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Abstract

DOC concentrations have increased in many surface waters in Europe and North

America over the past few decades. As DOC exerts a strong influence on pH this DOC

increase could have detrimental effects on acid sensitive biota in many streams and

lakes. To investigate the potential implications of changes in the DOC concentration5

on stream water biota, we have used a mesoscale boreal stream network in northern

Sweden as a case study. The network was sampled for stream water chemistry at 60

locations during both winter base flow and spring flood periods, representing the ex-

tremes experienced annually in these streams both in terms of discharge and acidity.

The effect of changing DOC on pH was modeled for all sampling locations using an10

organic acid model, with input DOC concentrations for different scenarios adjusted by

between –30% and +50% from measured present concentrations. The resulting effect

on pH was then used to quantify the proportion of stream length in the catchment with

pH below the acid thresholds of pH 5.5 and pH 5.0. The results suggest that a change

in stream water DOC during base flow would have only a limited effect on pH and15

hence on the stream length with pH below the acid thresholds. During the spring flood

on the other hand a change in DOC would strongly influence pH and the stream length

with pH below the acid thresholds. For example an increase in DOC concentration of

30% at all sites would increase the proportion of stream length with pH below 5.5 from

37% to 65%, and the proportion of stream length with pH below 5.0 would increase20

from 18% to 27%. The results suggest that in poorly-buffered high DOC waters, even a

marginal change in the DOC concentration could impact acid sensitive biota in a large

portion of the aquatic landscape.

1 Introduction

The snow melt period is a recurring ecological challenge for aquatic organisms in many25

boreal surface waters. The resulting spring flood is an occasion for transient hydro-
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chemical changes that profoundly affect aquatic ecosystems due to changes in pH and

inorganic aluminium concentrations (Laudon et al., 2005; Simonin et al., 1993). The

snow melt period is also susceptible to anthropogenic perturbations to water quality

that can further impact the biota of surface waters.

The mean annual temperature in Sweden is expected to increase by 3 to 5
◦
C during5

the coming century as a result of the burning of fossil fuels (Kjellström, 2004). This

increase is predicted to be more prominent in the northern part of the country and

biased towards the winter season. Recent predictions also suggest that these north-

ern ecosystems are among the regions that will be most affected in terms of surface

water hydrology and biogeochemistry (Barnett et al., 2005). Another important impli-10

cation of climate change for northern ecosystems is the expected change in the timing,

extent and duration of the snow cover (Venäläinen et al., 2001). The snow not only

provides a major fraction of the annual water budget, but also plays a fundamental role

in regulating the winter biogeochemistry of forest soils (Groffman et al., 2001). How

the predicted change in winter conditions will affect the water quality of streams, rivers15

and lakes in the boreal region is presently not well understood.

Besides contributing the largest component of the ion balance in many boreal surface

waters, dissolved organic carbon (DOC) is important for complexing and transporting

metals (Rember and Trefry, 2004) as well as a carbon and energy source in the aquatic

food web (Jansson et al., 2000). In northern Sweden the spring flood DOC concen-20

tration is of particular interest because many surface waters experience a pH decline

of one to two pH units driven primarily by a transient increase in DOC during snow

melt (Laudon et al., 2001). A change in the DOC concentration during the spring flood

could hence affect the pH decline occurring in the region and alter the suitability for

acid sensitive organisms to dwell in certain streams in the future.25

Recent studies in Europe have reported increasing concentrations of DOC in many

surface waters. For example, several trend analyses investigations in the UK have

shown significantly increasing concentrations the last decades (Evans et al., 2005;

Worrall et al., 2004). Similar trends have also been reported from Norway (Hongve et
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al., 2004) and Finland (Vuorenmaa et al., 2006). Although no single causal mechanism

for this wide spread increase in DOC has been identified, several plausible explanations

have been proposed, including rising temperatures (Freeman et al., 2001), long-term

variability in hydrological conditions (Tranvik and Jansson, 2002) and recovery from

acidification (Evans et al., 2005).5

Long and snow rich winters followed by large snowmelt driven hydrological episodes

are defining features of northern boreal regions. A change in winter conditions is likely

to affect the spring flood in terms of both runoff and solute export. It has been demon-

strated that the DOC concentration in streams in northern Sweden is controlled by

the soil solution chemistry of the riparian zone in combination with hillslope hydrol-10

ogy (Bishop et al., 2004). Thus, a change in the condition of the near stream zone

or in water table level can be expected to change the DOC concentration in adjacent

streams during snow melt. Monitoring and modeling studies from other northern re-

gions also suggest that surface water DOC is sensitive to changes in climate, but that

the characteristics of the change will vary depending on whether increased tempera-15

ture or change in precipitation is the dominant response to a warmer climate (Clair et

al., 1999; Pastor et al., 2003; Schindler, 2001).

As DOC exudes a strong influence on the pH of many boreal surface waters, the

objective of this study was to quantify how the acidity status of a mesoscale (67 km
2
)

boreal stream network would be affected by a future change in DOC concentrations.20

To do this, we modeled the effect of changing DOC concentration (ranging from 30%

decrease to 50% increase) on pH at sites distributed throughout the stream network.

These data were used to estimate the proportion of the total stream length that would

become unsuitable for acid sensitive biota due to changes in DOC concentration, dur-

ing both base flow conditions and the spring flood.25
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2 Study site

The Krycklan Catchment Study is a multidisciplinary project in the upper 67 km
2

of

the Krycklan River catchment in northern Sweden (Fig. 1). The catchment includes

the Vindeln Experimental Forests (64
◦

14
′
N, 19

◦
46

′
E), where climate data have been

monitored at the Svartberget Research Station since 1980. Annual mean air tem-5

perature is 1
◦
C with 600 mm annual mean precipitation, of which one-third falls as

snow (Ottosson-Löfvenius et al., 2003). Snowcover is present for 171 days on aver-

age (1980–1999), and spring snowmelt is the dominant hydrological event of the year,

exporting up to 50% of the annual stream flow during a 3–6 week period in April–May.

Both stream water chemistry and discharge have been monitored regularly at one of10

the small streams, Kallkällsbäcken for the past 25 years (Bishop et al., 1990). Current

acid deposition in the catchment is approximately 2 kg ha
−1

y
−1

each of S-SO
2−
4

and

N-NO
−

3
.

The Krycklan catchment ranges from 130 to 369 m above sea level. The bedrock

consists of gneiss with an up to tens of meters of till overburden. Iron-podzol soils15

are the most common soil type in the catchment, with organic rich soils in the ripar-

ian near stream zones (Bishop et al., 1994). In the lower reaches of the catchment,

larger streams have deeply incised channels carving through fine-grained floodplain

sediments. Except for patches of sphagnum-dominated peat wetlands, making up

9% of the entire catchment area (and up to 50% in some small sub-catchments), the20

catchment is forested primarily with mature Scots Pine (Pinus sylvestris) in dry upslope

areas and Norway Spruce (Picea abies) in wetter, low-lying areas. Deciduous shrubs

and trees, primarily birch (Betula spp.) but also alder (Alnus incana) and willow (Salix

spp.), are found in the riparian forest along larger streams. Brown trout (Salmo trutta)

and Brook trout (Salvelinus fontinalis) are common in many of the streams.25

The Krycklan stream network (Fig. 1) from the 1:100 000 scale Swedish topography

map (Lantmäteriet, Gävle, Sweden) was used for calculations of stream length. Char-

acteristics of the 60 subcatchments (Table 1) were based on a flow network (N=1654
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cells total) for Krycklan developed within IDRISI v. 14 (Clark Labs, Worcester, MA,

USE) using gridded elevation data (DEM) with a grid resolution of 50 m. For soil type

characteristics a 1:100 000 digital soil coverage map (Geological Survey of Sweden,

Uppsala, Sweden) and for land cover type a 1:12 500 scale digital land-cover map was

used (Lantmäteriet, Gävle, Sweden). From the soils map, the categories silt, glacioflu-5

vial sediment, sand and gravel were lumped to create a “sorted sediment” soil category.

From the land cover map, the categories open and arable were lumped to create an

“open or arable” land cover category.

3 Field and laboratory measurements

Stream water sampling consisted of grab samples, with multiple rinses of stream water,10

collected in acid-washed 250 ml high-density polyethylene bottles. Additional samples

for pCO2 analysis were collected in N2-filled 60 mL glass vials sealed with bromobutyl

rubber septa. For each pCO2 sample, a 15-mL aliquot of bubble-free stream water

was injected into the glass vial, subsequently acidified to pH 2–3 with 1 drop of 30%

ultrapure HCl (0.5% v/v) and stored cold until analysis.15

Throughout the Krycklan stream network, 60 locations (Fig. 1) were sampled on

two separate occasions, during winter base flow and close to peak discharge during

spring flood. Samples were collected 5–10 m above and 25–50 m below junctions in

the stream network. The junction samples were supplemented with samples from sites

near the middle of particularly long (>2 km) stream reaches, and from 15 sites which20

are part of a long-term monitoring program (Cory et al., 2006; Buffam et al., 2007).

The winter base flow sampling occasion was collected from 17–28 February 2005.

Discharge during this period was stable at 0.21–0.22 mm day
−1

at the reference site,

typical for winter low-flow discharge with a 25-year average January–March flow of

0.18 mm day
−1

. The spring flood sampling occasion on 22 April 2004 was on the rising25

limb of the snow melt hydrograph, concurrent with maximum DOC concentration and

minimum pH (Buffam et al., 2007). Discharge at the reference site on that day was
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3.0 mm day
−1

, while peak flood was reached two weeks later on 4 May with 7.1 mm

day
−1

of flow during a rain-on-snow event. Peak spring flow in 2004 was within the

typical range of 9.7±3.4 mm day
−1

for the 25-year mean of the daily peak spring flow

at the reference site.

All water samples were kept dark and cool after collection until they were subsampled5

for chemical analyses. pH at field condition was measured at laboratory temperature

using a Ross 8102 low-conductivity combination electrode (ThermoOrion) in the labo-

ratory immediately after collection. Water samples for DOC analysis were filtered using

0.45µm MCE membrane filters (spring flood sampling) or left unfiltered (winter base

flow sampling) and then frozen until analysis. No measurable difference in filtered and10

unfiltered DOC concentration was detected in this study or in other inter-comparisons

in Swedish surface waters (Ivarsson and Jansson, 1994; Köhler et al., 1999). DOC

was measured by combustion and analysis as CO2 using a Shimadzu TOC-VCPH anal-

yser after acidification and sparging to remove inorganic carbon. Instrument precision

based on replicate injections averaged 2% and was always better than 5%.15

Partial pressure of headspace CO2 was analyzed by GC-FID (Perkin Elmer Autosys-

tem Gas chromatograph) equipped with a methanizer operating at 375
◦
C. Separation

was carried out on a Haysep N column using He (70 ml min
−1

) as carrier gas. Dupli-

cate injections of 0.5 mL were performed for all samples, with additional injections as

necessary to attain a coefficient of variation of less than 5%. Stream water pCO2 was20

calculated from sample headspace pCO2 using temperature-dependant equations for

carbonate equilibria (Gelbrecht et al., 1998) and Henry’s Law (Weiss, 1974), together

with measured stream water pH and temperature. For three of the spring flood samples

the average pCO2 of the remaining 57 was used as no analyses were available.

Samples for major cation analyses (K
+

, Mg
2+

, Na
+

, Ca
2+

) were filtered (0.45 µm25

MCE membrane filters), preserved with ultrapure HNO
−

3
(1 % v/v) and stored cool until

elemental analysis by ICP-OES (inductively-coupled plasma optical emission spec-

troscopy) on a Varian Vista Ax Pro instrument. Samples for strong acid anions (SO
2−
4

and Cl
−

) were stored at 6
◦
C (2004 samples) or frozen (2005 samples) until analysis,
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utilizing a Dionex DX-300 or DX-320 ion chromatograph system. The typical precision

in anion and cation analyses based on measurements of certified standards was better

than 2%. Analysis of NO
−

3
by flow injection analysis on selected samples which had

been preserved by filtration and freezing until analysis (one-third of samples) revealed

that concentrations were so low as to contribute insignificantly to the charge balance.5

4 Calculations

Base cation (BC) concentration was calculated as the sum of K
+

, Mg
2+

, Na
+

and Ca
2+

concentrations expressed as µeq L
−1

of charge, with the assumption that these ele-

ments were present in their free ionized form. Strong acid anion (SAA) concentration

was calculated as the sum of SO
2−
4

and Cl
−

expressed as µeq L
−1

of charge. Acid10

neutralizing capacity (ANC) was calculated from the charge balance definition as the

difference between strong bases and strong (mineral) acid anions (e.g., Munson and

Gherini, 1993), expressed here as molar quantities:

ANC=[K+] + 2[Mg2+] + [Na+] + 2[Ca2+]−[Cl−]−2[SO2−
4

]=BC−SAA (1)

An alternative way to express ANC is as (Eq. 2);15

ANC=[HCO−

3
] + 2[CO2−

3
] + [RCOO−] + [OH−]−[H+]−n[Aln+] (2)

where HCO
−

3
is calculated from pCO2 using Henry’s law and the carbonate equilibria

equations. CO
2−
3

was excluded from the calculation, as pH always was below 7.0 and

hence CO
2−
3

does not affect the pH modeling. RCOO
−

denotes dissociated organic

acid anions, including both the strong and weak acid anions, and is calculated from20

DOC and pH using an organic acid model presented by Hruska et al. (2003). Al
n+

denotes positively charged inorganic monomeric Al-species. As previous studies have

shown that the inclusion of Al
n+

does not significantly improve the agreement between

measured and model-predicted pH over the range of Al concentrations, DOC and pH
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found in these stream water samples (Köhler et al., 2000), Al
n+

was also excluded from

the calculations. H
+

can hence be calculated as (Eq. 3):

[H+]=[HCO−

3
] + [RCOO−] + [OH−]−BC + SAA (3)

Because HCO
−

3
, RCOO

−
and OH

−
are pH dependent Eq. (3) was solved iteratively.

The effect of a change in DOC on stream water pH was calculated using Eqs. (4)–5

(7), where the first step was to model the field proton concentration (H
+

modeled−field) using

measured pCO2, DOC, BC and SAA concentrations (Eq. 4). The effect of a change

in DOC concentration on the H
+

(H
+

∆DOC) was then calculated, by adjusting DOC and

hence RCOO
−

accordingly, then re-establishing charge balance while maintaining the

measured concentrations of pCO2, BC, and SAA (Eq. 5). After calculating ∆H
+

as the10

difference between modeled field H
+

and the new H
+

(H
+

∆DOC) after DOC adjustment

(Eq. 6) the final pH value (pHnew) used in the stream sensitivity analyses was calculated

using Eq. (7).

H+

modeled−field
=[HCO−

3
] + [RCOO−] + [OH−]−BC + SAA (4)

H+

∆DOC
=[HCO−

3
]∆DOC + [RCOO−]∆DOC + [OH−]∆DOC−BC + SAA (5)15

∆H+
=H+

∆DOC
−H+

modeled−field
(6)

pHnew=−log(H+

measured
+ ∆H+) (7)

This procedure was repeated for all 60 stream sites using both winter base flow and

spring flood chemistry as the starting point for changes in DOC ranging from –30%

to +50%. The reason for calculating ∆H
+

, which is than added to the measured20

H
+

modeled−field concentration instead of using modeled pH with a DOC change directly,

was to minimize the uncertainty in the organic acid modeling. By using the suite of

equations (Eq. 4–Eq. 7) much of the uncertainty cancels out.
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4.1 Stream length

The chemistry of each site was associated with its respective stream segment, both

for purposes of illustrative mapping and to express the chemical status of the stream

network in terms of proportion of stream length, rather than as proportion of sites.

The length of each stream segment was determined by extending from a given site to5

the halfway point (distance measured along stream) between adjacent sampling sites,

both upstream and downstream. In the case of headwater sites, stream segments

were extended halfway to the furthest upstream extent of the perennial stream, as

indicated on the 1:100 000 scale map. Stream segments were not extended beyond

major junctions. The length of the resulting stream segments varied between 68 m and10

2874 m, with a mean length of 941 m. From this calculation, we estimated that our 60

sampling sites represented a total of 56 km of stream length, out of a total of 96 km in

the whole network. For the remainder of the study, stream lengths are expressed as a

percentage of total measured stream length, i.e., 56 km.

4.2 pH range of interest for acid sensitive species15

Toxicity of water quality to fish and aquatic invertebrate populations in acidic systems

has been linked to both low pH and elevated inorganic aluminium (Ali ). Al toxicity

(e.g., Gensemer and Playle, 1999) is frequently the primary cause of acid impacts on

biota in low DOC aquatic systems. In aquatic systems such as those covering much of

northern Sweden, high DOC concentrations bind aluminium reducing its toxic effects20

(Laudon et al., 2005; Simonin et al., 1993; Witters et al., 1990). For example, Atlantic

salmon are limited by pH with no clear physiological or toxicological response to Al con-

centrations in high DOC streams of Nova Scotia, Canada (Lacroix, 1989). In a recent

study conducted by the Swedish EPA reviewing all available national lake and stream

water quality and biological data, pH rather than Ali was recommended as preferred25

acidity index. This was because pH was found to correlate as well as or better than

Ali to presence/absence of acid-sensitive fish species and stages (Holmgren and Buf-

3154

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/3145/2007/hessd-4-3145-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/3145/2007/hessd-4-3145-2007-discussion.html
http://www.egu.eu


HESSD

4, 3145–3173, 2007

Impact of changing

DOC concentrations

H. Laudon and I. Buffam

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

fam, 2005), and better than Ali to the presence/absence of acid-sensitive invertebrate

species (Fölster et al., 2007). Furthermore these studies suggested that the most crit-

ical pH interval for many acid sensitive species generally is between pH 5.5 and 5.0.

Based on these results we used two thresholds in this study; pH 5.5 and pH 5.0 to

assess the potential change in biological status due to changes in DOC concentration5

during the spring flood.

5 Results

The sampling conducted during both winter and spring represents a stream length of

56 km out of the total 96 km of stream length in the Krycklan catchment. The gaps in

coverage were primarily due to under-sampling of the smallest first order tributaries.10

This gave a distribution of sample sites with a median of catchment area 3.3 km
2

as

compared to 1.5 km
2

for the entire network of potential sampling sites (Table 1). This

under-representation of the smallest streams can mainly be attributed to inaccessibility

or frozen stream channels during winter sampling. Due to this tendency to under-

represent the headwaters there was also an over-representation of areas with sorted15

sediments and open or arable land, which occurred mostly along larger streams in the

lower reaches of the catchment. Otherwise, the distributions of subcatchment charac-

teristics (soil, land-cover parameters) for the 60 sites replicated well the distribution of

potential sampling points from the entire stream network (Table 1). This is of impor-

tance because much of the inter-stream variation in stream water chemistry is related20

to spatial patterns in the terrestrial landscape, in particular the distribution of peat wet-

lands (Buffam et al., 2007; Cory et al., 2006)

The average contemporary DOC concentration at base flow was 10.6 mg L
−1

(Ta-

ble 2) with a standard deviation (σ) of 6.3 mg L
−1

, and varied largely depending on the

distribution of wetlands (Buffam et al., 2007). During spring flood DOC concentration25

generally increased to an average of 17.8 mg L
−1

(σ3.7 mg L
−1

). Average ANC at base

flow was 225µeq L
−1

(σ124µeq L
−1

), which generally diluted during spring flood to
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123µeq L
−1

(σ33µeq L
−1

). Average pH during base flow and spring flood was 6.28 (σ

0.45 pH units) and 5.49 (σ 0.49 pH units), respectively. During base flow average pCO2

was 2804 ppm (σ2959 ppm) whereas average pCO2 during spring flood was 3557 ppm

(σ806 ppm). The pCO2 during spring flood averaged almost ten times overpressure

compared to atmospheric CO2.5

The pH model succeeded well in replicating field pH values from measured concen-

trations of pCO2, BC, SAA and DOC. During spring flood the root mean square error

(RMSE) between measured and modeled pH was 0.15 pH units. At base flow the

RMSE was 0.25 pH units.

The modeled response in stream water pH due to changes in DOC concentration10

varied between base flow and spring flood. With a 30% increase in DOC concentration

the average modeled pH decline during base flow was only 0.11 pH units. The modeled

drop during spring flood was much larger, averaging 0.31 pH units (Fig. 2). During

spring flood the largest pH effect was observed for samples with a pH between 5 and

6, which dropped on average 0.34 pH units with a 30% increase in DOC (Fig. 3).15

Streams with a spring flood pH below 5.0 had an average pH decline of 0.25 pH units,

whereas streams with a spring flood pH above 6.0 had an average pH decline of 0.22

pH units.

With the present DOC concentration, 92% of the measured stream length experi-

enced a pH above 5.5 during base flow conditions while the stream length with a pH20

above 5.0 was 93%. During spring flood the stream length with pH above 5.5 and

5.0 was 63% and 82% respectively with current DOC concentrations (Fig. 4a). With

an increase in DOC concentration by 30% from present conditions (to an average of

13.8 mg L
−1

(σ 8.1 mg L
−1

) at base flow and 24.8 mg L
−1

(σ5.1 mg L
−1

) at spring flood)

the stream length with pH above 5.5 and 5.0 would decrease to 86% and 92% during25

base flow and to 35% and 73% during spring flood (Fig. 4b).

Other DOC change scenarios also showed substantial impacts on the proportion

of suitable stream length (Fig. 5). If the DOC concentration in all measured streams

were decreased by 30% (to an average of 7.4 mg L
−1

(σ 4.4 mg L
−1

) at base flow and
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12 mg L
−1

(σ 2.4 mg L
−1

) at spring flood) the length of streams above pH 5.5 and 5.0,

respectively would increase slightly to 93% and 95% during base flow and to 81% and

92% during spring flood. At the other extreme, if the DOC concentration increased

by 50% from present conditions (to an average of 15.9 mg L
−1

(σ 9.4 mg L
−1

) at base

flow and 26.7 mg L
−1

(σ 5.5 mg L
−1

) at spring flood) the stream length in the Krycklan5

catchment with a winter base flow pH above 5.5 and 5.0 would be 80% and 92%

respectively (Fig. 5). A 50% increase in DOC concentration during spring flood would

result in a stream length with pH above 5.5 of only 15%, while 57% would have a spring

flood pH above 5.0.

6 Discussion10

The proportion of stream length sensitive to changes in DOC was seasonally depen-

dent. The two sampling occasions used in this study were selected to represent the

extreme conditions experienced in Swedish boreal streams, both in terms of discharge

and in acid-base chemistry. Late winter base flow in the region is generally well buffered

with high ANC and relatively low DOC concentrations (Bishop et al., 2000; Laudon and15

Bishop, 2002) and pH is therefore not strongly affected by moderate changes in DOC.

The amount of stream length that was depressed into or below the acid sensitive range

(pH 5.0–5.5) was therefore low independent of the change in DOC in our scenarios. In

contrast, during the snow melt period streams in the region experience a large natural

increase in DOC concentration which in combination with a dilution of ANC generally20

results in the minimum annual pH levels (Laudon et al., 2001; Buffam et al., 2007).

Based on our modeling results, an additional change in DOC concentration during this

period would result in large changes in spring flood pH and hence in the stream length

impacted by low pH (Fig. 4b, Fig. 5)

The magnitude of the change in pH during the spring flood was mainly related to25

the field pH value with no correlation to measured DOC or ANC in the 60 streams. In

general the largest pH change was found for streams with spring flood pH between 5
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and 6 (Fig. 3), with declining effects both above pH 6 and below pH 5, which can be

attributed to low buffering capacity of high DOC surface waters in the pH 5 to 6 range

(Köhler et al., 1999). This means that streams that already have a pH near ecological

pH thresholds also are the systems that will likely experience the largest change in pH

if the DOC concentration is affected in the future.5

The prediction of how a DOC change will affect the stream length available to acid

sensitive fish and invertebrate species was based on two simple thresholds in pH: pH

5.5 and pH 5.0. Although these toxicity thresholds were based on a recent study con-

ducted by the Swedish EPA where a substantial body of national water quality and

biological data were reviewed (Holmgren and Buffam, 2005; Fölster et al., 2007), this10

is admittedly an over-simplification of the ecological response to episodic pH changes.

Sensitivity to acidity not only varies between species but also depends on the different

development stages of the organisms (McCormick and Leino, 1999; Sayer et al., 1993).

Another consequence of a change in climate is therefore on the timing of snowmelt that

could result in changes in synchronization between high runoff (and hence low pH) and15

vulnerable life-stages of fish. As the winter/spring period is an important bottleneck for

many stream-dwelling fish-species, with decreasing amount of prey and increased pre-

dation (Elliott, 1994), any major change in the environmental conditions during these

periods could contribute to first-year recruitment failure in northern waters (McCormick

and Leino, 1999). However, the purpose of this study was not to develop new ecological20

thresholds, but to demonstrate the potential impact of changes in DOC concentration

using a simple approach. It is hoped that future studies will expand and improve the

complexity of the biological thresholds that can be used for this type of analysis.

A 50% increase in DOC concentration used as an upper limit in this study is within

what has been recorded in surface water monitoring in Europe during the last decades.25

In a recent study of 22 UK upland surface waters the DOC concentration increased on

average by 91% the last 15 years (Evans et al., 2005). Similar results have been re-

ported in another large study in the UK involving 198 sites, where 77% of the sites

increased in concentration with an average increase of 0.17 mg DOC L
−1

yr
−1

mea-
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sured over an 8 to 42 year time span (Worrall et al., 2004). In Finland a corresponding

increase in DOC for 13 lakes was found to average 0.11 mg DOC L
−1

yr
−1

, where the

largest increase of 0.22 mg DOC L
−1

yr
−1

was found in the lake with the highest initial

DOC concentration (Vuorenmaa et al., 2006).

The concentration of organic carbon in surface waters in high latitude regions is5

expected to be particularly susceptible to changes in climate (Finlay et al., 2006). At

the hillslope scale the concentration of DOC in streams is controlled by soil solution

chemistry in the near stream zone in combination with hillslope hydrology (Bishop et

al., 1994). As the soil DOC increases exponentially towards the soil surface, increased

runoff resulting in more superficial flow pathways in the soil will therefore likely increase10

the concentration of DOC during the spring flood. A more prolonged snow melt period,

which is another plausible consequence of warmer winters, may have the opposite

effect and decrease the runoff peak and hence lower future DOC concentrations during

spring flood.

As the stream DOC concentration is strongly regulated by the riparian zone (Bishop15

et al., 2004), changes in physical conditions of the near stream soil would also likely

alter the available DOC that can be exported to the adjacent stream during the spring

flood. One such effect that is driven by changes in the winter climate is an alteration

of the spatial and temporal distribution of soil frost (Mellander et al., 2005). A later de-

velopment of the snow pack, which is a likely effect of a warmer climate, may result in20

an increased number of freeze-thaw events or even colder soils in some situations be-

cause of longer periods during winter when the soil is not insulated by snow (Stieglitz et

al., 2003). How a change in the soil frost distribution will affect the DOC concentrations

during the spring flood is however presently not well understood.

One important assumption made in this analysis is that the acid-base character of25

DOC is constant over time and space. This has been confirmed by several studies in

the region (Köhler et al. 1999; Hruska et al., 2001). The reasonable reproduction of

field pH from measurements of ANC, pCO2 and DOC in this study, with a RMSE of

0.25 pH units during base flow and 0.15 pH units during spring flood further confirms
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a relatively consistent DOC character in the region. Furthermore, the potential for

biased results due to systematic errors in the acid-base character was minimized by

calculating the effect on pH as the difference in H
+

(Eq. 6) between modeled field H
+

and H
+

after DOC adjustment, which should cancel out major systematic errors.

Another important assumption made in this study is that a change in DOC could oc-5

cur with no accompanying change in ANC. From a theoretical perspective, it is likely

that an increase in DOC, and therefore in the concentration of RCOO-, would result in a

proportional increase in BC and hence in ANC (Kahl et al., 1992). If the change in DOC

concentration is caused by an alteration in hydrology of the riparian zone, other spring

flood studies in the area suggest that this co-transport should be minimal. Laudon et10

al. (2001) compared the dilution of BC with the change in the more conservative hydro-

logical tracer silica (Si) in a number of streams in northern Sweden, including several of

the streams in this study. In a majority of cases a similar or even larger decline during

the spring flood was observed in BC compared to Si, despite an up to 200% increase

in DOC. Bishop et al. (2004) have also provided a physical explanation for the lack of15

proportionality between DOC and BC change; whereas the DOC concentration in the

near stream zone increases exponentially towards the soil surface, the BC concentra-

tion declines in the same direction. An increased ground water table will hence activate

flow paths of higher DOC but lower BC concentrations during episodes, which could

further exacerbate the negative influence on pH. A negative correlation between DOC20

and BC in this study during both base flow (p=0.001) and spring flood (p=0.005) also

suggests that despite a theoretical basis for a co-transport large variability in DOC can

occur during the spring flood without a corresponding change in ANC.

If, on the other hand, an increase in DOC is caused by a declining acid deposition

(Evans et al., 2005), a recovery of ANC could be expected, which would remediate the25

negative influence on pH. Previous analyses of spring flood episodes in northern Swe-

den have however demonstrated that the pulse of acidity generating pH decline over

two pH units in many streams, is now derived primarily from an increase in naturally

occurring organic acids in conjunction with the dilution of ANC (Bishop et al., 2000;
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Laudon et al., 2001). As anthropogenic deposition at present only contributes between

0.1 and 0.3 pH units to the spring flood pH decline, little further recovery can be ex-

pected in the future (Laudon and Bishop, 2002; Laudon and Hemond, 2002). While

the acid-emissions related acidification pressure has been declining, climate change is

expected to be an increasing threat to the region’s aquatic resources.5

A third uncertainty in predicting sensitivity to future changes is how pCO2 would be

affected. The pCO2 has a large influence on pH during both base flow and spring

flood. For example if the pCO2 were in equilibrium with the atmosphere, instead of the

almost 10 times mean over-pressure measured, the pH during the spring flood would

on average for the 60 stream sites be 0.4 pH units higher. Because of a significant pos-10

itive correlation (p=0.004) between DOC and pCO2 suggesting similar source areas,

an increase in DOC could occur together with increased pCO2during the spring flood.

This would result in a further depression of pH.

The premise of the modeling exercise in this study was to demonstrate the impact

of changes in DOC concentration alone on pH. As variation in DOC concentration is15

not expected to occur in isolation but instead to be accompanied by variation in other

solutes, the causal mechanism behind changes in DOC has considerable implications

for the likely impact on pH. If changes in DOC are caused by shifting water tables

resulting from changes in temperature or the temporal distribution of precipitation

and temperature, for instance, resulting changes in pH are likely to be even more20

extreme than those predicted in this study. That is because soil flow pathways which

favor high DOC concentrations tend to be near-surface and thus low in BC relative

to deeper flow pathways. Increases in DOC are thus likely to be accompanied by

decreases in BC, further exacerbating changes in pH, and vice versa for decreases

in DOC. On the other hand, if current or future changes in DOC are the result of25

recovery from soil acidification, then the increasing organic acid concentrations will be

accompanied by decreases in strong acid anions (e.g. SO
2−
4

) and/or increases in BC.

This will result in little or no change in pH for a given change in DOC. It is plausible that

both mechanisms could be operating in the same systems simultaneously, lending
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uncertainty to simple prediction of the impact of changing DOC on pH. Regardless,

in poorly-buffered high-DOC systems DOC plays an important role in controlling pH,

and thus consideration of this factor is important especially given the current trends in

DOC concentration across many regions.

5

Edited by: P. Dillon and R. F. Wright
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Table 1. Median (and 5th–95th percentiles in parentheses) catchment characteristics for the
stream sites used in the study (N=60 sites) and for all stream cells in the Krycklan catchment
(N=1654).

Variable Sampling sites (N=60) All stream cells (N=1654)

SOILS (%)
Till 62.5 (45.4–95.9) 62.9 (42.9–97.4)
Peat 13.5 (0.0–29.8) 12.6 (0.0–32.2)
Sediment (sorted) 7.4 (0.0–35.9) 1.4 (0.0–37.0)
Thin soils 8.7 (2.6–27.1) 7.7 (0.0–26.6)
Exposed rock 0.9 (0.0–4.6) 0.4 (0.0–4.4)

LAND COVER (%)
Forest 82.3 (58.1–96.6) 83.3 (61.4–100.0)
Wetland 12.0 (2.5–28.8) 11.1 (0.0–30.3)
Clearcut 2.1 (0.0–10.0) 1.1 (0.0–14.3)
Open or arable 0.6 (0.0–3.7) 0.0 (0.0–4.1)
Lake 0.1 (0.0–4.1) 0.0 (0.0–4.2)

OTHER
Mean catchment slope (%) 9 (6–14) 9 (6–14)
Mean catchment altitude (m) 272 (224–295) 277 (215–312)
Site altitude (m) 198 (133–263) 218 (146–288)

Catchment area (km
2
) 3.3 (0.2–41.9) 1.5 (0.1–30.5)
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Table 2. Mean chemistry (standard deviation in parentheses) for the 60 stream sites used
in the study during winter base flow and spring flood. DOC=dissolved organic carbon;
RCOO

−

=dissociated organic acids (modeled, including both strong and weak component);
BC=base cations; SAA=strong acid anions; ANC=acid neutralizing capacity (BC-SAA).

Variable Winter Base Flow Spring Flood

pH 6.28 (0.45) 5.49 (0.49)

DOC (mg L
−1

) 10.6 (6.3) 17.8 (3.7)

RCOO
−

(µeq L
−1

) 83 (41) 118 (15)

BC (µeq L
−1

) 373 (227) 229 (54)

SAA (µeq L
−1

) 148 (117) 106 (33)

ANC (µeq L
−1

) 225 (124) 123 (33)

Ca
2+

(µeq L
−1

) 163 (127) 103 (31)

K
+

(µeq L
−1

) 20 (15) 20 (11)

Mg
2+

(µeq L
−1

) 90 (58) 56 (12)

Na
+

(µeq L
−1

) 100 (31) 49 (12)

Cl
−

(µeq L
−1

) 33 (11) 25 (6)

SO
2−
4 (µeq L

−1
) 115 (110) 81 (31)

HCO
−

3 (µeq L
−1

) 97 (65) 31 (27)
pCO2 ppm 2804 (2959) 3557 (806)
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Fig. 1. (A) Location of the Krycklan catchment in Sweden and (B) location of 60 stream sam-
pling sites within the catchment. Map source Lantmteriverket (Gävle, Sweden), further details
described in text.
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Fig. 2. The decline in pH at 60 stream sites, measured from base flow to spring flood (gray)
and with the further modeled decline due to 30% increase in spring flood DOC (black). The
streams are sorted by spring flood pH.
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Fig. 3. The effect of a change in DOC on spring flood pH at 60 stream sites.
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BA 

Fig. 4. The proportion of stream length affected by low pH at spring flood (A) during present
conditions and (B) following a 30% increase in DOC.
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Fig. 5. The effects on stream length maintaining pH above acid thresholds during base flow
(left) and spring flood (right) using the entire range of changes in DOC (from –30% to +50%).
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