0.21 (-0.05-3.72)
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Table 4. Baseline Surface Radiation Network (BSRN) stations with measurements of down-
ward SW radiation (DSR) at surface in the period 1992-2000 used for validation of model DSR
results. Lat is latitude; Lon is longitude; Elev is elevation (in m); Period is years for which each
station gave quality checked DSR monthly fluxes; Bias is the average difference of computed
and observed fluxes; RMS is the root mean square error of computed fluxes; Slope is the least-
squares line slope and its uncertainty at the 95% confidence interval and N is number of mean

monthly fluxes used.

ACPD
5, 4545-4597, 2005

Station Name Lat Lon Elev. Period Bias RMS Slope N
Ny Alesund, Norway 78.9 12.0 11 92-00 -13.85 24.45 0.92+0.09 37
Barrow, Alaska 71.3 -156.6 8 92-00 -14.56 34.42 0.85+0.08 72
Toravere, Estonia 58.4 26.8 70 99-00 3.39 7.47 0.98+0.06 11
Lindenberg, Germany 52.2 14.1 125 94-00 -17.27 22.71 0.86+0.03 74
Payerne, Switzerland 46.8 6.9 491 92-97 -244 11.30 0.97+0.04 50
Regina, Canada 50.2 -104.3 574 9599 -19.85 2421 1.02+0.05 57
Chesapeake Light, Virginia 36.9 -75.7 0 2000 -7.78 1096 1.07+0.19 6
Carpentras, France 44.0 5.0 110 9600 -9.95 11.83 0.99+0.02 44
Boulder, Colorado 40.0 -105.0 1577 92-00 -15.28 22.01 1.12+0.04 84
Tateno, Japan 36.0 140.1 25 97-00 -6.36 18.21 1.23x0.11 39
Bermuda 32.3 -64.8 8 92-00 5.03 16.02 1.05+0.05 104
Kwajalein, Marshal Islands 8.7 167.7 10 92-00 -6.75 12.02 0.83+0.07 104
llorin, Nigeria 8.5 4.6 350 9295 29.10 36.11 1.34+0.35 26
Nauru Is. -05 166.9 7 98-99 -11.74 14.01 0.89+0.33 8
Manus Is., Papua New Guinea -21 147.4 6 2000 10.47 1047 - 1
Alice Springs, Australia -23.7 1339 547 95-00 -15.86 17.61 0.97+0.03 70
Florianopolis, Brazil -27.5 -485 11 94-99 2.24 13.00 0.67+0.33 14
De Aar, South Africa -30.7 24.0 1311 2000 -14.52 18.04 0.86+0.16 6
Lauder, New Zealand -450 169.7 370 99-00 -44.19 50.73 0.74+0.09 17
Georg von Neumayer, Antarctica -70.6 -8.2 42 92-00 -45.79 58.00 0.67+0.06 31
Syowa, Antarctica -69.0 39.6 29 94-00 -71.91 86.49 0.60+0.07 46
South Pole -90.0 - 2841 92-00 -26.78 30.57 1.00£0.04 38
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150 200 250 300 (b)

50 100 150 200 250 300 (d)

Fig. 1. Long-term (1984-2000) average global distribution of downward shortwave radiation

(in Wm™2) at the Earth’s surface for the mid-seasonal months of (a) January, (b) April, (c) July,
and (d) October.
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Fig. 2. Long-term (1984-1997) average global distribution of net downward (or absorbed)
shortwave radiation (in Wm‘z) at the Earth’s surface for the mid-seasonal months of (a) Jan-
uary, (b) April, (¢) July, and (d) October. Interactive Discussion |
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Fig. 3. Seasonal and latitudinal variation of 17-year (1984-2000) averages of monthly mean
(a) downward shortwave radiation (DSR) at the Earth’s surface and (b) net downward short-
wave radiation (Net DSR) at the Earth’s surface. Monthly mean quantities over a 2.5°x2.5°

geographical grid are plotted.
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Latitude (degrees)

50 100 150 200

Time (months)
0.00 66.01 132.02 198.03 264.04 330.05 396,06(a)

Latitude (degrees)

0 50 100 150 200
Time (months)
0.00 43.62 87.23 130.85  174.47  218.08 261 .7o(b)

Fig. 4. Time-series of 10-degree latitude-zonal averages of monthly mean (a) downward short-
wave radiation (DSR) at the Earth’s surface and (b) net downward shortwave radiation (Net
DSR) at the Earth’s surface, for the period January 1984—-December 2000. Monthly mean
quantities over a 2.5°x2.5° geographical grid are used.
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Fig. 6. Time-series of global and hemispherical averages of (a) downward shortwave radiation
(DSR) flux anomalies (in Wm_z) and (b) net downward shortwave radiation (DSR) flux anoma-
lies (in Wm_z) over the period 1984-2000 for the Globe (solid lines), Northern Hemisphere
(dashed lines), and Southern Hemisphere (dotted lines). The 4th-order polynomial fit of the
global data is also shown.
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Fig. 7. Latitudinal variation of model computed: (a) mean annual downward shortwave radia-
tion (DSR in Wm‘z) at the Earth’s surface, and (b) mean annual net downward (or absorbed)
shortwave radiation (Net DSR in Wm™2) at the Earth’s surface, for the period January 1984
through December 2000. Also shown is the seasonal variation of hemispherical and global
averages of model computed: (¢) downward shortwave radiation (DSR in Wm'2) at the Earth’s
surface, and (d) net downward (or absorbed) shortwave radiation (Net DSR in Wm™2) at the
Earth’s surface, for the period January 1984 through December 2000.
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Fig. 8. Scatter plot comparison between model-computed downward shortwave radiation
(DSR) at Earth’s surface, over the time period 1986—1993, by using model input data for surface
and atmospheric properties, taken from the NCEP/NCAR and ECMWF data bases.
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Fig. 9. Scatter plot comparison between model-computed and: (a) Baseline Surface Radiation
Network (BSRN), and (b) Global Energy Balance Archive (GEBA) pixel data of monthly average
downward shortwave radiation (DSR) at the Earth’s surface, over the time periods 1992-2000

and 1984-2000, respectively.
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