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Abstract. The predictive power of logistic regression, sup-  The question whether the analysis or prediction is the main
port vector machines and bootstrap-aggregated classificatiogoal influences the choice of methods and error measures
trees (bagging, double-bagging) is compared using misclasto be studied. In the present work, the focus is on predic-
sification error rates on independent test data sets. Based dion. Predictors of landslide hazard distribution are fitted
a resampling approach that takes into account spatial autoer “trained” on a training data set of observed landslide dis-
correlation, error rates for predicting “present” and “future” tribution and thematic data such as morphometric attributes
landslides are estimated within and outside the training area(slope, aspect etc.) and information on land use (deforesta-
In a case study from the Ecuadorian Andes, logistic regrestion, proximity to road, and other variables). In this predic-
sion with stepwise backward variable selection yields lowesttive context, the misclassification rate as measured on test
error rates and demonstrates the best generalization capabdata sets is the primary quantitative measure for evaluating
ities. The evaluation outside the training area reveals thathe predictive power of a classification rule.

tree-based methods tend to overfit the data. The objective of the present work is to review the present
practice of applied spatial landslide hazard modelling as re-
flected by the scientific literature, and to compare selected
statistical classification rules in a case study. Evaluation tech-
nigues are introduced that take into account the spatial struc-

The spatial prediction of landslide hazards is one importamIure of the prediction problem and_control spatial.oy_erfitting.
field of geoscientific research in which statistical classifica- Two scenarios for the preparation of susceptibility maps

tion rules have been applied. The aim of these methods is tG€ distinguished: First, if multi-temporal landslide invento-

identify areas that are susceptible to future landsliding, base§€S are available, successions of landslide distribution pat-
on the knowledge of past landslide events and terrain param€'nS and land use may be used to predict future events.
eters, geological attributes and other, possibly anthropogenioPecifically, and along the lines of time series analysis, a

environmental conditions that are associated with the Iores_classiﬁer is trained to predict landslide distribution at time
ence or absence of such phenomena point; given environmental data from time poingsandz,

The primary objective of modelling landslide hazards and Iandslid_e distributiqn attimg pqil@tas e_xplanatpryvari—
is the prediction of landslide-prone areas in space and/oP,bIeS' Mult|-tempo_ral information is particularly important
time. This contrasts with other areas of geomorphologicalSlnce future landslide hazards partly depend on the scarps

research, where similar classification problems occur, buf)f past eventsGasadei et 2003 and should therefore be

where the analysis of observed distribution patterns as re[nodelled conditional on these. This will be done in the case

lated to environmental conditions is of primary interest. For study, which is based on data fr.cﬂanoyan(ZQOQ. .

instance Brenning(2009 applied logistic regression analy- On the other hand, often_muln-temporal |r_1ventor|es or pre-
sis to determine factors influencing the spatial distribution of¢iS€ knowledge on landslide age are lacking, and only the
rock glaciers. Based on this analysis, he characterized thgUrrent distributional pattern can be used to identify sus-
geomorphological niche of rock glaciers as related to topog-CePtibIe areasAtkinson and Massaril998 Ohlmacher and
raphy (size of the contributing area, horizontal curvature) and®

climate (temperature, solar radiation).

1 Introduction

avis 2003.

Regarding the evaluation of predictive landslide mod-
elling techniques, this work proposes to adapt the cross-

Correspondence toA. Brenning validation techniqueHEfron and Gong1983 Efron and Tib-

(alexander.brenning@alumni.hu-berlin.de) shiranj 1986 to estimate misclassification errors of spatial
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and spatio-temporal prediction problems. Cross-validationonly be assumed if their distance is greater than some thresh-
is a computationally-intensive estimation technique that isold, the range of autocorrelation, which may be empirically
based on subsequently partitioning a data set into subsets fastimated from the data s&lressie1993.

training and testing the classifier. It is important that the test Further parameters related to the error rate are the sen-
data is independent of the training data; an appropriate resitivity, i.e. the proportion of correctly predicted landslide
sampling scheme will therefore be proposed. points, and the specificity, which measures the proportion
of correctly predicted non-landslide points. Depending on
the purpose of a study and on the cost associated with false-
positive and false-negative predictions, the sensitivity or the
specificity may be of different relevance in practiSaisana

et al, 2004.

A classifier is a mathematical mapping that assigns an objec
to a class based on known covariates describing the object.

It is fitted to or trained on a given training data set. This Many predictive modelling techniques such as logistic re-

dlata set c%nsisrtf OLObj?ICtSd(hﬁ;e: grid ploin;tjs)ll\(/jvith kr:jown ression provide predictions of landslide probability instead
class membership (here: landslide or non-landslide) and a s directly predicting the presence or absence of a landslide.

of also known cpyariates representing possibly relevant enviqyiq mages it easier to adjust the classification rule to re-
ronmental conditions such as morphometry (slope, curvaturegyjqiions on sensitivities and specificities, and it also enables

d|stf_;1nce_ fo ridge and othe_rs), land use an_d land cover (Vedis to assess the model's predictive power independently of a
etation, infrastructure). Given a set of objects with kKnown g ific probability threshold that may be chosen to classify
qovarlates, the classmgr may be uged to precjpt the .(mos(Ijl grid point as a potential landslide or non-landslide area.
likely) qlass member;hlp. In some |nstancels,'|t IS deSIrabIq?eceiver—operating characteristic (ROC) plots can be used
to predict the prqbgblllty of class membership instead of thefor this purposeZweig and Campbelll993. These curves
class membership itself. are obtained by plotting all combinations of sensitivities (on

A great variety of classification methods has been devely y-axis) and proportions of false-negatives §pecificity:

oped by researchers in the fields of statistics and maching 1« x-axis) that may be obtained by varying the decision
learning Hand 1997. Common statistical approaches are threshold.

logistic regression{osmer and Lemeshow2000 and dis- The information contained in this plot is often summa-

g_rimi_nant a?aE/SiS' b?th of which_arb? basel\cjll on linear Cc;Im'rized by the area under the ROC curve (AURQE)smer
Inations of the explanatory variables. ore recent de-5.q Lemeshow2000. This threshold-independent measure

vgl(lopments inglgtﬂle sup[IJort vectkor machines d (bSV\Mp- of discrimination between both classes takes values between
nik, 2003, artificial neural networks (ANN), and bootstrap- 0.5 (no discrimination) and 1 (perfect discrimination). As

aggregated classification tredér¢iman 199§ Hothorn and for the error rates, the AUROC may be determined on test

Lausen 2003. Logistic regression, SVM and bootstrap- o taining data sets, the latter being referred to as apparent
aggregated classification trees will be presented and app“eﬂUROC in the present work

later in this work (Sect5).

2 Basic concepts and techniques

2.1 Classifiers

.3 ROC plots

2.4 Success rate and prediction rate curve
2.2 Error rates

Two types of plots that are similar to the ROC curve have
frequently been used in landslide susceptibility modelling:
the success rate and prediction rate curves@biung and

The misclassification rateor error rate is one measure of
model performance. It is defined as the total proportion of

ok_)jects_ in a_data set that i_s wrongly classifieq, .e. of IanOI'Fabbri 2003. The success rate curve is obtained by varying
slide grid points being predicted as non-landslides (false "€Gfhe decision threshold and plotting the respective sensitivi-

atllves) and of nqn-landshde points being predicted as Iar]d'ties against the total proportions of the data set classified as
slides (false positives).

A te that i d the training dat ti landslide. This may be done on independent test data sets or
h error rale that IS measured on the training data sel iy, v, training data set, in which case the curve will here be

called theapparentmisclassification error. This error rate called apparent success rate curve

will not reflect the performance of the classifier on a test data Prediction rate curves are the saﬁe as SUCCESS rate curves

set. It will rather be too optimistic, i.e. a biased estimator of except that they are computed for landslide distribution pat-

Ihetc gn?monta rortrut(;error ratedpfttht;a rt:_lassﬁletrhontaq |r_1f|n|t(;a tterns (possibly in the training area) for a time point posterior
est data set from the same distribution as the training dalg, y,q training data set’s temporal domain.

set Hand 1997). The conditional error rate is the quantity
of interest in the assessment of classification rules.

An important property of the objects in a test data set is3 Review of modelling approaches
to be independent of the objects in the training data set. This
poses a problem in the context of spatial data, where indeperA review of recent publications reveals a large number of
dence between two observations may in many applicationpapers and conference contributions dealing with predic-
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Table 1. Review of predictive modelling and evaluation approaches used in landslide modelling.

Citation Method Covariates Training data Evaluation
Ardizzone et al(2002 Discriminant Morphometry, All grid points?  Apparent error rate:
analysis geology, land use 22-23%; disagreement

between models based on
different inventories: 15.5%

Atkinson and Massafil999  Logistic regression Morphometry, geology, 442 rupture zone  Apparent success rates
vegetation centers; 1458
non-landslide
cells
Ayalew and Yamagishi2005 Logistic regression Morphometry, geology, All grid points Apparent AUROB36,
proximity to roads (1054 768 cells) Pseudd:R.195
Beguefa and Lorenté2002 Logistic regression Morphometry, satellite All grid points?  Apparent error rate:
and thematic data 32%
Chi et al.(2002 Fuzzy inference Morphometry, geology, All grid points? Training and test areas;
network forest data prediction rate curves
Chung et al(2002 Favourability Morphometry, geology, All grid points Temporal prediction
functions, fuzzy sets  thematic data (437,019 cells) rate curve
Chung and Fabbi2003 Likelihood ratio Success rates in
model separate test areas
and for future slides
Gorsevski et al(2000 Logistic regression,  Morphometry Sample of Apparent AUROC:
probit and grid points 0.713-0.716
complementary sensitivity 59%,
log-log model specificity 70%
Lee et al(2003 Artificial neural Morphometry, vegetation, Random sample  Separate test area
networks soils
Ohlmacher and Davi2003 Logistic regression Slope, aspect, 2,022,861 None
geology, soils cells
Santacana et 2003 Discriminant Morphometry, Random sample  Apparent error rate:
analysis thematic data 14040 points; 18%
van Westen et a[2003 Heuristic “weights Slope, geology, All grid points Apparent success
of evidence” thematic data rate curve

tive modelling of landslide hazards and the preparation ofthe significance of explanatory variables may be put aside,
statistically-based susceptibility maps. Tallegives an  and the evaluation of error and success rates as defined above
overview of methods and data that have been used recentlywill deserve greater attention. However, a great part of the

Logistic regression and discriminant analysis are the mosPuPlished work measures the predictive power on the training
frequently chosen models. Likelihood ratio methodbgng dat_a set, y|eld|r_1g a too_optlmlstlc assessment if compared to
2003, which are kernel-based classifiers, are also populafStimates obtained on independent test data sets.

cf. Chung and Lecler2003for a review).
( ¢ ) Some authors use either test data from the training area

Statistical methods, if used for statistical inference, rely i for a different time period for evaluatio€kung et al.
on distributional assumptions, one of which is usually the 2 Chung and Fabhr2003), or data from an adjacent test
independence of the observations. This independence agyeg Chung and Fabbr2003. Since landslide causes and

sumption is violated in the case of sufficiently dense, espetharacteristics may vary systematically in space (e.g. due to
cially gridded data, yielding e.g. invalid significance state- jifferent geological conditions) and in time (e.g. due to dif-

ments thmagher gnd Davj2003 AyaIeW and ngagishi ferent triggering rainfall intensities), they are drawn from dif-
2009 or invalid estimates of landslide probabilities aggre- ferent distributions, and estimated error rates or success rate
gated over a surfac&Ciung and Fablr2004 p. 165). In  cypves are hardly transferrable from one particular test data

the case of logistic regression, there are appropriate methodg,; (o the general landslide distribution in the study area. On
available that explicitly model spatial autocorrelatioAsi{  the other hand, if a random subset of the landslide popula-

gustin et al. 1996 Gotway and Stroupl997 Venables and  jop, js set asideSantacana et al2003, spatial dependen-

Ripley, 2003. One such method is applied later in this work. ¢jes petween training and test data points separated by small
If prediction is the primary task of hazard modelling, the distances may produce too optimistic error estimates. Conse-

analytical value of classifiers and hence the importance ofjuently, the estimated error rates depend to a different extent
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" g 0 5 Methods
>

gy | }’{‘f Using geomorphometric attributes and information on land
hy OY Y use, several statistical classifiers are applied to predict land-

Mv - J slide incidence in the study area. The predictive capabili-
'fﬁ, g 2 J ties of these competing methods are compared based on mis-
[ 27§ classification error rates estimated using spatial and spatio-
i";g;' : , temporal cross-validation approaches on independent test
L Vo) p ; g data sets. The spatio-temporal prediction situation consists of
. | / training classifiers based on all 1989 and pre-1989 data, and

- L to predict with this classifier post-1989 (i. e. year 1998) land-
Colombia slides based on the knowledge of pre-1998 landslides and of

— A land-use data of 1998. Conditions of 1989 are referred to

L o; PN SIS Lol as “present” and 1998 as “future”. These future landslides
Ecuador f ”@’:’?; / are only used for error estimation as described below, not for

n ."j 5. . training classifiers.

o . ViIcabaﬁwba,w. / 7/ 1’/‘(‘ In general terms, different classifiers are fitted to training

B p 9 4 - rd f data sets, and error rates are measured on the following four
eru , ~ s , 4 . .

/sl 4 4 E E . types of independent test data sets: (1) Test points scattered

81°° 7?°W ﬁ- } ":fﬁ) o v .0 within the spatial domain of the training area, corresponding

to present conditionsspatial intra-domain erro), (2) test
Fig. 1. Location of the study area. data within the spatial domain of the training area, but cor-

responding to the future inventorggatio-temporal intra-

domain erro)), (3) test points outside the spatial domain

on the generalization capabilities of the classifiers. DifferentOf @ restricted training area representing present-day condi-

evaluation strategies are therefore systematically compareHons patial extra-domain errgr and (4) test data outside
in the following case study. the training area and representing future conditiapaijo-

temporal extra-domain errdr Independent test and training
data sets are obtained by applying empirically-derived dis-
tance buffers as described below in sectoh
4 Study area The difficulty of temporal and of extra-domain prediction
lies in possible differences in the stochastic distribution of
landslide events outside the spatial and temporal domain of
Cienffica San Francisco (ECSF) in the Andes of Southernthe training .d‘?“a set. Algorithms that are ?b'e to generalize
from the training data are expected to achieve better results

Ecuador at 41'S and 795 W (Fig. 1). The ECSF area . : . i
has been investigated since the year 2000 within the com'—n these settings than algorithms that tend to overfit the pecu-

pound project “Functionality in a Tropical Mountain Rain- liarities of the training data.

forest” funded by the German Research Foundation (DFG). Agt_orrt]r?ted metf:ods ll‘o[r:]r_ammg ClaiS'f;lcatlo? ruI?s ar?_
The aim of this multidisciplinary research project is to an- usedin the present work. This approach aflows 1o automati-

alyze the rainforest ecosystem of Southern Ecuador and tgally replicate training and test data sets and to apply cross-

elaborate options for its sustainable use. This ecosysterﬁa"daﬁon to the estimation of misclassification error. This
is one of the hot spots of biodiversity on.Earae(:k and would not be possible with classical statistical model-based

Miiller-Hohenstein200%, Bussmann2001; Richter 2003. approaches, which rely on more or less interactive model fit-

) % ting by an expert. In addition, a qualitative comparison of
The study area comprises 11.2kemd extends from 1720 yqqel-based and data-driven approaches is presented in the

to 3160m a.s.l. Landslides were inventoried 8foyan  jiscussion.
(2000 at a scale of 1:8800. A total area of 0.94kmas A gnalyses are performed within the open-source data
classified as active or inactive mass movements in the trans'énalysis environmenk (version 1.9.1R Development Core
tion between shallow transitional landslides and debris flowsTeam 2004).

(Corominas 1996 Stoyan 2000. Landslide inventories

were compiled for the years 1962, 1969, 1976, 1989 and | (lassifiers

1998.

Vegetation is dominated by mountain rainforests andIn the case study, several variants of traditional and more re-
paramo. Slashing and burning and subsequent grazing takeent classification methods are applied, ranging from logis-
place in the lower, northwestern part of the mapping aredic regression over support vector machines to bagging and
along the road from Loja to Zamora. Landslide incidence isdouble-bagging. Artificial neural networks are not used here
highest in these intervened areas. because of the need for an adjustment of several hyperpa-

The case study focuses on the surroundings of the Bstaci
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rameters (number of layers, type of weight decay), which is1996. Bagging consists of training separate classification
beyond the scope of this study (tke et al, 2003. trees on random subsamples of the data set. The bootstrap-

Logistic regression is a generalized linear model for bi- aggregated prediction is obtained by majority voting among
nary response variablesl¢smer and Lemeshqw@000. In these trees. In this work, 25 bootstrap replications are used.
order to model the probability of a positive outcome con- Double-baggingKlothorn and Lauser?2003 is an exten-
ditional on the covariateg; is transformed from the interval sion of bagging that combines classification trees with other
10, 1[ toits logit In(p/(1— p)). Logits are unbounded quanti- classifiers, in this work with stabilized linear discriminant
ties and can be modelled linearly. Linear model coefficientsanalysis [Lauter 1992 dbagslda, logistic regressiondbag-
are interpreted in terms of multiplicative changes in the oddsglm) and SVM @bagsvi Specifically, one of these classi-
p/(p—1) as a function of a risk factor. Logistic regression fiers is trained on the out-of-bag sample, i.e. the part of the
is therefore a somehow natural way of analyzing the effecttraining data set that is not included in the bootstrap sam-
of risk factors on hazard susceptibility. In the present work, ple. The prediction function of this classifier (in the case of
logistic regression is performed both after applying an au-discriminant analysis, the discriminant function) is used as
tomatic stepwise backward variable selection based on than additional covariate in bootstrap-aggregated tree growth.
Akaike Information Criterion (AIC), which penalizes for the This makes predictions smoother and more efficient than in
number of explanatory variables (acrongimstep, and us-  bagging, and uses the information contained in the out-of-
ing all available variables without selectiogir). bag sample. Bagging and double-bagging are implemented

Spatial data are frequently autocorrelated up to a certainn the R package ipred
distance called the range of autocorrelati@ngssie 1993.

Classical logistic regression, which assumes independent ol5.2  Estimation of error rates

servations, will therefore yield wrong significance statements

for model coefficients. A variant of logistic regression that Misclassification rates are used to compare the predictive
honors spatial autocorrelatioglinspaj is included here. It  power of classifiers. While in a practical context different

is based on penalized quasi-likelihoods and implemented ircost may be associated with both error types (false-positives
the R functionglmmPQL(Venables and Riplgy2002. The  and false-negatives), here both are treated as equally impor-
iterative fitting algorithm is numerically more demanding tant since a more appropriate cost function is not available.
and less stable than the one used for ordinary logistic regreg=urthermore, independently of the proportion of landslide
sion. Therefore only a manually preselected set of (the mosand non-landslide areas in the inventory maps, all analy-
important) geomorphometric and thematic covariates couldses presented here are based on balanced training and test
be used in the present context of repeated automated modghta sets of 50% landslide and 50% non-landslide samples.
fitting. The spatial correlation structure was represented by & hese simplifications were made in order to focus on dif-
fixed spherical correlogram with a range parameter of 180 nferences between the classifiers that are independent of the
as derived from empirical residual correlograms of an ad-hoactual prevalence of landslides.

ordinary logistic regression. Traditional cross-validation is based on partitioning the set

Support vector machines are a more recently develope®f observations into equally-sized subsets to train the classi-
method that is based on nonlinear transformations of thdier on all but one of these subsets and test it on the remaining
covariates into a higher-dimensional feature spaégiiik, ~ one Efron and Gong1983 Efron and Tibshiranil986). Er-
2007). In this space, an optimal separating hyperplane isrors measured on these test data sets are averaged over all test
computed. In this work, C-classification is performed with data sets in order to obtain an overall error estimate. Cross-
radial basis functions as kernels, and shrinking heuristics ar¢alidation assumes that (pairs of) observations in different
applied. The SVM implementation of tHe package e107#1  subsets of the partition are independent. In a spatial context,
is used with default parameter settings. this is not easy to achieve.

Classification trees recursively split the covariate space The following procedure is used to extract appropriate
into disjoint subsetsBreiman et al. 1984. These subsets test and training data sets from the gridded landslide inven-
are assigned to one of the classes, landslide or non-landslidéory: First, an empirical correlogram was estimated from the
An object from the test data set is dropped down the tree ir{logit-scale) residuals of an ad-hoc logistic regression model
order to determine the subset it belongs to and hence to presf landslide distribution. The correlogram shows an approxi-
dict its class membership. mate range parameter of 180 m, indicating that the random

Since classification trees are instable with respect to slighEomponent of landslide susceptibility distribution is auto-
modifications of the training data set, bootstrap-aggregatiorporrelated at distances below this threshold. If the random
techniques such as bagging have been propd3ezinfan field is assumed to be second-order stationary and Gaussian,
model errors at pairs of points more than 180 m apart may be

lpy D. Meyer, Institute of Information Systems, Vienna Uni- considered independent. If the assumptions do not hold, the
versity of Economics and Business Administration, based on code
by Chih-Chung Chang and Chih-Jen Lin, Department of Computer 2by T. Hothorn, Institute of Medical Informatics, Biometry and
Science and Information Engineering, National Taiwan University, Epidemiology, University of ErlangeniNnberg, Erlangen, Ger-
Taipei. many.
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mentioned minimum distance between points is a necessarynes and corrected according to air photos and field measure-
condition for independence. It is therefore an important con-ments. The nominal resolution of the DEM is 5m. Similar
straint for spatial cross-validation that the minimum distanceto the papers discussed earlier in this work, the terrain pa-
of each test data point to the training data points is greaterameters used range from local parameters (elevation, slope,
than the correlogram range. aspect, plan, profile and total curvature, convergence index)
In the present case study, first a set of 20 landslide and 200 parameters that depend on topological site characteristics
non-landslide grid points is sampled from the study area in(contributing area, its height, mean slope and mean aspect;
order to use it as a spatial test data set for the prediction o¥ertical distance to channel network and from ridge). In the
“present-day” (1989) landslide distribution. In addition, for case of skewed variables or variables for which a nonlinear
spatio-temporal error estimation, samples of the same sizeelationship is to be expected, simple transforms (logarithm;
are drawn from the inventory of “future” (1998) landslides. binary splits such as “distance to past landslides smaller than
Based on the mentioned ad-hoc estimate of the correlogrard00 m”) were added without regard of the covariates’ actual
range of~180m, all grid points within this distance from empirical relation to the response, i. e. without fitting the co-
both test data sets are excluded from the area from which thgariates to the data manually. Terrain parameters were com-
training data set is drawn randomly. puted using the software SAGA
The size of the training data set is varied in order to deter- Multi-temporal land use and deforestation patterns in the
mine how the different methods are able to deal with an in-study area as compiled §toyan(2000 were used as ad-
creasing spatial dependence of the data. The largest trainingjitional covariates. These covariates are categorical vari-
data set consists of 1600 landslide and 1600 non-landslidables such as a binary variable representing the polygonal
points. It is split into two disjoint data sets of 88800 and  deforestation areas. In addition, distance parameters were
then four data sets of 463100 points each. computed for such areas, and a set of binary splits of these
This procedure of sampling both 2Q0 test samples and Vvariables was produced (e.g. “distance to road smaller than
an independent 16Q01600 training data set is repeated 200 m”). Reliable geological information is not available at
50 times independently. Spatial and spatio-temporal intrathe scale of the inventory.
domain error rates are estimated on the corresponding test
data sets. These estimates based on independent test data
sets are estimates of the respective conditional misclassific® Results
tion rate.
Since it is not only desirable to achieve good predictions

W'thlm ihe area spa?]ntehd bybtllhte tr?mln%.d:ti.ta set, Itn ?tsecgngogistic regression with stepwise variable selection achieved
E\éa;? dlotﬂ aEerrich]?nc re ai ”rr): 0 p:e dlcblng spatia frent Sthe lowest estimates of conditional error rates both for the

yon € training area 1S measured by means of ex raépatial prediction of “present” landslides and the spatio-
domain error rates. For this purpose, two subareas in the e

)i'emporal prediction of “future” landslides outside the train-
treme southwest and northeast are used as test areas. The Sarea. This is true for all sizes of training data sets con-

subareas,.whlch comprise a}boult half the mapping area, "eRya ey, Best results are obtained for the largest training
resent an intervened area with high landslide incidence and fata sets. the overall optimum being an error rate of 0.24

high-elevation area with low incidence. The area from WhiChfor present and 0.32 for future landslides (TaBle This
training data sets are drawn is separated from the test areaslﬁ;( hod is foll ) logisti . ith :
a 180 m wide buffer in order to achieve independence. BothS ethod is followed by logistic regression without variable

<patial and spatio-temporal error rate lculated for th election in the case of spatial prediction, and by logistic re-
t(fst areas spat P ' S are caiculated for aression with spatial autocorrelation structure in the case of

Th timated i dioth it fthfuture landslides.
€ estimated errorrates are compared (o the resulls 0T e qy,\ achjeve average results as regards estimates of con-

best classifier for each of the scenarios by means of a palreQitional error rates, with comparatively better results for

;[Nt:SS;[:-)I-F())Ii:ngt-]()StC?r:tlr’g?I;[;.l?:]eil)t?vsvti?g;a(;‘ir()BrogteerAr/(;r;Itf(;(l)lrraencélon present landslides thap for future ones. Bagging and double-

. . . . bagging perform considerably worse than the other methods
Yogng, 1993. The Bonferroni correction consists of muIt|-. regarding the conditional error estimates. There are no great
plying all p-values by the total number of tests performed in differences within this group of classifiers, independently of
an analysis. the method trained on the out-of-bag sample.

6.1 Extra-domain error rates

5.3 Explanatory variables 6.2 Intra-domain error rates

Digital elevation models (DEM) have become inexpensive gyq rates obtained for independent test points within the

sources of topographic information and hence a data base Q{5 ja| domain of the training data set show a different be-

the computation of geomorphometric attributes that are req oviqr compared to the extra-domain error rates (Taple
lated to mass movements. For the present case study, a set

of standard topographic attributes has been derived from a 3py O. Conrad, Geographical Institute, University ait@ngen,
DEM created byStoyan(2000, which is based on contour Germany.
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Table 2. Extra-domain error rates for present and future landslide prediction.

Spatial error rate Spatio-temporal error rate

Classifier 3200 1600 800 400 3200 1600 800
glmstep 0.238 0.247 0.261 0.283 0.324

400
0.329 0.340 0.355

gim 0.263 0.276 0.297 0327 0371 0.379 0.390 0.406
glmspat - 0.339 0.347 0.354 - 0.333 0.330 0.332
svm 0.327 0.302 0.302 0.321 0.386 0.372 0.370 0.384

bagging 0376 0375 0.385 0.385 0418 0422 0413

0.404
dbagslda 0.482 0.454 0.429 0.409 0.450 0.428 0.409 0.399
dbagglm 0.449 0.447 0.407 0.388 0.449 0.435 0.413 0.403
dbagsvm 0.382 0.376 0.387 0.391 0.426 0.420 0.413 0.405

Table 3. Intra-domain error rates for present and future landslide prediction.

Spatial error rate Spatio-temporal error rate

Apparent error rate
Classifier 3200 1600 800 400 3200 1600 800

400 3200 1600 800 400

glmstep 0.290 0.295 0.301 0.317 0343 0344 0351 0.358 0.187 0.186 0.181 0.171
glm 0.317 0315 0.329 0.345 0.350 0.352 0.359 0.378 0.176 0.171 0.161 0.137
glmspat - 0.338 0.339 0.334 - 0.327 0.314 0.336 - 0.267 0.264 0.240

svm 0.326 0.319 0.319 0.324 0.343 0340 0330 0.337 0.117 0.127 0.133 0.133
bagging 0379 0.330 0.313 0.310 0.374 0.348 0.344 0.332 0.000 0.001 0.001 0.002
dbagsida 0.370 0.335 0.310 0.312 0.381 0.360 0.345 0.334 0.001 0.001 0.001 0.001
dbaggim 0.354 0.331 0.311 0.310 0.370 0.352 0.333 0.332 0.000 0.001 0.001 0.002
dbagsvm 0.373 0.337 0.316 0.312 0.361 0.349 0.338 0.335 0.001 0.001 0.001 0.002

In the case of conditional error rates for the distribution and the covariates at hand. The estimated extra-domain er-
of present landslides, logistic regression with variable selector rates are lower than intra-domain errors. This can be at-
tion (glmstep generally achieves the best results (lowest er-tributed to the circumstance that the proportion of probably
ror rate: 0.29). For small sample sizes, error rates slightlyman-made landslides is greater in the test area than in the
increase, and there is no significant difference if compared tdraining area; man-made landslides are apparently easier to
bagging and double-bagging predictors. These overfit, yieldpredict than landslides in the less intervened areas.
ing highest error rates for large sample sizes. SVM does a
good job for all sample sizes.

As regards the prediction of future landslides within the

spatial training domain, logistic regression with spatial de-Figure2 shows susceptibility maps for spatial intra-domain
pendencedlmspaj achieves lowest estimated conditional er- prediction using logistic regression with variable selection,
ror rates. However, there is no significant difference com-double-bagging combined with logistic regression, and sup-
pared to the other classifiers, since the general variability ofort vector machines.

error rates is greater than in the previous setting.

6.3 Susceptibility maps

Logistic regression shows a smooth prediction surface, ex-
Estimated apparent error rates are much lower than theept for areas with changes in the categorical variables such

previously presented unbiased estimates of the conditionahs land-use boundaries or pre-existing landslide scarps. SVM
misclassification rate. Tree-based methods achieve appareptedictions look similar, but show finer spatial structuring be-
error rates< 1%, while SVM and logistic regression yield cause the method incorporates more complex variable trans-
apparent error rates of more than half the unbiased estimatdsrmations into the predictor. Interestingly, SVM predicts
of the conditional error. an altitudinal increase in landslide susceptibility towards the
Since apparent error rates may be taken as (possibly tomountain situated in the extreme southeast of the study area.
optimistic) upper bounds of the true error rattafd 1997, This (unrealistic) feature is missing in the logistic regression
and sinceglmspatgenerally performed quite well on inde- map.
pendent test data, it is suggested that logistic regression with In contrast to logistic regression, the tree-based predictions
stepwise variable selection is very close to the minimum er-of bagging and double-bagging are not continuous func-
ror rates that may be achieved with this class of classifierdions of the covariates. They produce a complex predic-
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Fig. 2. (a) The overall distribution of landslides (yellow), an@)—(d), landslide susceptibility maps produced with logistic regression,
double-bagging and support vector machines.

tion pattern with isolated grid points of high susceptibility many covariates, especially when interaction terms are in-
and some abrupt changes within short distances. These patolved, which was avoided here for this reason.
terns hinder the construction of susceptibility maps that can Logistic regression with spatial autocorrelations as imple-
be used in practice at the given scale, since individual high-mented bygImmPQLin R was the least stable method. Some
susceptibility grid points are spread over the entire mappingsubjectively less relevant covariates could not be included in
area. The higher generalization capability of SVM and espethese models since the full set of variables frequently pro-
cially of logistic regression are desirable features for hazardduced errors. In addition, 512 MB of RAM were not enough
zonation. for glmmPQLto run on a training data set of 3200 autocor-
related points. This method was also by far the slowest one.

6.4 Stability considerations

7 Discussion
Both SVM and tree-based method are very stable algorithms.

Ordinary logistic regression is also rather stable, but is sub-The results of the case study show that logistic regression
ject to the limitations of any linear model regarding the non- with stepwise variable selection is flexible enough to com-
collinearity of covariates. This sometimes causes problemgpare favorably with machine-learning algorithms such as
in the case of automated stepwise variable selection witt5VM and double-bagging. In contrast especially to the lat-
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ter, overfitting is not a serious problem for logistic regression.account for the spatial variability of these cost functions de-
Differences between the classifiers were greatest for predicpending on infrastructure and land use.
tions outside the training area (extra-domain error rates).
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