Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Atmospheric Chemistry and Physics Discussions Année : 2003

Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling

Résumé

The exceptional day-long observation of a polar stratospheric cloud (PSC) by two ground-based lidars at the Swedish research facility Esrange (67.9° N, 21.1° E) on 16 January 1997 is analyzed in terms of PSC dynamics and microphysics. Mesoscale meteorological modeling is utilized to resolve the time-space ambiguity of the lidar measurements. Microphysical properties of the PSC particles are retrieved by comparing the measured particle depolarization ratio and the PSC-averaged lidar ratio with theoretical optical data derived for different particle shapes. In the morning, nitric acid trihydrate (NAT) particles and then increasingly coexisting liquid ternary aerosol (LTA) were detected as outflow from a mountain wave-induced ice PSC upwind Esrange. The NAT PSC consisted of irregular-shaped particles with length-to-diameter ratios between 0.75 and 1.25, maximum dimensions from 0.7 to 0.9 ?m, and a number density from 8 to 12 cm?3 and the coexisting LTA droplets had diameters from 0.7 to 0.9 ?m, a refractive index of 1.39 and a number density from 7 to 11 cm?3. NAT activation was probably substantial (~53%) which appears to be the effect of the high cooling rates (>100 K/h) in the stratospheric mountain wave. The total amount of condensed HNO3 was in the range of 57?90% of the HNO3 gas reservoir. By early afternoon the mountain wave-induced ice PSC expanded above the lidar site. Its optical data indicate a decrease in minimum particle size from 4.3 to 1.9 ?m with time, possibly due to a diminishing growth rate. Later on, following the cessation of particle nucleation upwind wave-processed LTA was observed only. Our study demonstrates that ground-based lidar measurements of PSCs can be comprehensively interpreted if combined with mesoscale meteorological data.
Fichier principal
Vignette du fichier
acpd-3-5831-2003.pdf (1.97 Mo) Télécharger le fichier
Origine : Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-00301377 , version 1 (18-06-2008)

Identifiants

  • HAL Id : hal-00301377 , version 1

Citer

J. Reichardt, A. Dörnbrack, S. Reichardt, P. Yang, T. J. Mcgee. Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling. Atmospheric Chemistry and Physics Discussions, 2003, 3 (6), pp.5831-5873. ⟨hal-00301377⟩

Collections

INSU EGU
55 Consultations
93 Téléchargements

Partager

Gmail Facebook X LinkedIn More