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FUNCTIONAL INEQUALITIES FOR HEAVY TAILS DISTRIBUTIONS AND
APPLICATION TO ISOPERIMETRY

PATRICK CATTIAUX , NATHAEL GOZLAN , ARNAUD GUILLIN ,AND CYRIL ROBERTO

Asstract. This paper is devoted to the study of probability measuiiés keavy tails. Using the Lya-
punov function approach we prove that such measures sdtiBéyent kind of functional inequalities
such as weak Poincaré and weak Cheeger, weighted Poimcdn@eighted Cheeger inequalities and
their dual forms. Proofs are short and we cover very largeasidns. For product measures Bh

we obtain the optimal dimension dependence using the massportation method. Then we derive
(optimal) isoperimetric inequalities. Finally we deal wvg&pherically symmetric measures. We recover
and improve many previous results.

Key words : weighted Poincaré inequalities, weighted @beaequalities, Lyapunov function, weak
inequalities, isoperimetric profile
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1. INTRODUCTION , DEFINITIONS AND FIRST RESULTS.

The subject of functional inequalities knows an amazingwjnadue to the numerous fields of appli-
cation: diferential geometry, analysis of p.d.e., concentration asuee phenomenon, isoperimetry,
trends to equilibrium in deterministic and stochastic atiohs... Let us mention Poincaré, weak
Poincaré or super Poincaré inequalities, Sobolev likgiralities,F-Sobolev inequalities (in partic-
ular the logarithmic Sobolev inequality), modified log-8tdy inequalities and so on. Each type of
inequality appears to be very well adapted to the study of(onenore) of the applications listed
above. We refer td[36]{J2]{T30][T11[T401[T%61[ [371[ TBAILA], [P9] for an introduction.

If a lot of results are known for log-concave probability reeges, hot so much has been proved for
measures with heavy tails (let us mentipn| [A8[ 9,[24, #]IB. 24 this paper the focus is on such
measures with heavy tails and our aim is to prove functiondlisoperimetric inequalities.

Informally measures with heavy tails are measures witls failger than exponential. Particularly
interesting classes of examples are eitheoncave probability measures, or sub-exponential like
laws (or tensor products of any of them) defined as follows.

We say that a probability measuyiés k-concave withx = -1/« if
(1.1) du(x) = V() ™dx

with V : R" — (0, o) convex andr > 0. Such measures have been introduced by Bdrdll [26] in
more general setting. See 18] for a comprehensive inttamtuand the more general definition of
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2 P. CATTIAUX, N. GOZLAN, A. GUILLIN, AND C. ROBERTO

k-concave probability measures. Prototypes-abncave probability measures are the generalized
Cauchy distributions

(12) du() = 3 ((1+1x?)2) "

for @ > 0, which corresponds to the previous description siroe> (1 + [x?)Y2 is convex. In

some situations we shall also considig(x) = (1/2) ((1 + |x)))"™®). Note that these measures are
Barenblatt solutions in porous medium equations and appesdurally in weighted porous medium
eqguations, giving the decay rate of this nonlinear semigrowards the equilibrium measure, see

(b4, B21.

We may replace the power by an exponential yielding the natiosub-exponential law, i.e. given
any convex functiorv : R" — (0, «0) andp > 0, we shall say that

du(x) = e V®°dx
is a sub-exponential like law. A typical examplevéx) = |x|.

Heavy tails measures are now particularly important siheg aippear in various areas: fluid mechan-
ics, mathematical physics, statistical mechanics, madlieai finance ... Since previous results in the
literature are not optimal, our main goal is to study the &opetric problem for heavy tails mea-
sures. This will lead us to consider various functional irsities (weak Cheeger, weighted Cheeger,
converse weighted Cheeger). Let us explain why.

Recall the isoperimetric problem.

Denote byd the Euclidean distance @&". Forh > 0 the closech-enlargement of a se&& c R" is
An = {x e M; d(x, A) < h} whered(x, A) := inf{d(x,a); a € A}is +oo by convention forA = 0. We
may define the boundary measure, in the senge of a Borel setA c R" by

i H(AN\ A)
us(0A) = Ilmlc)qf —

An isoperimetric inequality is of the form
(1.3) us(0A) > F(u(A)) YAcCR"

for some functiorF. Their study is an important topic in geometry, see €.d. 49T he first question
of interest is to find the optimdf. Then one can try to find the optimal sets for whifh](1.3) is an
equality. In general this is very fllicult and the only hope is to estimate the isoperimetric profil
defined by

l,(a) = inf {us(dA); u(A) =a}, aecl0,1].
Note that the isoperimetric inequality (]L.3) is closelyatetl to concentration of measure phenom-
enon, see[[2d, #1]. For a large class of distributipren the line with exponential or faster decay,
it is possible to prove[[24, 51, 1LF,]18.[5] 10] [T, 46] that swperimetric profild,» of the n-tensor
producty" is (up a to universal, hence dimension free constants) equzal
For measures with heavy tails, this is no more true. Inddedjs a probability measure dR such
that there exish > 0 ands > 0 such that for alh > 1 and allA c R" with u"(A) > % one has
1.4) W"(A+[-hh") > % +e,

then u has exponential tails, that is there exist positive corst@n, C, such thatu([X, +o0)) <
C1e7%%, x € R, see [GR].
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Therefore, for measures with heavy tails, the isoperimeirofile as well as the concentration of
measure for product measure should heavily depend. cBome bounds oiy», not optimal inn,
are obtained in[]9] using weak Poincaré inequality. The aptimality is mainly due to the fact
thatLL, inequalities (namely weak Poincaré inequalities) arelus®e shall obtain optimal bounds,
thus completing the pictures for the isoperimetric profiléemsor product of very general form of
probability measures, usiig inequalities called weak Cheeger inequalities we intredumw.

As noted by Bobkov[[18], for measures with heavy tails, isopetric inequalities are equivalent to
weak Cheeger inequalities. A probability measure is saghtisfy a weak Cheeger inequality if there
exists some non-increasing functign (0, ) — [0, ) such that for every smooth : R" — R, it
holds

(1.5) f|f -midu < ,B(S)f IVfldu + sOsg(f) ¥s> 0,

wheremis a median off for u and Osg(f) = esssup{) — essinff). The relationship betwegh

in [L3) andF in ([L3) is explained in Lemmp 3.1 below. Sin¢ef — mdu < 30sg,(f), only the
valuess € (0, 1/2] are relevant.

Recall that similar weak Poincaré inequalities were itticed in [4B], replacing the median by the
mean and introducing squares.

Of course ifB(0) < +o0 we recover the usual Cheeger or Poincaré inequalities.

In order to get isoperimetric results, we thus investigatthsnequalities. We use two main strategies.
One is based on the Lyapunov function approgth [¥[]29, 3ptiher is based on mass transportation
method [B§[35] (see alsp [14,]53] 19] 21]). In the first casefsrare very short. The price to pay
is a rather poor control on the constants, in particular imgeof the dimension. But we cover very
general situations (not at all limited teconcave like measures). The second strategy gives very
explicit controls on the constants, but results are limiteténsor products of measures on the line or
spherically symmetric measures (but only for iecase).

This is not surprising in view of the analogue results knoanlég-concave measures for instance.
Indeed recall that the famous conjecture of Kannan-Lo&ismnovits ([3P]) telling that the Poincaré
constant of log-concave probability measures only dependbeir variance is still a conjecture. In
this situation universal equivalence between Cheegegguality and Poincaré inequality is known
(63, [48]), and some particular cases (for instance spiigrisymmetric measures) have been studied
([LAD). In our situation the equivalence between weak Par@@nd weak Cheeger inequalities does
not seem to be true in general, so our results are in a sengatilmal extension of the state of the art
to the heavy tails situation.

The Lyapunov function approach appears to be a very powerdlihot only when dealing with the
L, form (L.5) but also withL, inequalities.

This approach is well known for dynamical systems for exampi has been introduced by Khas-
minski and developed by Meyn and Tweedie [[¢3, [44, 45]) indtretext of Monte Carlo algorithm
(Markov chains). This dynamical approach is in some sens@ala consider the process whose
generator is symmetric with respect to the studied measerer{ext section for more precise defini-
tions), Lyapunov conditions express that there is some @vtiose strength varies depending on the
measure studied) which pushes the process to some naayalpsipact, region of the state space.
Once in the compact the process behaves nicely and pushearfoto it as soon as it escapes. Itis
then natural that it gives nice qualitative (but not so gitatite) proofs of total variation convergence
of the associated semigroup towards its invariant measwuidiad applications in the study of the
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decay to equilibrium of dynamical systems, see €.d [335384.[28]. It is also widely studied in
statistics, see e.g[ [43] and the references therein] Ircftinections are given between Lyapunov
functions and functional inequalities of weak Poincangetyimproving some existing criteria dis-
cussed in[[48[]9]. In this paper we give new types of Lyapunmefions (in the spirit of{]3]) leading
to quantitative improvements and in some sense optimaltsesfictually we obtain four types of
functional inequalities: weighted Cheeger (and weighteahéaré inequalities)

(1.6) f|f -mdu < C f [Vflwdu
and their dual forms called converse Cheeger (and conveised?é inequalities)
@.7) ircwff|f—c|cud,u < Cf|Vf|d,u

wherew are suitable “weights” (see Sectifin 2 for precise and monege definitions definitions).
Weighted Cheeger and weighted Poincaré inequalities weme recently studied by Bobkov and
Ledoux [22], using functional inequalities of Brascamgihitype. Their results apply teconcave
probability measures. We recover their results with shghtorst constants but our approach also
applies to much general type laws (sub-exponential for gkam

Note that converse Poincaré inequalities appear in thetrspheheory of Schrodinger operators, see
[B1]. We will not pursue this direction here.

Our approach might be summarized by the following diagram:

Transport
U
Weighted Cheeger = Weighted Poincaré
N 7
Lyapunov U
4 Ny
Converse Cheeger Converse Poincaré
U U
Transport =  Weak Cheeger = Weak Poincaré
g U
Isoperimetry = Concentration

Some points have to be underlined. As the diagram indicates/erse inequalities are suitable for
obtaining isoperimetric (or concentration like) resultdjile (direct) weighted inequalities, though
more natural, are not. Indeed, the tensorization propdrtiieovariance immediately shows that if
u satisfies a weighted Poincaré inequality with cons@iaind weightw, then the tensor produgtf’
satisfies the same inequality. Since we know that the coratent property for heavy tails measures
is not dimension free, this implies that contrary to the wady or the weak Poincaré inequality, the
weighted Poincaré inequality cannot capture the conagotr property ofu. The other point is that
the mass transportation method can also be used to obtamweighted Poincaré inequalities, and
weighted Poincaré inequalities via a change of functiau leo converse Poincaré inequality (see
[E2]). The final point is that on most examples we obtain sheefghts (but non necessarily sharp
constants), showing that (up to constants) our resultsgimal.

The paper is organized as follows.
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In Section[R we prove that the existence of a Lyapunov funciioplies weighted Cheeger and
weighted Poincaré inequalities and their converse.

Sectior{ B is devoted to the study of weak Cheeger inequsitiel to their application to the isoperi-
metric problem. The Lyapunov function approach and thesfrart technique are used. Explicit
examples are given.

Then, weighted Poincaré inequalities are proved in Se@ifor some spherically symmetric proba-
bility measures with heavy tails. We use there the trandpohnique.

We show in Sectiorf] 5 how to obtain weak Poincaré inequalitiem weak Cheeger and converse
Poincaré inequalities.

Finally, the appendix is devoted to the proof of some teciniesults used in Secti¢h 3.

2. From ¢-LYAPUNOV FUNCTION TO WEIGHTED INEQUALITIES AND THEIR CONVERSE

The purpose of this section is to derive weighted ineqealitif Poincaré and Cheeger types, and their
converse forms, from the existence op dyapunov function for the underlying fliusion operator.
To properly define this notion let us describe the generahdésork we shall deal with.

Let E be some Polish state space equipped with a probability measind au-symmetric operator
L. The main assumption dnis that there exists some algelfaof bounded functions, containing
constant functions, which is everywhere dense (inltp@) norm) in the domain of.. This ensures
the existence of a “carré du champ’i.e. for f,g € A, L(fg) = fLg+gLf+2I(f, g). We also assume
thatT" is a derivation (in each componentk. I'(fg, h) = fI’'(g,h) + g'(f, h). This is the standard
“diffusion” case in[[2] and we refer to the introduction pf][27] faore details. For simplicity we
setI'(f) = I'(f, f). Note that, sinc& is a non-negative bilinear form (s€é [1, Proposition 2)5 A
Cauchy-Schwarz inequality holds(f, g) < +/T'(f) +/T'(g). Furthermore, by symmetry,

2.1) fl“(f,g)d,u:—fngdy.

Also, sincel is a difusion, the following chain rule formulB(¥(f), ®(g)) = ¥ (f)®’ (g)I'(f, Q)
holds.

In particular ifE = R", u(dX) = p(x)dxandL = A + Vlog p.V, we may consider th€> functions
with compact support (plus the constant functions) as ttezésting subalgebtd, and therd'(f, g) =
Vf.Vvg.

Now we define the notion ab-Lyapunov function.

Definition 2.2. Let W > 1 be a smooth enough function on E apde aC! positive increasing
function defined ofR*. We say that W is &-Lyapunov function if there exist some setKE and
some b> 0 such that

LW < —¢(W) + b1k .

This latter condition is sometimes called a “drift conditio

Note that, for simplicity of the previous definition, we didtr(and we shall not) specify the underly-
ing operator_.

Remark 2.3. One may ask about the meaninglddV in this definition. In theR" case, we shall
chooseC? functionsW, so thatLW is defined in the usual sense. On more general state spaces of
course, the easiest way is to assume Wdielongs to thel(,) domain ofL, in particularLW € L.

But in some situations one can also relax the latter, praovadecalculations can be justified. ¢
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2.1. Weighted Poincai€ inequality and weighted Cheeger inequality.In this section we derive
weighted Poincaré and weighted Cheeger inequalities fhenexistence of a-Lyapunov function.

Definition 2.4. We say thal: satisfies a weighted Cheeger (resp. Poincaré) inequality weightw
(resp.n) if for some CD > 0 and all ge A with u-median equal t®,

(2.5) f dldu < C f VF@ wdu.

respectively, for all g A,
(2.6) Var,(@) < D [ r@nch.

The standard method shows that[if[2.5) holds, ther (2.6)tadéds withD = 4C? andy = w? (see

Corollary[2.1p).

In order to deal with the “local” patilk in the definition of ap-Lyapunov function, we shall use the
notion of local Poincaré inequality we introduce now.

Definition 2.7. Let U c E. We shall say that satisfies a local Poincaré inequality on U if there
exists some constary such that for all fe A

2
2
fu f2du < «y fEF(f)dy + (1/u(L)) (fu fdy) :

Notice that in the right hand side the energy is taken ovemthele space (unlike the usual defi-
2 )

nition). Moreover, [, f2du — (1/u(U)) (fu fd,u) = p(U)Var,, () with dc’ju = (U) This justifies

the name “local Poincaré inequality”.

Now we state our first general result.

Theorem 2.8(Weighted Poincaré inequality)Assume that there exists sogiyapunov function

W e A (see Definitior] 2]2) and that satisfies a local Poincaré inequality on some subset ¥ .
Then for all ge A, it holds

bxy 1
(2.9) Var,(g) < max(¢(l) )f(1+¢'(W)) I'(g)du.

Proof. Letg € A, choosec such thatfU (9—c)du = 0 and seff = g - c. Since Vay(g) = inf, f(g -
a)? du, we have

V: < f2du < —f du ffz—]l
ar“(g)<f b < o(W) K

To manage the second term, we first use thé/l\/) > ®(1). Then, the definition of and the local
Poincaré inequality ensures that

fozdy < szdﬂ
o [ (s + @) ( [ fdy)z
y fEr(g)du.

IA
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For the first term, we use Lemnia 2.10 below (witk- ¢ andh = W). This ends the proof. m

Lemma 2.10. Lety : R* — R* be aC! increasing function. Then, for any € A,
-Lh £2q r'(f)

w(h) y'(h)

Proof. By (R.1), the fact thaF is a derivation and the chain rule formula, we have

—-Lh f2 2fI0(f,h) 2/ (hIr(h)
TR I G K i o
Sincey is increasing and according to Cauchy-Schwarz inequalktyet
fI(f,h) - f T(f)T(h) _ VI(f) ' f ' (M(h)
y(h) y(h) NAG) y(h)
110(f) 1 f2/(h)I(h)
20 T2 v
The result follows. m|

du

Remark 2.11. To be rigorous one has to check some integrability conditiarthe previous proof.

If W belongs to the domain df, the previous derivation is completely rigorous since we fast
dealing with bounded functiorg If we do not have a priori controls on the integrabilityla (and
I'(f, W)) one has to be more careful.

In theR" case there is no realfficulty providedK is compact andl is for instance a balB(0, R). To
overcome all dficulties in this case, we may proceed as follows : we first asghiatg is compactly
supported and = (g — c)y, wherey is a non-negative compactly supported smooth functiorty suc
thatly < y < 1. All the calculation above are thus allowed. In the end wansk some sequengg
satisfyinglxy < xk < 1, and such thg¥yy| < 1, and we go to the limit. 2

Remark 2.12. Very recently, two of the authors and various coauthors tpghed forward the
links between Lyapunov functionals (and local inequaditiand usual functional inequalities. for
example if¢ (in the Lyapunov condition) is assumed to be linear, then esover the results in
[B], namely a Poincaré inequality (and a short proof of Bt result on logconcave probability
measure satisfying spectral gap inequality)s 1§ superlinear, then the authors pf|[29] have obtained
super-Poincaré inequalities, including nice altermapvoofs of Bakry-Emery or Kusuocka-Stroock
criterion for logarithmic Sobolev inequality.

The same ideas can be used to detivaveighted Poincaré (or weighted Cheeger) inequalities.

Considerf an arbitrary smooth function with median w.rt. equal to 0. Assume thaW is a ¢-
Lyapunov function. Then if =g-c,

il
f'”d" < f'”«zs(W) « o)

/ F(%W)m J e

LONLwW) o [LTWew), b
f (W) £2W) d"%(l)fK'”d"'
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Now we use Cauchy-Schwarz for the first term (if#u,v) < vI'(u) VI'(v)) in the right hand side,
we remark that the second term is negative sigicis positive, and we can control the last one as
before if we assume a local Cheeger inequality, instead ofa Poincaré inequality. We have thus
obtained

Theorem 2.13. Assume that there existg/d_yapunov function W angsatisfies some local Cheeger

inequality
flfldﬂskuf\/r(f)dﬂ,
U E

for some U2 K and all f with median w.r.tly u/u(U) equal to0. Then for all ge A with median
w.r.t. u equal to O, it holds

(2.14) [ < man{G51) [ (1 G ) V@

Again one has to be a little more careful in the previous pradth integrability conditions, but
difficulties can be overcome as before.

It is well known that Cheeger inequality implies Poincaréquality. This is also true for weighted
inequalities:
Corollary 2.15. Under the assumptions of Theorfm P.13, for adl g, it holds
biy )2 f ( W) )
Var, < 8 max 1 1+ I'(g)du.
/@ < 8 max 2% Sy T@

Proof. As suggested in the proof of Theorem 5.1 [n| [22]gihas au median equal to Og, =
max(, 0) andg_ = max(-g, 0) too. We may thus apply Theordm 2.13 to bgthandg?, yielding

bry \VLT(W)
fgfd,u < 2max(@,1)fg+ NACH) (1+ o) )dy

and similarly forg_. Applying Cauchy-Schwarz inequality, and using the eletagn(@ + b)? <
2a° + 2b” we get that

[ smae 1) e RCRE

and similarly forg_. To conclude the proof, it remains to sum-up the positive thechegative parts
and to notice that Va(g) < [ ¢ du. O

Note that the forms of weight obtained respectively in Tleeo2.8 and last corollary areftérent.
But, up to constant, they are of the same order in all exanvpéeshall treat in the following section.

2.2. Examples inR". We consider here thHe" situation withdu(x) = p(X)dxandL = A+ Vlogp.V,
p being smooth enough. We can thus use the argument explaimedhark 2.111 so that as soon as
W is C? one may apply Theorefn 2.8 and Theoljem]2.13.

Recall the following elementary lemma whose proof can badon [3].
Lemma 2.16. If V is convex and eV dx < +oo, then

(1) forall x, xVV(x) > V(x) — V(0),
(2) there exist > 0 and R> 0 such that forjx| > R, V(X) — V(0) > 6 |X].
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We shall use this Lemma in the following examples. Our firgregle corresponds to the convex
case discussed by Bobkov and Ledouy [22].

Proposition 2.17(Cauchy type law) Let du(x) = (V(x))~("*) dx for some positive convex function
V anda > 0. Then there exists & 0 such that for all g

Var,(g) < C f VGO (L -+ X2) du(x),

[ 1g=midu < © [ a0 (@ + ) duo.
where m stands for a median of g unger

Remark 2.18. The restriction» > 0 is the same as i [R2].

Proof. By Lemma[2.10 below, there exists¢alLyapunov functionW satisfying (¥¢’(W))(X) =
C(k—‘jz)|x|2 for x large. Hence, in order to apply Theor¢gm]2.8 it remains tollrélcat sincedu/dx
is bounded from below and from above on any &0, R), u satisfies a Poincaré inequality and a
Cheeger inequality on such subset, hence a local Poinaate@heeger) inequality in the sense of
definition[2.7 (or Theorerp 2.]13). This ends the proof. O

Lemma 2.19. Let L = A — (n + @)(VV/V)V with V ande as in Propositior] 2.17. Then, there exists
k> 2, b R>0and W> 1such that

LW < —¢(W) + blgoRr

with ¢(u) = cu*2/X for some constant s 0. Furthermore, one can choose(¥ = |x for x large.

Proof. LetL = A— (n+a)(VV/V)V and choos&V > 1 smooth and satisfying/(x) = |x* for |x| large
enough andk > 2 that will be chosen later. F¢x| large enough we have

3 k-2 o (n+ @) x.VV(X)
LW(X) = k (W(X))'F (n ko 2= T )
Using (1) in Lemmd 2.16 (sincé~ (™) is integrablee™ is also integrable) we have
(N + @) X.YV(X) V(0)
n+k-2- o) sk—2—a+(n+a)v(x).

Using (2) in Lemm4 2.16 we see that we can chdaskarge enough fo% to be less thae, say
X > R. It remains to choosk > 2 ande > 0 such that

K+ne-2-a(l-¢)<—y
for somey > 0. We have shown that, f¢x| > R,
LW < —kyg(W),
with ¢(u) = uw (which is increasing sincke > 2). A compacity argument achieves the proof. o

Remark 2.20. The previous proof gives a non explicit const@nn terms ofa andn. This is mainly
due to the fact that we are not able to control properly thallBoincaré and Cheeger inequalities on
balls for the general measurds = (V(x))~ ™ dx More could be done on specific laws.

Our next example deals with sub-exponential distributions
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Proposition 2.21(Sub exponential like law)Let du = (1/Zp) eV’ for some positive convex function
V and p> 0. Then there exists € 0 such that for all g

Var(@) < C [ VGO0 (L+(1-+ 24 P) cu(y).

[o-mau < c [ w0 (14 @+ xO) duty.
where m stands for a median of g unger

Remark 2.22. For p < 1 we get some weighted inequalities, while foe 1 we see that (changing
C into 2C) we obtain the usual Poincaré and Cheeger inequalitiesp =01, one recovers the well
known fact (see[[39, 16]) that Log-concave distributionfogrPoincaré and Cheeger inequalities.
Moreover, if we consider the particular cage(x) = (1/Z,)e ™" with 0 < p < 1, and choose
g(x) = €421 (x) for x > 0 andg(-X) = —g(x), we see that the weight is optimal in Proposition

p.21.
Proof. The proof follows the same line as the proof of Proposifidi2using Lemma 2.23 below.o

Lemma 2.23. Let L = A — pVP~1VVV for some positive convex function V and-f. Then, there
exists bc,R> 0 and W> 1 such that

LW < —¢(W) + bl B(O,R)

with ¢(u) = u log?PY/P(c + u) increasing. Furthermore, one can choos€\= e’*" for x large.

Proof. We omit the details since we can mimic the proof of Lenjma]2.19. O

Remark 2.24. Changing the values df andR, only the values ofb(u) in the large are relevant.
In other words, one could tak®& to be an everywhere increasing function which coincides wit
u log?P-1/P(y) for the largeu's, choosing the constanksandR large enough.

2.3. Example on the real line. In this section we give examples on the real line where otngh-t

niques can also be done.

Note that in both previous examples we used a Lyapunov fomdti = p™ for some well chosen
v > 0. In the next result we give a general statement using sugfaaunov function in dimension 1.

Proposition 2.25. Let du(x) = e V®¥dx be a probability measure dhfor a smooth potential V. We
assume for simplicity that V is symmetric. Furthermore, s®suane that V is concave @R, +oo) for
some R> 0 and that(V”/|V’|2) (X) > r>-1/2as X— c. Then for some S R and some G 0,

it holds

Var,(g) < C f g ()2 (1+|\],1,||X|2>(i))dﬂ(><),

1 >S
~md scf /(X (1+L)d X
[1g-ma 90911+ ) et
where m is a median of g under

Proof. SinceV’ is non-increasing onR; +o0) it has a limitl at +oo. If | < 0,V goes to—oo at +o0
with a linear rate, contradictinﬁ e Vdx < +c0. Hencel > 0,V is increasing and goes teo at +co.
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Now chooseW = eV (for large|x]). We have
LW = (yV” = (y = ANV P) W

so that for 0< y < 1 we haveLW < —(y — ¥?)|V/[?W at infinity. We may thus choos¢(W) =
(y = y)IV’|>W. The corresponding can be built on\(V1(R), +) whereW is one to one. On the
other hand,

FW)W = (y =y )V W (2V7 +yV'P)
so that, sinc&V’ > 0,V’ > 0 andV”/|V’|? > —1/2 asymptoticallyg is non-decreasing at infinity for
a well choseny. Then, it is possible to buil¢ on a compact interval [@] in order to get a smooth
increasing function on the whok, .
Sincedu/dx is bounded from above and below on any compact interval, @ oincaré inequality

and a local Cheeger inequality hold on such interval. heitgemains to apply Theorein 2.8 and
Theoren{ 2.3, since at infinigy (W) behaves likgV’[?. O

Remark 2.26. The example of Proposition 2]21 enters the framework of higoosition, and the
general Cauchy distributioN(X) = clog(1 + [x/?) does ifc > 1, sinceV”/|V’|? behaves asymp-
totically as—1/2c. Note that the weight we obtain is of good order, applying itreguality with
approximations o&"/2.

It is possible to extend the previous proposition to the rdithensional setting, but the result is
quite intricate. Assume thaf(x) — +oo0 as|x| — +o0, and thatV is concave (at infinity). The same
W = &V furnishesLW/W = yAV — (y — y?)|VV|?. Hence we may define

o) = (=7 )uinf [FVI2 - with A = (X V() = log()/y}

at least for larger's. The main dificulty is to check tha# is increasing. This could probably be done
on specific examples.

Itis known that Hardy-type inequalities are useful tool éabwith functional inequalities of Poincaré
type in dimension 1 (se¢ [[LB,]12] for recent contributionstie topic). We shall use now Hardy-
type inequalities to relax the hypothesis Wnand to obtain the weighted Poincaré inequality of
Proposition[ 2.35. However no similar method (as far as weMinman be used for the weighted
Cheeger inequality, making tlieLyapunov approach venyffcient.

Proposition 2.27. Let du(x) = eV®¥dx be a probability measure dhfor a smooth potential V that
we suppose for simplicity to be even. ket (0,1). Assume that there existg ¥ 0 such that V is
twice djferentiable or Xp, o) and

VO

V’(X) # 0, < ,
(x) # V(X2 &€

VX > Xo.

Then, for some G 0, it holds

var,@ < ¢ [ 199 (1+|\]i',x|§{§))y(dx).

Proof. Givenn and using a result of Muckenhoufpt J47], one has for @ny

—+00

f " (G0 - GO u(dx) < 4B f G (%2 (1 + 72(9) (@)
0 0
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eV

with B = sup. (f ‘V(X)dx) ( b o700 dx) Hence, sincd/ is even and Vay(g) < f_ooo (G(x) -
G(0))°du + fo (G(X) — G(0))?du, the previous bound applied twice leads to

Var,(@) <48 [ 199 (1+31(9°)
In particular, one has to prove that

+00 Y eV(X)
B= SUp(f e_V(X)dX) f i dx| < oo
y>0 \Jy 0 1+ 2%

IV'2(X)
Considerty > xo. Then, (note tha¥” > 0 since it cannot change sign aet is integrable),

y eV dx fy V/(X)eV(X) eV y . fy o V"((V')Z ~1)
Ty = ’ = ’ i 72 2

_ v vaNVWF

V) ok (SR
V()
e

T td-e) f

V') + v t oy

where in the last line we used thef{x? — 1|/(x® + 1)? < 1/(1 + %) for x = V' > 0. This leads to

Y eV(X) 1 eV(Y)
e P v
X>Xo & ’
X 1+ m (y) + V'(y)

Similar calculations give (we omit the proof)
+00 1 e—V(Y)
e V®dx< = Yy > Xo.
fy e V'(y)
Combining these bounds and using a compactness argumedt>@h [t is not hard to show thaB
is finite. m]

We end this section with distributions in dimension 1 thatradd enter the framework of the two
previous propositions. Moreover, the laws we have coneitleo far ar& concave fok > —co. The
last examples shall satisky= —

Example 2.28.Letq > 1 and define
du(x) = (1/Zg) ((2+ Ix) log4(2 + |x|))‘l dx = Val(x)dx xeR.

The functionVy is convex but\/g is no more convex foy < 1 (hencex = —). We may choose
W(X) = (2 + |X))? log?(2 + |x]) (at least far from 0), which is &-Lyapunov function forp(u) =
log®1(2 + |ul) providedq > a > 1 (details are left to the reader). We thus get a weighteduialéty

(2.29) Vay,(g) < C f VOO (1 -+ log?(2 + X)) du(X) .

Unfortunately we do not know whether the weight is correcthis situation. The usual choiap
behaving like /(2 + [X) 1og%2 + X)) on (-R R) furnishes a variance behaving lilebut the right
hand side behaves like log? R.
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We may even find a Lyapunov functional in the casx) = x logx log%log x) for large x and
q> 1,i.echooseV(x) = 1+ |x?log(2+ |x]) log® log(2e + |x) with 1 < ¢ < g for which ¢(x) is merely
log® log(2e+]|x]) so that the weight in the Poincaré inequality is|%]2 log?(2+|X]) log? log(2e+|x)).
o

2.4. Converse inequalities. This section is dedicated to the study of converse inedgeslfitom ¢-
Lyapunov function. We start with converse Poincaré inéties and then we study converse Cheeger
inequalities.

Definition 2.30. We say that: satisfies a converse weighted Cheeger (resp. Poincargality with
weightw if for some C> 0 and all ge A

(2.31) igff|g—c|wdy < Cf VI'(g) du,

respectively, for all g A,
(2.32) igff|g—c|2wdy < Cfl"(g)dy.

2.4.1. Converse Poincaré inequalitiesn [P3, Proposition 3.3], the authors perform a change of
function in the weighted Poincaré inequality to get

irgff(f—c)zwdystﬂzd,u.

This method requires that the constdhtin the weighted Poincaré inequalitf (2.6) (with weight
n(X) = (1+]x))?) is not too big. The same can be done in the general situgtiomided the derivative
of the weight is bounded and the constant is not too big.

But instead we can also use a direct approach fpeljgapunov functions.

Theorem 2.33(Converse Poincaré inequalityynder the assumptions of Theor¢m]| 2.8, for any g
A, it holds

(2.34) igf f(g - c)2 % du < (1 + bxy) f I'(g)du.
Proof. Rewrite the drift condition as
W= % S—%V+b]1,<,

recalling thatW > 1. Setf = g— cwith [ (g-c)du = 0. Then,

. LW
inf f(g—c)z%d,usffzwdysf—wfzdy+bﬁ f2du.

The second term in the right hand side of the latter can belbarsihg the local Poincaré inequality,
as in the proof of Theorefn 2.8 (we omit the details). Weﬁ{efzdy < Ky fl"(g)d,u. For the first
term we use Lemmfa 2]J10 with(x) = x. This achieves the proof. O

Remark 2.35. In the proof the previous theorem, we used the inequality

Wiy, < fl“(f)dy.
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By [R9, Lemma 2.12], it turns out that the latter can be oletdinwithout assuming thdtis a deriva-
tion. In particular the previous Theorem extends to anyasitm wherelL is the generator of a-
symmetric Markov process (including jump processes) irfaha

inf f(g—c)z%d,us(l+bku)f—ngqu.

Now we give two examples to illustrate our result.

Proposition 2.36(Cauchy type law) Let du(x) = (V(x))~("*) dx for some positive convex function
V anda > 0. Then there exists & 0 such that for all g

it [ (90902 7 9 < © [ wa

Proof. Itis a direct consequence of Theorgm P.33 and Lefnmé 2.19. O

Proposition 2.37(Sub exponential like law)Let du = (1/Zp) e V" for some positive convex function
V and pe (0, 1). Then there exists € 0 such that for all g

- 2 l 2
inf f (609 = & Ty 9 < © [ IVl

Proof. Again it is a direct consequence of Theorem[2.33 and Lefnnth 2.2 O

2.4.2. Converse Cheeger inequalitielere we study the harder converse Cheeger inequalities. The
approach by-Lyapunov functions works but some additional assumptitng to be done.

Theorem 2.38(Converse Cheeger inequalityynder the hypotheses of Theorem P.13, assume that
K is compact and that either

Q) TWI(W)) < 26¢6(W) (1 +I'(W)) outside K, for somé € (0, 1)
or

(2) T(WT(W)) > 0outside K.
Then, there exists a constantC0 such that for any & A, it holds

(W)
inf f 19— 0 ——— m VI(Q)du .

Remark 2.39. Note that using Cauchy-Schwarz inequality, Assumptiongiplied byI'(I'(W)) <
452¢(W)?(1 + I'(W)) outsideK.

On the other hand, in dimension 1 for usuatasions, we hav€(W. [(W)) = 2|W’'|?W”. Hence this
term is non negative as soon\Asis convex outside& .

Proof. Letg € A and setf = g—cwith csatisfyingfU (g—c)du = 0. Recall that W < —¢(W) +bl k.

Hence,
B(W) LW blk LW

VITTW) - VITOW) | VIZTOW) - VIZTT(W) +blk

(W) |f]
f|| N o LA —f—1+F(W)LWc1u+bj;|f|dy.

In turn,
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To control the first term we us€ (.1), the fact thas a derivation and Cauchy-Schwarz inequality
to get that

|f| . If]
\/1+r(vv)LW - fr(\/ur(vv)’w) o
LA W) du + |f|F(—1 W) du

VI+T(W) VIFT(W)’
F(W.I(W))
< [ Vi f|f|2(1 oyt

Now, we divide the second term of the latter in sum of the irdegverK and the integral outside.

SetM := sup LMW ynder Assumption (2), the integral outsides non-positive, thus we end
2(L+T(W)) 3

o(W)
f|| et fvm dy+<M+b>f|f|dy

while under Assumption (1), we get

f|| l¢(vl\"li du < f\/ﬁdﬂ+(M+b)f|f|dﬂ+5f|f| ' du

up with

V1+T(W)
In any case the terrﬁ< |f|du can be handle using the local Cheeger inequality (we omidéhails):
we get [, [fldu < «y [ yT(g)du. This ends the proof, sindg(f) = I'(g). O

We apply our result to Cauchy type laws.

Proposition 2.40(Cauchy type laws)Let du(x) = (V(x))~ (™) dx for some positive convex function
V and somer > 0. Then, there exists € 0 such that for any g, it holds

. 1
inf f 900 ~ ol e (e < f Vidu.

Proof. By Lemma[2.19, we know that/(x) = |x| (for x large) is ap-Lyapunov function fors(u) =
cul®=27k Note thatD(W.[(W))(X) = (2k — 2)k?x%* at infinity. Hence Assumption (2) of the
previous theorem holds and the theorem applies. This |esithe texpected result. m|

The same argument works for sub exponential distributiaresgmit the proof).

Proposition 2.41(Sub exponential type laws) et du = (1/Z,) e~ -V® for some positive convex func-
tion V and pe (0, 1). Then there exists & 0 such that for all g

. 1
inf f 19(x) — ¢l 7 XEP du(x) <C f|V9|d/l-

We end this section with an example in dimension 1. Considet €Y onR, andW = &V for some

y < 1. The functionW is convex in the large as soon as lim SM¥(/|V’|?) < y at infinity. Hence we
can use remark 2.B9 and the previous theorem to get thaty tirelypothesis of Propositign 2|25,
for someS > 0 andC > 0

inf f 9T ss + V) du < C f o .

(we used also thaw/ is a Lyapunov function witlp satisfyingg(W) = (y —y?)|V’|?W (which leads to
#(W)/ V1 + T (W) of the order ofV’| in the large), see the proof of Propositjon 2.25 for moreitigta
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2.5. Additional comments. Stability. As it is easily seen, the weighted Cheeger and Poincaré in-
equalities (and their converse) are stable under log-bedinchnsformations of the measure. The
Lyapunov approach encompasses a similar property with aotlypsupported (regular) perturba-
tions. In fact the Lyapunov aproach is even more robust,déffustrate it in the following example:
suppose that the measyre= eV dx satisfies a-Lyapunov condition with test functiow and sup-
pose that for larg, VV.VW > VVVU for some regular (but possibly unbounddd) then there
existsB > 0 such thatly = e”V*Vdx satisfies ap-Lyapunov condition with the same test functidh

and then the same weighted Poincaré or Cheeger inequality.

Manifold case.In fact, many of the results presented here can be extendibe tmanifold case, as
sSoon as we can suppose thgk) — co as soon as the geodesic distance (to some fixed points) grows
to infinity and of course that a local Poincaré inequalityadocal Cheeger inequality is valid. We
refer to [29] for a more detailed discussion.

3. WEeak INEQUALITIES AND ISOPERIMETRY.

In this section we recall first a result of Bobkov that showesahuivalence between the isoperimetric
inequality and what we have called a weak Cheeger inequatitsf 1)5).

Lemma 3.1(Bobkov [I8]) Letu be a probability measure aR". There is an equivalence between
the following two statements (where | is symmetric arolif&)

(1) forall s> 0and all smooth f withh median equal to 0O,

[ 1fide < g9 [ 19fid + sOsg(1).
(2) for all Borel set A with0 < u(A) < 1,

us(OA) > 1(u(A),
whereg and | are related by the duality relation

B(s) = sup t;S I(t) = sup t;S fort<}
sst<d 1) o<s<t B(S) -2

Here as usuaDsg,(f) = esssu — essinff andus(9A) = liminfp,_o £OAXAN,

Recall that in the weak Cheeger inequality, only the vakies0, 1/2) are relevant sinc§|f|dy <

%Osq,(f). Moreover this Lemma and its proof extend to the generad @as are dealing with as

soon as the general coarea formula is satisfied and provitedan approximate indicators byl"
of Lipschitz functions.

Thanks to the previous lemma, we see that isoperimetridtsesan be derived from weak Cheeger
inequalities. We now give two fierent way to prove such inequalities. The first one is basetieon
¢-Lyapunov approach using the converse Cheeger ineqsafitieved in the previous section. The
second one uses instead a transportation of mass technique.
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3.1. From converse Cheeger to weak Cheeger inequalitieddere we shall first relate converse
inequalities to weak inequalities, and then deduce sonpeigoetric results on concrete examples.

Theorem 3.2. Let u be a probability measure and be a non-negative function satisfying =
f wdu < +oo. Assume that there exists>C0 such that

irgff|g—c|wdyscf VI'(g) du Yge A.

Define Ru) = u(w < u) and §s) = F1(s) := inf{u;u(w < U) > s}. Then, for all s> 0 and all

g€ A, it holds
nt [lo-cdi < g5 [ VF@ck + sOsg().

Proof. Letg € A. Definem,, € R to be a median of underwdu/w. We have

irgfflg—CIdu < flg—rm,ldu
w
< f |g—m—du+f 19— m,ldu
w=U u w<u
<

L [ lo-miodi + Osa@FW

% irgf f|g—clwd/1 + Osg,(g) F(U).

It remains to apply the converse weighted Cheeger ineguatitl the definition of5. Note that if
F(u) = 0 foru < ug thenG(s) > up. i

We illustrate this result on two examples.

Proposition 3.3(Cauchy type laws)Let du(x) = V- (x)dx with V convex and > 0. Recall that
k = —1/a. Then, there exists a constantCQ0 such that for any f withx-median0,

flfld,u < C¥ f [Vfldu + sOsg,(f) ¥s> 0.
Equivalently there exists’C> 0 such that for any Ac R",
ps(@A) 2 C' min (u(A), 1 - ().

Proof. By Proposition 2.404 satisfies a converse weighted Cheeger inequality with weigk) =
T+ SOF(U) = p(w < U) = p(u' - 1 < |x)). SinceV is convex,V(x) > plx for large|x (recall
Lemma[2.36), hence using polar coordinates we have

y(|x|>R):f V‘ﬁ(x)dxsf pPIXPdx < cR"#,
IX>R

[X>R

for somec = c(n, a,p). The result follows by Theorern 3.2. The isoperimetric ingdy follows at
once by Lemm@ 3.1. O

Remark 3.4. The previous result recover Corollary 8.4 [n][18] (up to tl@stants). Of course we
do not attain the beautiful Theorem 1.2 [n][18], where S. Robghows that the consta@t only
depends or and the median dk|.



18 P. CATTIAUX, N. GOZLAN, A. GUILLIN, AND C. ROBERTO

Proposition 3.5(Sub exponential type laws).et du = (1/Z;) eV’ for some positive convex function
V and pe (0,1). Then there exists & 1 such that for all f withu-median0,

f|f|dy < Clog%_l(C/s)f|Vf|du + sOsg(f)  Vse(0.1).

Equivalently there exists’C> 0 such that for any A R",

-3
ps(OA) = C’ min (u(A), 1 - u(A) Iog(min (y(A),ll - y(A))) '

Proof. According to Propositionh 2.4y verifies the converse Cheeger inequality with the weight
function w defined byw(X) = 1/(1 + [x*~P) for all x € R". Moreover, since/ is conve, it follows
from Lemma[2.16 that there is sorpe> 0 such that/ X’ du(X) < c. Hence, applying Markov’s
inequality givesu(]x > R) < Ke*R®, for someK > 1. Elementary calculations gives the result.o

3.2. Weak Cheeger inequality via mass transport.The aim of this section is to study how the
isoperimetric inequality, or equivalently the weak Chadgequality, behave under tensor products.
More precisely, we shall start with a probability measuon the real lineR and derive weak Cheeger

inequalities foru" with explicit constants.

We need some notations. For any probability meaguten R) we denote byF, the cumulative
distribution function ofu which is defined by

Fu(X) = u(=00,x], VYXeR.
It will be also convenient to consider the tail distributitmction F, defined by
F () =1-Fu(X) = u(x, +0), VYX€eR.
The isoperimetric function gf is defined by
(3.6) Ju=F,oF .
In all the sequel, the two sided exponential measing) = %e"x' dx, x € R will play the role

of a reference probability measure. We will $6t = F and J, = J for simplicity. Note that the
isoperimetric functionl can be explicitly computedi(t) = min(t, 1 —t), t € [0, 1].

3.2.1. A general result.We are going to derive a weak Cheeger inequality starting fiavell known
Cheeger inequality for" obtained in [IP] and using a transportation idea developef§4]. Our
result will be available for a special class of probabilitgasures o which is described in the
following lemma.

Lemma 3.7. Letu be a symmetric probability measure B the following propositions are equiv-
alent

(1) The functioiogF, is convex orR*,
(2) The function JJ, is non increasing oi0, 1/2] and non decreasing odfl/2, 1).

Furthermore, if gi(x) = e *™) dx with® : R* — R concave, thefogF, is convex omR*.
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Proof. The equivalence between (1) and (2) is easy to check. Nowosepthatu is of the form
du(x) = e ®®™) dxwith a concaveb. Then forr € R*,

(logF.)"(r) = — e ( (1) f e gs— d>(r))
( [ e—‘D(S)ds

where®’ is the right derivative. Sinc® is concave®’ is non-increasing. It follows that

@'(r) f e®®ds> f (e ds= 0,
r r
The result follows. O

Recall that distributions satisfying (1) in the previousilea are known as “Decreasing Hazard Rate”
distributions. We refer td]6] for some very interesting pedies of these distributions (unfortunately
less powerful than the Increasing Hazard Rate situation).

Using a mass transportation technique, we are now able teedarweak Cheeger inequality for
product measures di". Dimension dependence is explicit, as well as the constants

Theorem 3.8. Letu be a symmetric probability measure Brabsolutely continuous with respect to
the Lebesgue measure. Assume kb@F , is convex orR*.

Then, for any n, any bounded smooth functionkf® — R satisfies

(3.9) flf —-mdu" < xq f|Vf| du" + konOsc(f), Vse (0,1/2),

s
Ju(9)
where m is a median of f undgP, 1 = 2V6 and«, = 2(1+ 2V6).

Remark 3.10. Note thatf|f — mdu" < Osc(f). Hence only the values < (kon)~! are of interest in

B.9. o

Proof. Recall thatv is the two sided exponential distribution. Fix the dimensiandr > 0. By [fL9,
Inequality (6.9)], any locally Lipschitz function : R" — R with f|h| dv" < o satisfies

(3.11) f|h — mp(h)| " < K1f|Vh| "

wherem,n(h) is a median oh for v" and| - | is the Euclidean norm oR".

Consider the mag@" : R" — R", that pushes forward" onto x", defined by Xi,..., %)) —
(T(x2),..., T(x) with T = F;l o F. By construction, anyf : R" - R satisfiesf f(rTMH " =
ffd,un.

Next, fort > 0 letB(t) = {X = (X,...,X%n) : max|x| < t}. Fixa > 0 that will be chosen later
and consideg : R — [0, 1] defined byg(x) = (1- (x- r)+)+ with X, = max(X, 0). Setp(x) =
g(max(|x])), x € R". The functiony is locally Lipschitz.

Finally let f : R" — R be smooth and bounded. We assume first that O/ 8-median of f.
Furthermore, by homogeneity ¢f (B.9) we may assume thatf®sc( in such a way thatf|l. < 1.
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It follows from the definition of the median that
[ifider < [1f-magctormids
< [1to-matamian + [ 1@ -oid
< [ 1te - ma TG + 4" BOY).
Note that the assumption on IEg guarantees thdt’ o T~ is non-decreasing dR*. Hence, using
i()irfgf triangle inequality if?(R"), the fact that 0< ¢ < 1 onR" and¢p = di¢ = 0 on B(r + a)°

flfso = ma((f)(T))ldu" = fl(fw)(T”) = m((fe)(T))I b

< [ N2 TR (@ D) + (3T 0
i=1

n
_ Klf \ 3T o T2 (00 f + o) du”

i=1

< Klf \ ZT' oT—l(xi)2(¢aif)2du”+K1f JZT’ o T-1(x)2 (fip)* du”
i=1 i=1

<kxiT o T Hr +a) (flVfld,u” + f|v¢| dyn).

Note thatVy| < 1/hon B(r + a) \ B(r) and|V¢| = 0 elsewhereg"-almost surely. Hence,

(3.12) f|f|dy” < KT o T + a)(f|Vf|dy”+§p”(B(r+a)\B(r))) + u"(B(r)).
Sinceu is symmetric, we have

G(t) := 1" (B(Y) = (1 - 2F, (1))

Hence,
lim ;i#" (B(r +a) \ B(r)) = G'(r) = 2nF,(r) (1 - 2E/1(t))”‘l

< 2nF,(1).

On the other hand, since the functigm> 1—(1-2x)" is concave on [01/2], one has: +(1-2X)" <
2nxfor all x € [0, 1/2]. As a consequence,

E"(B()°) = 1-G(r) = 1 - (1 - 2F ,(r))" < 2nF (1),
forallr > 0.
Lettinga go to 0 in [3.IP) leads to

f|f| du" < k1T o T7Hr) f IVE[du” + 200 T 0 T7H(r)F(r) + 2nF ().



FUNCTIONAL INEQUALITIES FOR HEAVY TAILS DISTRIBUTIONS 21
Note thatT’ o Tt = Jo F,/F/, = min(F,, 1 - F,)/F/.. Hence, for > 0,

1-Fur)

’ -1 ’ _
T oT(r)F,(r) = F0)

Fl(r) = Fu(r).
It follows that
Fu(r) _
n M n
f|f|d/.l SKl—F;l(r) f|Vf|d,u +nK2Fﬂ(r),

forallr > 0. Using the symmetry qf it is easy to see thd, o E;l(t) = Jy(t) for all t € (0,1/2).

Consequently, one has
s
n . n
flfld,u < KlJﬂ(S) flVfld,u + KkoNS

for all s € (0,1/2). For generaff : R" — R with u"-medianm, we apply the result td — m. This
ends the proof. m|

Combining this theorem with Bobkov's Lemrha]3.1 we immediatieduce

Corollary 3.13. Letu be a symmetric probability measure Brabsolutely continuous with respect
to the Lebesgue measure. Assume lihgF, is convex orR*. Then, for any n, any Borel set&R"
satisfies

(3.14) W"s@n) = 23, min("(A), 1 —u”(A)))‘
K1

2Nko

Proof. According to Lemma 3]1, ifi(A) < 1/2 (the other case is symmetrich"§s(9A) > | (u"(A))

with 1(t) = supy s« ;3;55), fort < 1/2, where according to the previous theorem

K1 S

B9 = =

Nkz Ju(s/nk2)’
for s < nko/2 hence fors < 1/2. This yields

t—s Ju(s/n
|(t) — Sup P M .
o<sst K1 (S/Nk2)
In order to estimaté we use the following: first a lower bound is obtained e t/2 yielding
the statement of the corollary. But next according to Leniniia tie slope functiod,(v)/v is non-
decreasing, so that

t—s (/) ko

I(t) < sup < — Ju(t/nk2) .
K1

o<sst k1 (t/nk2)
Remark that we have shown that fox 1/2

(3.15) D2 3. t/2n) < 1) < 22 3,t/ne2).
K1 K1

so that up to a factor 2 our estimate is of good order. m|
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3.2.2. Application: Isoperimetric profile for product measuregtwiheavy tails.Here we apply the
previous results to product of the measures

(3.16) p(dx) = po(dX) = Zg* expl—@(x)}dx,

X € R, with ® concave.

For even measures dh with positive density on a segment, Bobkov and Houdiré [26rolary
13.10] proved that solutions to the isoperimetric problem be found among half-lines, symmetric
segments and their complements. More precisely, one hasf(d, 1)

min(t, 1 - t)))

(3.17) L,(t) = min(Jﬂ(t), 23,( 5

Under few assumptions ab, |, compares to the function

Lof) = mint 190 0072l )

where®’ denotes the right derivative. More precisely,

Proposition 3.18. Let® : R — R be a non-decreasing concave function satisfyir{g)/x — 0 as
X — co. Assume that in a neighborhood - the function® is C? and there exist§ > 1 such that
@’ is convex. Letig, be defined in[(3.16). Define,fand J, as in (3.6).
Then,

. a0

-0 td’ o d~1(log 1)
Consequently, i(0) < log 2, Lo is defined o0, 1] and there exist constants,k, > 0 such that for
allt € [0, 1],

kiLo(t) < Ju(t) < koLo(t).
Remark 3.19. This result appears if][T, 23] in the particular case) = |xP and in [11] for®
convex andV® concave. o
The previous results together with Corolldry 3.13 lead ®fthiilowing (dimensional) isoperimetric
inequality.

Corollary 3.20. Let® : R* — R be a non-decreasing concave function satisfydf{g)/x — 0 as
X — oo and®(0) < log 2. Assume that in a neighborhood-e the function® is C? and there exists
6 > 1 such thatd’ is convex. Letd(x) = Z;le ®™dx be a probability measure dh Then,

n
Ln(t) > cmin(t, 1 - )@ o @1 {log ———— Vte[0,1], Vn
o> eming, 1- 907007 log ) vte o
for some constant & 0 independent on n.
Remark 3.21. Note that there is a gain of a square root with respect to theteein [9]. o

For the clarity of the exposition, the rather technical fisoaf Propositior{ 3.18 and Corollafy 3}20
are postponed to the Appendix.

We end this section with two examples.
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Proposition 3.22 (Sub-exponential law)Consider the probability measuge on R, with density
Z;Ye ™ pe (0,1]. There is a constant ¢ depending only on p such that for alllnand all Ac R",

1.1
HA(OA) > cmin@(A), 1 - 1"(A)) Iog(min(/u”(A)nl - ﬂ”(A))) '

Proof. The proof follows immediately from Corollafy 3]20. O

Remark 3.23. Let |,(t) be the isoperimetric profile f". The preceding bound combined with the
upper bound off]9, Inequality (4.10)] gives

1~y 1-1/p
cQﬁtOog(?» psIydU5;d(mtbgCUU(bg(bgzuo))

for anyn > log(1/t)/ log 2 andt € (0,1/2). Hence, we obtain the right logarithmic behavior of the
isoperimetric profile in term of the dimension This result extends the corresponding one obtained
in section[B for this class of examples. o

More generally consider the probability measure= Z-1e"X°logt+X)* n ¢ (0,1], @ € R and
v = exp2la|/(p(1 — p))} chosen in such a way thdit(x) = |x|Plog(y + |x])* is concave oR*. The
assumptions of Corollafy 320 are satisfied. Hence, we gét th

Ln(t) > c(p, a)t (Iog(?))l_l/p (Iog Iog(e+ ?))% ., te(0,1/2).

Cauchy laws do not enter the framework of Corollary [3.20. éttheless, explicit computations can
be done.

Proposition 3.24(Cauchy distributions) Consider gi(x) = W dx onR, witha > 0. There is

¢ > 0 depending only or such that for all n> 1 and all Ac R",
min("(A), 1 - u"(A)L#
- .
Ne

Hs(@A) > ¢

Proof. Since 1- F,(r) = ﬁ forr € R*, log(1 - F,) is convex onR*. Moreover J,(t) =
a2 min(t, 1 - t)**¥2, and so the result follows by Corollafy 3} 13. O

Remark 3.25. Note that, since,(t) = «2Y/* min(t, 1 - t)**/¢, one has
L,(t) = at™Ye,  vte(0,1/2).
Hence, our results reads as
Ln(t) > C nltTtl/“

for some constant depending only or. Together with [[B, Inequality (4.9)] (for the upper bound)
our results gives for any > log(1/t)/ log 2 andt € (0, 1/2)
t (07 / t (07
Cmtl/ < |#n(t) <C W |Og(1/t)l+1/ .

Again, we get the correct polynomial behavior in the dimensi. o
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4. WEIGHTED PoINCARE INEQUALITIES FOR SOME SPHERICALLY SYMMETRIC PROBABILITY MEASURES WITH
HEAVY TAILS

In this section we deal with spherically symmetric probiédbiineasuresiu(x) = h(|x))dx on R" with

| - | the Euclidean distance. In polar coordinates, the measuri¢h densityh can be viewed as the
distribution of¢6, whered is a random vector uniformly distributed on the unit sphgfe!, andé
(the radial part) is a random variable independertt with distribution function

(4.1) uflx <r}) = ncunf s th(s)ds,
0

wherewn denotes the volume of the unit ball &'. We shall denote by, (r) = nwnr™th(r) the
density of the distribution of, defined orR,.

Our aim is to obtain weighted Poincaré inequalities witpliext constants foi on R" of the forms

du(x) = %(th)W) dxwith @ > 0 ordu(x) = 2e™” dx with p € (0,1). To do so we will apply a
general radial transportation technique which is explhinehe following result.

Given an applicatiom : R" — R", the image ofu underT is by definition the unique probability

measure such that
ffdv=ffony, VAR

In the sequel, we shall use the notatibfu to denote this probability measure.

Theorem 4.2(Transportation method)Let u and v be two spherically symmetric probability mea-
sures orR" and suppose that = THy with T a radial transformation of the form: (k) = ¢(|x|)ﬁ,
with o : R* — R* an increasing function witkp(0) = 0.
If v satisfies Poincaré inequality with constant C, thenerifies the following weighted Poincaré
inequality

Var,(f)<C f w(X?IVEPdu(x), VT,

with the weightw defined by

w(r) = max(go’ o o (), ﬁ)

If one suppose that verifies Cheeger inequality with constant C, therverifies the following
weighted Cheeger inequality

f f—midu<C f (VA du(®). VT,

with the same weighb as above and m being a median of f.
Finally, if the functiony is convex, the(r) = ¢’ o o 1(r).

Remark 4.3. In [F7], Wang has used a similar technique to get weightedritignic Sobolev in-
equalities.

Proof. Consider a locally Lipschitz functiofi : R" — R ; it follows from the minimizing property
of the variance and the Poincaré inequality verified iblyat

Varﬂ(f)sf(f—ffdv)z dy:f(f(T)—ffdv)z dngfN(foT)lzdv.
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In polar coordinates we have
2

d
IV(f o T)J? a(f oT)

1 IS o 1 5
+r—2|Vg(fOT)| :(a)OTX(p +r—2|V9f|

af\? , 2 1
= (E)OTX(QO ogologo) +—(¢_lo¢)2|ng|20T.

Moreover, denoting byld the normalized Lebesgue measureSin', and using the notations intro-
duced in the beginning of the section, the previous inetyuedads

af\? Y 1

c [ [(_ar) oTx(¢ v o) + |Vef|on)pv(r)drd9
9f\ , 1\2 1

e [ (&) =t o0+ ooy

af\¢ 1
C f f wz(r)((a) +r—2|V9f|2]pﬂ(r)drd9

C f W?(IX)|V f2du

where we used the fact that the magransportsp, dr onto p, dr. The proof of the Cheeger case
follows exactly in the same way.

Now, let us suppose thatis convex. Sincev is convex andp(0) = 0, one has@ < ¢’(r). This
implies at once thab(r) = ¢’ o ¢~ and achieves the proof. m|

Var,(f)

IA

IA

To apply Theorenf 42, one needs a criterion for Poincarguiakty. The following theorem is a
slight adaptation of a result by Bobkadyv [17, Theorem 1].

Theorem 4.4. Let dv(X) = h(]x]) dx be a spherically symmetric probability measureRdnDefine as
beforep, as the density of the law Pf| where X is distributed according toand suppose that, is
a log-concave function. Thenverifies the following Poincaré inequality

Varv(f)sC,,f|Vf|2dv, v f

with C, = 12( [r2o,rydr - (f rp,,(r)dr)z) +1 [12p,(r)dr.

Proof. We refer to [1J7]. O

Proposition 4.5(Generalized Cauchy distributionsyhe probability measureidx) = %(1+|x|1)(n+n> on
R" with & > 0 verifies the weighted Poincaré inequality

Var,(f) sCoptf(l+|x|)2|Vf|2dy(x), V.

where the optimal constanty is such that

n-1 1 n-1 1
—— — <Cop<14) ——.
kZ‘o (@+k2 - kZ=o (@ + k)2
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Remark 4.6. Note that, comparing to integrals, we have

l n-1
<—+

+(a+1)(a+n) Z(a+k Aa+n-1)

Sincea? zﬂ;(l) W — nwhena — oo, applying the previous weighted Poincaré inequalitg(tex),

making a change of variables, and lettingend to infinity lead to
Var,(f) < l4nf|Vf|2dv

with dv(x) = (1/2)eMdx Moreover, the optimal constant in the latter is certainigager tham.
This recover (with 14 instead of 13) one particular resuBobkov [IT].

Proof. Definey(r) = In(1+r), r > 0 and letv be the image of: under the radial maf(x) = 1//(|x|)ﬁ.
Conversely, one has evidently thafs the image ofv under the radial map (x) = ¢(|X|)ﬁ, with
@(r) = y71(r) = € - 1 (which is convex). To apply Theoren }.2, one has to chedkitharifies
Poincaré inequality.

Elementary computations yield

dv 1 (¥ -1\t nw _
— = — (1-n—-a)|x| — n a1 ar
(X Z( X ) e and  p,(r) > 1-¢e") e

It is clear that log, is concave. So we may apply Theorén] 4.4 and conclude tetfies Poincaré
inequality with the constar@, defined above.

Define
+00 1
H(a) = f e (1- e‘r)”‘l dr = f u“‘l(l - u)”‘l du.
0 0

Then [1p,(r)dr = —& (") J and [r2p,(r) dr = H (Cj) Integrations by parts yield

(n-121)!
(@+n=-D@+n-2)---(a)

n-1 1 n-1
[Za+k}+ (a+k)2

k=0 k=0

H(a) =

So,

n-1
H'(@) = -H() )| a%( and H”(a) = H(a)
k=0

This gives, using Cauchy-Schwarz inequality

c—13ni—1 +5ni Z
T @+ K2 n|&atk] T (a+k)2

Now, suppose that there is some constamjch that the inequality Va¢f) < C [(1+ [X)?V {2 du
holds for all f. We want to prove thaC > Zk 0 s k)2 To do so let us test this inequality on the

functionsfa(X) = W’ a> 0. DefiningF(r) = f (1+|an” dr, for allr > 0, one obtains immediately

1 F(2a+ @)F(a) - F(a+ @)?

C T FoF@aro
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. . . . ” ’ 2
But a Taylor expansion easily shows that the right hand sigs goK = FF(fg) - (FF((;’))) ,50C > K.

Easy computations give th&{(e) = nw,H(e) and soK = Y13 m O

Proposition 4.7 (Sub-exponential laws)The probability measureudx) = %e"x”) dx onR" with
p € (0, 1) verifies the weighted Poincaré inequality

Var, () < Copt f IV F121x122P) du(x),

where the optimal constanty is such that
n+p
s

Remark 4.8. As for the Cauchy law, lettingp go to 1 leads to

n n
— <Copt < 12— +
p3 op p3

Var,(f) < (13n + 1)f|Vf|2dv

with dv(x) = (1/2)e"™dx Again this recover (with 13+ 1 instead of 18) one particular result of

Bobkov [17].

Proof. We mimic the proof of the preceding example. ldt) = —:;rp, r > 0 and definer as the
image ofu under the radial maf(x) = 1//(|x|)ﬁ. Easy calculations give that the radial partvdias
densityp, defined by

n n-p
) = S (BU)'F e

It is clearly a log-concave function on,[8). Let us compute the constaBi appearing in Theorem

B.4. One has
fr (r)dr = LG+ 1 =0
PUTERTE T
and
n
frzp (r)dr = 16+2)  nn+ P
P I(9) P
Consequently,
n n+p
C, =12— + —.
p pt

Now suppose that there is sor@esuch that Var(f) < C [ [V f[?[x?*P) du(x) holds for all f. To
prove thatC > % we will test this inequality on the functionf(x) = e@4" a > 0. Letting

G(t) = [ ™ du(x), we arrive at the relation

co 1 G(1)G(2a+1)-G(a+ 1)

. vaso
“®2  G)G(a+ 1) a>

1 ’ 2
Lettinga — 0, one obtain€ > % [%T(ll)) - (%T(ll))) ] The change of variable formula immediately

yieldsG(t) = t pG(1), and scC > > [”(T;p) - (%)2] , which achieves the proof. O
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5. LINKS WITH WEAK POINCARE INEQUALITIES.

In this section we deal with weak Poincaré inequalities\aock under the general setting of Section
B. One says that a probability measpreerifies the weak Poincaré inequality if for dlle A,

Var,(f) < B(9 fl“(f)dy + sOsq,(f)?, Vse (0,1/4),

whereg : (0,1/4) — R* is a non-increasing function. Note that the limitatisre (0, 1/4) comes
from the bound Vay(f) < Osg,(f)?/4.

Weak Poincaré inequalities were introduced by Rockner\aiang in [4B]. In the symmetric case,
they describe the decay of the semi-grdmssociated th. (see [4B[K]). Namely for all bounded
centered functiorf, there existg(t) tending to zero at infinity such thiPy fllL,) < ¢O)l flle.

They found another application in concentration of meagiienomenon for sub-exponential laws
in [B, Thm 5.1]. The approach proposed fh [9] to derive wealk@aré inequalities was based on
capacity-measure arguments (followirig][13]). In this EeGtwe give alternative arguments. One is
based on converse Poincaré inequalities. This implidsatbak Poincaré inequalities can be derived
directly from theg-Lyapunov function strategy, using Theor¢m $.33. The se@@pproach is based
on a direct implication of weak Poincaré inequalities framak Cheeger inequalities. In turn, one can
use either (the mass-transport technique of) Thedreln 2Blier to get precise bounds for measures
onR" which are tensor product of a measureRgror (via ¢-Lyapunov functions) Theorefn 3.2.

Converse Poincaré inequalities imply weak Poincaréunkties as shown in the following Theorem.

Theorem 5.1. Assume that satisfies a converse Poincaré inequality
inf f(g— O2wdu < C f I'(q) du
for some non-negative weight such thatw = fwd,u < +o0. Define Hu) = u(w < u) and §s) =

F~1(s) = inf{u; u(w < U) > s} for s< 1.
Then, for all fe A,

Var,(f) < % f I(f)du + sOsg(f)? Vse (0,1/4).
Proof. The proof follows the same line of reasoning as the one of fére{8.p. o
Weak Poincaré inequalities are also implied by weak Cheieggualities as stated in the following

Lemma. The proof of the Lemma is a little bit more tricky thdme tusual one from Cheeger to
Poincaré. We give it for completeness.

Lemma 5.2. Letu be a probability measure angl: R* — R*. Assume that for any € A it holds

f|f—m|du sﬁ(s)f\/l“(f)dy+sOsc(f) Vse (0,1)

where m is a median of f undgr Then, any fe A satisfies

(5.3) Var,(f) < 4,3(2)2 f [(f)du + Osc)?  Vse (0.1/4).
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Proof. let f € A. Assume that 0 is a median éfand by homogeneity of (3.3) that O$¢(= 1 (which

implies in turn that|f|l. < 1). Letm be a median of . Applying the weak Cheeger inequality to
f2, using the definition of the median and the chain rule forquiobtain

ffzd,usflfz—mld,us2[3(s)f|f|\/l"(f)dy+sOsc(f2) Vse (0, 1).

Since|| f|l.. < 1 and Oscf) = 1, one has Osdf) < 2. Hence, by the Cauchy-Schwarz inequality, we

have - ) )
ffzdy5Zﬂ(s)(fl“(f)dy)é(fﬁﬁdy)i+23 Vse (0.1).

(ffzolu)2 sﬂ(s)(fr(f)oly)i +(,8(s)2fl"(f)d,u+s)§.

Since Vay,(f) < [ f2du, we finally get

Var,(f) 54,8(3)2f1"(f)d,u+23 Vse (0,1)

which is the expected result. m|

Hence,

Two examples follow.

Proposition 5.4 (Cauchy type laws)Let du(x) = V(™) (x)dx with V convex oR" and e > O.
Recall thatc = —1/a. Then there exists a constantC0 such that for all smooth enough: fR" — R,

Var,(f) < Cs f IVf?du + sOsg,(f)%,  Vse (0,1/4).

Proof. The proof is a direct consequence of Proposifioh 3.3 togetita Lemmg5.p above. O

Remark 5.5. For the generalized Cauchy distributida(x) = ¢z (1 + [x|)=™9), this result is optimal
for n = 1 and was shown i [#8] (see ald [9, Example 2.5]). firer 2 the result obtained i [#8]
is no more optimal. In[J4], a weak Poincaré inequality isve in any dimension with rate function
B(9) < c(p) &P for any p < «. Here we finally get the optimal rate. Note however that thestantC
may depend on. o

Proposition 5.6(Sub exponential type laws).et du = (1/Z;) e V" for some positive convex function
V onR" and pe (0, 1). Then there exists € 0 such that for all f

2(3-1)
Var,(f) < C(Iog( )) f IVf?du + sOsg,(f)>, Vse (0,1/4).

Proof. The proof is a direct consequence of Proposifioh 3.5 togetit Lemmg5.R above. O

By Lemma[5.p above, we see that weak Poincaré inequaliiesbe derived from mass-transport
arguments using Theordm 3.8. This is stated in the next @oyol

Corollary 5.7. Letu be a symmetric probability measure &nabsolutely continuous with respect
to the Lebesgue measure. Assume tbgf, is convex orR*. Then, for any n, every function
f : R" — R smooth enough satisfies

(5.8) Varn(f) < f|Vf|dy + 2kon0sc(f)?, Vs> 0.

SSyeRe (S /2)2
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with k1 = 2V6 andk, = 2(1+ 2V6).
Proof. Applying Lemmg5]2 tq:" together with Theorer 3.8 immediately yields the result. O
We illustrate this Corollary on two examples.

Proposition 5.9(Cauchy distributions) Consider @di(x) =
is a constant C depending only arsuch that for all n> 1

@ dX OnR, with @ > 0. Then, there

Varyn(f)sc(g)EflVflzdy”+sOsc;,n(f)2, Vse (0, 1/4).

Proof. Since Jn, (t) = a2Y*t™*e for t € (0,1/2), by Corollary[5]7, orR", " satisfies a weak
2
Poincaré inequality with rate functigg(s) = C(2)", se (0, 3). O

Proposition 5.10 (Sub-exponential law)Consider the probability measupe on R, with density
Z e ™" pe (0,1]. Then, there is a constant C depending only on p such thatifara 1

2(3-1)
Varyn(f)sc(log(g)) ’ f VE2du" + sOsga(f)2,  Vse (0,1/4).

Proof. By Corollary[3.2P,J,(t) is, up to a constant, greater than or equatl(ﬂog(l/t))l‘% fort e
[0,1/2]. Hence, by Corollarj 5] 7" satisfies a weak Poincaré inequality®h with the rate function

B(9) = C(1og ()", se 0.3y, 0

Remark 5.11. The two previous results recover the results[bf [9]. Notediference between the
results of Propositiof 5.6 (applied ¥(x) = |x|) and Propositiof 5.10. This is mainly due to the
fact that Propositiofh 5.6 holds in great generality, whiteg®sition[5.1 deals with a very specific
distribution. The same remark applies to Propositions Baf&@9 since in the setting of Proposition
E, 2a = —2.

However, it is possible to recover the results of PropasiBal( (resp. Propositiorls 5.9) applying
Propositior{ 5]6 (resp. Propositiohs]|5.4) to the sub-expiaeresp. Cauchy) measure Brand then
to use the tensorization properfy [9, Theorem 3.1]. o

Remark 5.12. According to an argument of Talagrand (recalled in the thiation), if for all k, xX
satisfies the same concentration property,dben the tail distribution gf is at most exponential. So
no heavy tails measure can satisfy a dimension-free coraiemt property.The concentration prop-
erties of heavy tailed measure are thus particularly ititeygo study, and in particular the dimension
dependence of the result. The first results in this direatging weak Poincaré inequalities were done
in [B]. As converse Poincaré inequalities plus controlhaf tail of the weight lead to weak Poincaré
inequality, and thus concentration, it is interesting tmaek that in Theorem 4.1 and Corollary 4.2
in [R2], Bobkov and Ledoux proved that if a weighted Poircaréquality holds, any 1-Lipschitz
function with zero mean satisfies

D
nfms;%n 1472l

for all p > 2. It follows that for allt large enought(> Dpel| v1+ 72 [lp),

(Dpnd1+%nﬂp
t .

u(f] > 1) <2
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Hence the concentration function is controlled by some nmiroéthe weight. Dimension depen-
dence is hidden in this moment control. However if one is dmigrested in concentration properties,
one could use directly weighted Poincaré inequalities. o

6. APPENDIX

This appendix is devoted to the proofs of Proposifion]3.18@arollary[3.2D. Let us recall the first
of these statements.

Proposition. Let® : R* — R be a non-decreasing concave function satisfyir{g)/x — 0 as
X — co. Assume that in a neighborhood o the function® is C? and there exist§ > 1 such that
@ is convex. Letip be defined in[(3.16). Defing,and J, as in (3.6).
Then,

lim Jﬂ—(t) =

-0 td’ o ®~1(log ¥)

Proof of Propositior] 3.8 The proof follows the line of[11, Proposition 13]. By Poiiitof Lemma
6.2 below,®’ never vanishes. Under our assumptionsdowe haveF,(y) = f_yoo Z,te (M dx ~

Z,te M /0 (lyl) wheny tends to-co. Thus using the change of varialyle- F(t), we get
3.(t -0(y)
Ii——JQ—T = lim © .
-0 @’ o ®~1(log §) y== ZyFu(y)® o @L(log W)
jim — iM)l.
y=- @’ o ®1(log W)

By concavity of® we haveF,(y) > Z;e®M/@’(ly|) for all y < 0. Hence, since lim @' = 0, we
have Iogﬁ < O(lyl) wheny <« —1.

Then, a Taylor expansion df’ o ®~! between Io% and®(ly|) gives
@’ o dY(log ﬁ) L
' (Iyl) @' (Iyl)
for someg, € [log ﬁ o).

D o q)_l(Cy)
" 0 d71(cy)

log —=— — <D(|y|))

1
Fuy)

Fory <« -1, we have
e=2(y) CF) <2 () |
Zod'(lyl) Zpd'(lyl)
Hence, using Poinii{) of Lemma&[6.p below,
1
Fu(y)

(6.1)

1
Fu(y)

2
log— + Iog(

log @(yl) - log

—MM

IA

&)
Zy O’ (1yl)
log % + clog(y)

IA
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for some constart and ally < -1.
On the other hand, wheb’ is convex and>?, (®°)” is non negative. This, together with Poiit ¢f

Lemma[6.P, lead to

‘d) (X _ o (X < (9_1)<D X < c
@’ (X) d’(X) d(X) ~ X
for some constant’ andx > 1. It follows that

(DN o (D—l(cy) C/

< .
R Gl

Now, by (6.1) and Pointii{) and {i) of Lemma[6.R, we note that

g a(y) + log(S2) + log(@’ ()

e
> @(ly)) + log (%) — czlog(yl)

> O(yl) + |og(z7q’) - 2—2 log(@(Iy1)))

1
> EQ)(M)
providedy < —1. In turn, by Pointi¢’) of Lemma[6.p,
D o q)_l(Cy) B c

o dYc) Iyl
for some constant”.
All these computations together give

1 1 D o L log £ + clog(y))
; (lOQ - (D(|Y|)) ,—_1(CV) <ol —2 ;
@ (lyl) H(y) @’ o dY(cy) Vi@’ (Iy1)
which goes to 0 ag goes to-oo by Point {) and {i) of Lemma[6.R. This ends the proof. O

Lemma 6.2. Let® : R* — R be an increasing concave function satisfyibfx)/x — 0 as x— oo.
Assume that in a neighborhood 6o the functiond® is C? and there exist® > 1 such that®’ is
convex. Assume thgte"®*)dx < . Then, there exist constantg ¢ > 1, ¢, ¢4 € (0, 1) such that
for x large enough,

(i) eI’ (X) < D(X) < cyxd'();

(i) O(x) > x%;

(i) @’ (x) > x°%;

(iv) 3D(X) > D(CaX).

Proof. Let ® = ® — ®(0). Then, in the largep is concave anddf)’ is convex. Hence, the slope
functions®(x)/x and ()?/x are non-increasing and non-decreasing respectively.rin for x large
enough,

X' (X) = X@'(X) < D(X) < OxD’(X) = OxD’ ().
This bound implies in particular thatd’(x) — oo asx tends to infinity. Pointij follows.
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The second inequality in)(implies that forx large enough,
LG
Dd(X) ~ c1X
Hence, for someg large enough, integrating, we get

(6.3)

log ®(x) > log ®(Xo) + 1 (log(x) — log(xo)) > = log(x) Vx> Xo.
C1 2c;

Point (i) follows.
Point (ii ) follows from the latter and Inequality (6.3).
Takec = exp{1/c1}. By Point (), we have forx large enough

D(X) + f ot
D(X) + j; %dt

D(x) (1 + fcx Cilt) dt

D(x) (1 + 'Ocilc) — 20().

d(cx)

[\

vV

Point (v) follows. O
Now let us recall the statement of Corolldry 3.20.

Corollary. Let® : R* — R be a non-decreasing concave function satisfyir{g)/x — 0 as x— oo
and®(0) < log 2. Assume that in a neighborhood -efo the function® is C? and there existg > 1
such thatd? is convex. Let d(x) = Zyle"®(Mdx be a probability measure da Then,

l,n(t) > cmin(t, 1 - )@’ o ot (Iog Yt e [0,1], Vn

n
min(t,1 - t)
for some constant & 0 independent on n.

Proof of Corollary[3.2D.Since® is concave, log(+ F,) is convex orR*. Applying Corollary[3.13
together with Propositioh 3.118 lead to

[,n(t) > cmin(t, 1 - t)®" o ot (Iog VYt e[0,1], ¥n

n
¢ min(t,1-t)
for some constart > 0 andc’ > 1 independent on. It remains to prove that for alle [0, 1/2],
’ -1 n Y Vi -1 n
td o @ (Iog—) >t o @ (Iog—)
c't t

for some constant” > 0. Fort < 1/2 we have 1(c't) < (1/t)° for someC > 1. Hence, since
@’ o ®1 is non-increasing,

@ o & L(log %) > o dI(Clog ?).
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Now note that Pointiy) of Lemma[6.R is equivalent to saly *(2x) < Z®~(x) for x large enough.
log, CJ+1
Henced 1(CX) < (é)Logz " o1, It follows that

)Llog2 Cl+1

@ o & (log %) > @' ((C— o (log ?))
4

for t small enough. Finally, Point)(and {v) of Lemma[6.p ensure that

X
(I)l( ; )2 E—CD(C_“) , 2a () 2

— @’ (X).
cgC X ¢ X ci )

Cy

Hence
n n
t@’ o @1 (Iog —) > ¢td’ o @71 (Iog —)
c't t

for some constart” > 0 andt small enough, say fdr< ty. The expected result follows by continuity
of t > t®" o d~*(log #)/td’ o d~Y(log &) (on [to, 1/2]). O
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