Numerical implementation and oceanographic application of the Gibbs potential of ice
R. Feistel, W. Wagner, V. Tchijov, C. Guder

To cite this version:

HAL Id: hal-00298367
https://hal.archives-ouvertes.fr/hal-00298367
Submitted on 3 Feb 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Numerical implementation and oceanographic application of the Gibbs potential of ice

R. Feistel1, W. Wagner2, V. Tchijov3, and C. Guder2

1Baltic Sea Research Institute, Seestraße 15, D-18119 Warnemünde, Germany
2Ruhr-Universität Bochum, Lehrstuhl für Thermodynamik, D-44780 Bochum, Germany
3Centro de Investigaciones Teóricas, Facultad de Estudios Superiores Cuautitlán, UNAM, México

Received: 21 December 2004 – Accepted: 31 January 2005 – Published: 3 February 2005
Correspondence to: R. Feistel (rainer.feistel@io-warnemuende.de)
© 2005 Author(s). This work is licensed under a Creative Commons License.
Abstract

The 2004 Gibbs thermodynamic potential function of naturally abundant water ice is based on much more experimental data than its predecessors, is therefore significantly more accurate and reliable, and for the first time describes the entire temperature and pressure range of existence of this ice phase. It is expressed in the ITS-90 temperature scale and is consistent with the current scientific pure water standard, IAPWS-95, and the 2003 Gibbs potential of seawater. The combination of these formulations provides sublimation pressures, freezing points, and sea ice properties covering the parameter ranges of oceanographic interest. This paper provides source code examples in Visual Basic, Fortran and C++ for the computation of the Gibbs function of ice and its partial derivatives. It reports the most important related thermodynamic equations for ice and sea ice properties.

1. Introduction

Oceanography demands very accurate knowledge of freezing temperatures of seawater. For instance, global temperature rise, as manifested in actually 1.2°C increase per century of northern hemisphere land surface winter temperatures (Hagen and Feistel, 2005\(^1\)), is in general accompanied by much smaller changes of ocean temperatures. But by freezing and melting processes in the polar and mid latitudes, even a tiny cooling or warming of the sea can nonetheless have significant, nonlinear impacts on the climate system, e.g. in form of growing or shrinking sea ice covers.

Several freezing point formulae are available for water and seawater. The Unesco formula of Millero (1978) is valid for air-saturated seawater at low pressures only (up to 5 MPa=500 dBar) and does not take into account compressibilities of seawater and ice. In the zero salinity limit, it is not consistent with the international equation for the

melting pressure of Wagner et al. (1994) for air-free water which covers more than the oceanic pressure range up to 100 MPa. None of both formulae, moreover, does agree with the most accurate measured Clausius-Clapeyron coefficient within its experimental uncertainty (Feistel and Wagner, 2005).

With the numerical availability of mutually consistent formulations for the chemical potentials of water (Wagner and Pruß, 2002) and seawater (Feistel, 2003), a Gibbs function approach to the freezing point computation problem became appealing. Earlier Gibbs functions of ice (Feistel, 1993, 2003; Feistel and Hagen, 1995; Tillner-Roth, 1998) were based on only few experimental data from the vicinity of the normal pressure melting point, and suffered from e.g. the pending significant uncertainty of ice compressibility. Therefore, a reliable and accurate Gibbs function of ice was desired, consistent with the corresponding latest descriptions of water, vapour, and seawater, which can provide freezing points of water and seawater over the entire oceanographic “Neptunian” pressure range. An explicit freezing point formula derived from this newly developed Gibbs formulation is given in Jackett et al. (2005).

When water or seawater freezes under natural conditions, crystals of hexagonal, so-called ice Ih are formed. At high pressures, ice possesses at least twelve other crystalline phases and two amorphous states, exclusively discovered in the laboratory. In the current formulation, only the naturally abundant ice phase, ice Ih, is described, applicable to the entire region of its existence from 0 to 210 MPa in pressure and from 0 to 273.16 K in temperature.

A detailed derivation of this function is given by Feistel and Wagner (20042, 2005). It was determined by regression with respect to 339 data points belonging to 26 different groups of experiments, reproducing these data within their particular measurement uncertainties. The new formulation obeys Debye’s cubic law at low temperatures and pressure-independence of the residual entropy. The typical uncertainty of about 100% in isothermal compressibilities of previous formulae is reduced to less than

The resulting Clausius-Clapeyron slope of the melting curve at normal pressure is 74.305 mK/MPa with an uncertainty of only 0.02%, which is about 100 times more accurate than the corresponding figures of previous formulae. The melting temperature at normal pressure is inferred to be 273.152 518±0.000 002 K.

The current paper provides numerical implementations of the new Gibbs function of ice and its derivatives in Visual Basic (VB), Fortran, and C++. These implementations have been developed independently by the different authors of this paper, and are subject to specific properties of the particular programming language and coding rules. To give an example, VB does not support complex arithmetic and data types, which needed to be implemented explicitly. Thus, the three source code versions differ from each other in various details, and are therefore described separately one by one in Sect. 3. These code examples are intended as functioning examples and possible guides for the development of individual implementations into custom program environments. They do not provide any user interface nor support data input or graphical output.

For reference, a collection of explicit expressions for the partial derivatives of the Gibbs function, as well as various relations to other thermodynamic properties are given in Sect. 2. Finally, Sect. 4 presents formulae for sea ice, which additionally require for their evaluation the Gibbs potential of seawater. Numerical implementations of the 2003 Gibbs function of seawater in VB, Fortran, and C++ are available from a companion article earlier in this journal (Feistel, 2004).

2. Gibbs potential and its derivatives

The thermodynamic Gibbs potential function \(g(T,P) \) described in this paper is the specific free enthalpy (specific Gibbs energy) of ice, which is equal to the chemical potential \(\mu(T,P) \) of ice. We express absolute temperature \(T \) by the dimensionless variable \(t = T/T_t \) with triple point temperature \(T_t \), and absolute pressure \(P \) by \(p = P/P_t \) with triple point pressure \(P_t \). Triple point data and other constants are reported in...
The functional form of $g(T,P)$ for ice is given as a complex function of temperature,

$$
\frac{g(T,P)}{g_U} = g_0 - \sigma_0 \tau \cdot t + \tau \text{Re} \left\{ \sum_{k=1}^{2} r_k \left[(t_k - t) \ln(t_k - t) + (t_k + t) \ln(t_k + t) - 2t_k \ln t_k - \frac{t^2}{t_k} \right] \right\}, \quad (1)
$$

with two coefficients being polynomials of pressure,

$$
g_0(P) = \sum_{k=0}^{4} g_{0k} \cdot (P - P_0)^k, \quad r_2(P) = \sum_{k=0}^{2} r_{2k} \cdot (P - P_0)^k. \quad (2)
$$

The unit specific free enthalpy is $g_U = 1$ J/kg, the dimensionless constant τ is $\tau = T_t / 1$ K = 273.160 and the dimensionless normal pressure is $p_0 = P_0 / P_t$, given in Table 1. The real constants g_{00} to g_{04} and σ_0 as well as the complex constants t_1, r_1, t_2 and r_{20} to r_{22} are given in Table 2.

The complex logarithm $\ln(z)$ is the principal value, i.e. it evaluates to imaginary parts in the interval $-\pi < \text{Im} \ln(z) \leq +\pi$. The complex notation used here serves only for compact writing and easy partial derivatives. The residual entropy coefficient σ_0 given in Table 2 is its “IAPWS-95 version” as required for correct phase equilibria determinations between ice and pure water using the IAPWS-95 formulation (Wagner and Prüß, 2002), or seawater (Feistel, 2003). Its alternative value represents the true absolute physical zero-point entropy of ice, $\sigma_0 = 189.13$, which is usually not required for practical computations, however.

The first derivative of g with respect to its independent variable P, provides density, ρ, and specific volume, ν,

$$
\frac{1}{\rho} = \nu = \left(\frac{\partial g}{\partial P} \right)_T \quad (3)
$$

$$
\frac{\nu}{\nu_U} = \frac{1}{\psi} \frac{dg_0}{d\rho} + \frac{\tau}{\psi} \text{Re} \left\{ \frac{dr_2}{d\rho} \left[(t_2 - t) \ln(t_2 - t) + (t_2 + t) \ln(t_2 + t) - 2t_2 \ln t_2 - \frac{t^2}{t_2} \right] \right\}
$$
\[\psi = \frac{P_t}{1 \text{ Pa}} = 611.657, \quad \frac{d g_0}{d p} = \sum_{k=1}^{4} g_{0k} \cdot k \cdot (p - p_0)^{k-1}, \quad \frac{d r_2}{d p} = \sum_{k=1}^{2} r_{2k} \cdot k \cdot (p - p_0)^{k-1} \]

and the one with respect to \(T \) provides specific entropy, \(\sigma \),

\[\sigma = - \left(\frac{\partial g}{\partial T} \right)_p \quad (4) \]

\[\frac{\sigma}{\sigma_U} = \sigma_0 + \text{Re} \left\{ \sum_{k=1}^{2} r_k \left[\ln \left(\frac{t_k - t}{t_k + t} \right) + 2 \frac{t}{t_k} \right] \right\} \]

Further thermodynamic functions are defined by so-called Legendre transforms:

Specific free energy (also called Helmholtz energy or Helmholtz free energy), \(f \),

\[f = g - P v = g - P \cdot \left(\frac{\partial g}{\partial P} \right)_T \quad (5) \]

Specific enthalpy, \(h \),

\[h = g + T \sigma = g - T \cdot \left(\frac{\partial g}{\partial T} \right)_P \quad (6) \]

Specific internal energy, \(e \),

\[e = g + T \sigma - P v = g - T \cdot \left(\frac{\partial g}{\partial T} \right)_P - P \cdot \left(\frac{\partial g}{\partial P} \right)_T \quad (7) \]

Several thermodynamic coefficients can be derived from second derivatives of \(g \):

Isothermal compressibility, \(K \),

\[K = - \frac{1}{v} \left(\frac{\partial v}{\partial P} \right)_{T} = - \left(\frac{\partial^2 g / \partial P^2}{\partial g / \partial P} \right)_{T} \quad (8) \]
\[
\frac{P_t}{\nu_U \psi} \left(\frac{\partial v}{\partial P} \right)_T = \frac{1}{\psi^2} \frac{d^2 g_0}{dp^2} + \frac{\tau}{\psi^2} \text{Re} \left\{ \frac{d^2 r_2}{dp^2} \left[(t_2 - t) \ln (t_2 - t) + (t_2 + t) \ln (t_2 + t) - 2t_2 \ln t_2 - \frac{t_2^2}{t_2} \right] \right\}
\]

\[
\frac{d^2 g_0}{dp^2} = \sum_{k=2}^{4} g_{0k} \cdot k (k - 1) \cdot (p - p_0)^{k-2}, \quad \frac{d^2 r_2}{dp^2} = 2r_{22}
\]

Isobaric cubic thermal expansion coefficient, \(\alpha \),

\[
\alpha = \frac{1}{\nu} \left(\frac{\partial v}{\partial T} \right)_P = \frac{\partial^2 g / \partial T \partial P}{(\partial g / \partial P)_T} \quad (9)
\]

\[
\frac{T_t}{\nu_U \tau} \left(\frac{\partial v}{\partial T} \right)_P = \frac{1}{\nu} \text{Re} \left\{ \frac{dr_2}{dp} \left[\ln \left(\frac{t_2 + t}{t_2 - t} \right) - 2 \frac{t}{t_2} \right] \right\}
\]

Specific isobaric heat capacity, \(c_P \),

\[
c_P = T \left(\frac{\partial \sigma}{\partial T} \right)_P = \left(\frac{\partial h}{\partial T} \right)_P = -T \left(\frac{\partial^2 g}{\partial T^2} \right)_P \quad (10)
\]

\[
\frac{c_P}{c_U} = t \cdot \text{Re} \left\{ \sum_{k=1}^{2} \frac{r_k}{t - t_k} - \frac{1}{t + t_k} + \frac{2}{t_k} \right\}
\]

Isentropic (or adiabatic) compressibility, \(\kappa \),

\[
\kappa = -\frac{1}{\nu} \left(\frac{\partial v}{\partial P} \right)_\sigma = K - \frac{\alpha^2 T v}{c_P} = \left(\frac{\partial^2 g / \partial T \partial P}{(\partial g / \partial P)_T} \right)_T \left(\frac{\partial^2 g / \partial P^2}{(\partial^2 g / \partial P^2)_P} \right)_T \quad (11)
\]

\[
43
\]
Isochoric pressure coefficient, β,

$$\beta = \frac{1}{P} \left(\frac{\partial P}{\partial T} \right)_v = - \frac{\partial^2 g / \partial T \partial P}{P \cdot (\partial^2 g / \partial P^2)_T}. \quad (12)$$

We finally note that arbitrary mixed partial derivatives of the potential function (1), (2) can be expressed in closed analytical form. The Gibbs function, depending on two independent variables, can be written as a sum of products of functions, each depending on only one variable,

$$g(T, P) = g_U Re \left\{ \sum_{k=1}^{4} \Theta_k(T) \Phi_k(P) \right\}. \quad (13)$$

The four pairs of functions of Eq. (13) are listed in Table 3.

This factorisation can help in the formal coding of higher, mixed derivatives due to the separation of variables,

$$\frac{\partial^{(n+m)} g(T, P)}{\partial T^n \partial P^m} = g_U Re \left\{ \sum_{k=1}^{4} \frac{d^n \Theta_k(T)}{dT^n} \cdot \frac{d^m \Phi_k(P)}{dP^m} \right\}. \quad (14)$$

The nontrivial derivatives of the functions in Table 3 as required for Eq. (14) are in explicit form for $k=1$ and $k=2$:

$$\frac{d \Theta_k}{dT} = \frac{\tau}{T_t} \left[\ln(t_k + t) - \ln(t_k - t) - \frac{2t}{t_k} \right], \quad (15)$$

$$\frac{d^2 \Theta_k}{dT^2} = \frac{\tau}{T_t^2} \left[\frac{1}{t + t_k} - \frac{1}{t - t_k} - \frac{2}{t_k} \right], \quad (16)$$

$$\frac{d^n \Theta_k}{dT^n} = \tau \cdot (-T_t)^{-n} (n - 2)! \cdot \left[(t + t_k)^{(1-n)} - (t - t_k)^{(1-n)} \right], \text{for } n > 2, \quad (17)$$
\[
\frac{d^m \Phi_2}{dP^m} = P_t^{-m} \sum_{j=m}^{2} r_{2j} \frac{j!}{(j - m)!} (p - p_0)^{(j-m)}.
\] (18)

\[
\frac{d^m \Phi_4}{dP^m} = P_t^{-m} \sum_{j=m}^{4} g_{0j} \frac{j!}{(j - m)!} (p - p_0)^{(j-m)}.
\] (19)

The mathematical proof is easily obtained by complete induction.

3. Source code

The source code implementations in Visual Basic, Fortran and C++ have been developed independently by these authors, rather than been created as translations of a single template program. The codes contain a common set of same fundamental functions. Additional and auxiliary functions are different, as are the program organisation and language-specific details. For clarity, we provide separate descriptions for all three code samples despite of their various similarities. Implemented are the Gibbs function and its partial derivates up to third order. Independent variables, i.e. input parameters of the functions, are absolute temperature \(T \) in K and absolute pressure \(P \) in Pa. \(P \) includes atmospheric pressure, in opposite to many oceanographic formulae which are based on applied pressure \(p=\bar{P}−101325 \) Pa, taken relative to standard pressure at the sea surface. Returned values are measured in appropriate combinations of basic SI units, i.e. kg, J, Pa, m, etc.

3.1. Visual Basic code

The Visual Basic (VB) code comes in five basic files:

- **Gibbs04.vbp**: defines the program components and properties;
– **Gibbs04.frm**: defines the program window and runs the start-up program;
– **Gibbs04.frx**: defines additional properties of the program window;
– **Complex.bas**: implements complex number arithmetic functions;
– **Gibbs04.bas**: contains the thermodynamic functions of ice.

The start-up routine is **Form_Load** in **Gibbs04.frm**. It calls **FW04demo(T_degC, P_dBar)** with the values \(T_{\text{degC}} = -10^\circ \text{C} \) and \(P_{\text{dBar}} = 1000 \text{ dBar} \) (applied pressure), which produces upon execution the output in the immediate (**Debug**) window of the VB development environment:

\[
\begin{align*}
T_{\text{degC}} &= -10^\circ \text{C} \\
T_{\text{abs}} &= 263.15 \text{ K} \\
P_{\text{dBar}} &= 1000 \text{ dBar} \\
P_{\text{abs}} &= 10101325 \text{ Pa} \\
\end{align*}
\]

\[
\begin{align*}
g &= -1606.4511744898 \text{ J/kg} \\
dg/dT &= 1299.04800566945 \text{ J/(kg K)} \\
dg/dP &= 1.08787119642917 \times 10^{-3} \text{ m}^3/\text{kg} \\
d2g/dT2 &= -7.67906117056837 \text{ J/(kg K}^2) \\
d2g/dTdP &= 1.66429674881775 \times 10^{-3} \text{ m}^3/(\text{kg K}) \\
d2g/dP2 &= -1.25548611251055 \times 10^{-3} \text{ m}^3/(\text{kg Pa}) \\
d3g/dT3 &= 1.41439364919413E-03 \text{ J/(kg K}^3) \\
d3g/dT2dP &= 5.61033076359349E-10 \text{ m}^3/(\text{kg K}^2) \\
d3g/dTdP2 &= -2.15950418441553E-16 \text{ m}^3/(\text{kg K Pa}) \\
d3g/dP3 &= 8.8336420755687E-23 \text{ m}^3/(\text{kg Pa}^2) \\
\text{spec. volume} &= 1.08787119642917 \times 10^{-3} \text{ m}^3/\text{kg} \\
\text{density} &= 919.226470268169 \text{ kg/m}^3 \\
\text{enthalpy} &= -343450.933866404 \text{ J/kg} \\
\text{entropy} &= -1299.04800566945 \text{ J/(kg K)}
\end{align*}
\]
free energy $-12595.3916877597 \text{ J/kg}$
int. energy $-354439.874379674 \text{ J/kg}$
heat capacity $2020.7494703507 \text{ J/(kg K)}$
therm. exp. $1.52986562589453 \times 10^{-4} \text{ 1/K}$
isoth. compr. $1.15407606767377E-10 \text{ 1/Pa}$
adiab. compr. $1.12091901460767E-10 \text{ 1/Pa}$
press. coeff. $0.13123229564815 \text{ 1/K}$
d(d)ent. compr)/dP $-5.99025933097889E-20 \text{ 1/K}^2$

These values may serve as check values whether the implementation works properly.

The thermodynamic functions provided in the module Gibbs04.bas contain the functions listed in Table 4, as well as some auxiliary (private) functions not intended for public calls. Prior to any of these function calls, Sub InitG_FW04 must be executed to initialise the field of coefficients.

3.2. FORTRAN code

The Fortran code comes in two basic files:

- **main.for**: runs the main program;
- **ice-lib.for**: contains the thermodynamic functions of ice.

The start-up routine is **Program Ice**. It runs a computation of ice properties with the values $T_{\text{abs}}=263.15 \text{ K}$ and $P_{\text{abs}}=10101325 \text{ Pa}$, which produces upon execution the output in the default window:

$T_{\text{abs}} 263.150000000000 \text{ K}$
$P_{\text{abs}} 10101325.000000 \text{ Pa}$
g $-1606.45117448973 \text{ J/kg}$
dg/dT $1299.04800566944 \text{ J/(kg K)}$
dg/dP $1.087871196429174E-003 \text{ m}^2/\text{kg}$
d2g/dT2
−7.67906117056837 J/(kg K²)

d2g/dTdP
1.664296748817753E-007 m³/(kg K)

d2g/dP2
−1.255486112510547E-013 m³/(kg Pa)

d3g/dT3
1.414393649194133E-003 J/(kg K³)

d3g/dT2dP
5.610330763593495E-010 m³/(kg K²)

d3g/dTdP2
−2.159504184415537E-016 m³/(kg Pa K)

d3g/dP3
8.83364207556870E-023 m³/(kg Pa²)

specific volume
1.087871196429174E-003 m³/kg

density
919.226470268169 kg/m³

enthalpy
−343450.933866404 J/kg

entropy
−1299.04800566944 J/(kg K)

free energy
−12595.3916877597 J/kg

internal energy
−354439.874379674 J/kg

heat capacity
2020.74494703507 J/(kg K)

therm. expansion
1.529865625894533E-004 1/K

isoth. compr.
1.154076067673776E-010 1/Pa

isentr. compr.
1.120919014607667E-010 1/Pa

press. coefficient
0.13123229564815 1/K

disentr. compr./dP
−5.990259330978887E-020 1/Pa²

These values may serve as check values whether the implementation works properly.

The thermodynamic functions provided in the module ice-lib.for contain the functions listed in Table 5, as well as some auxiliary functions not intended for public calls. Prior to any of these function calls, SUBROUTINE DAT must be executed to initialise the field of coefficients.

3.3. C++ code

The C++ code comes in five basic files:

– main.cpp: runs the main program;
– **Icelh_FW.cpp**: contains the thermodynamic functions of ice;
– **Icelh_FW.h**: header file for **Icelh_FW.cpp**;
– **Icelh_FW_Aux.cpp**: contains numerical constants and auxiliary functions;
– **Icelh_FW_Aux.h**: header file for **Icelh_FW_Aux.cpp**.

The ANSI/ISO C++ standard (Schildt, 1998) implements a `complex` class which represents complex numbers and defines a series of functions that operate on objects of type `complex`, including a logarithmic function; there is no need to provide user-defined operations on complex numbers.

The C++ code was compiled in the Windows and in the LINUX environments. Borland C++ Builder 5.0 (Windows) and GNU g++ 3.3.1 (LINUX) compilers were used to generate the executable files.

The start-up routine is **main**. It runs a computation of ice properties with the values $T_{\text{abs}} = 263.15 \, \text{K}$ and $P_{\text{abs}} = 10101325 \, \text{Pa}$, which produces upon execution the output in the default DOS window (Windows environment) or in the default terminal window (LINUX environment).

The Windows output:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{abs}</td>
<td>263.15 K</td>
</tr>
<tr>
<td>P_{abs}</td>
<td>10101325 Pa</td>
</tr>
<tr>
<td>g</td>
<td>$-1606.45117448966 , \text{J/kg}$</td>
</tr>
<tr>
<td>$dgdT$</td>
<td>$1299.04800566944 , \text{J/(kg K)}$</td>
</tr>
<tr>
<td>$dgdP$</td>
<td>$0.00108787119642917 , \text{m}^3/\text{kg}$</td>
</tr>
<tr>
<td>$d2gdT2$</td>
<td>$-7.67906117056837 , \text{J/(kg K^2)}$</td>
</tr>
<tr>
<td>$d2gdTdP$</td>
<td>$1.66429674881775e-07 , \text{m}^3/(\text{kg K})$</td>
</tr>
<tr>
<td>$d2gdP2$</td>
<td>$-1.25548611251055e-13 , \text{m}^3/(\text{kg Pa})$</td>
</tr>
<tr>
<td>$d3gdT2dP$</td>
<td>$5.61033076359349e-10 , \text{m}^3/(\text{kg K^2})$</td>
</tr>
<tr>
<td>$d3gdTdP2$</td>
<td>$-2.15950418441554e-16 , \text{m}^3/(\text{kg K Pa})$</td>
</tr>
<tr>
<td>$d3gdP3$</td>
<td>$8.83364207555687e-23 , \text{m}^3/(\text{kg Pa^2})$</td>
</tr>
</tbody>
</table>
spec. volume 0.00108787119642917 m³/kg
density 919.226470268169 kg/m³
enthalpy −343450.933866404 J/kg
entropy −1299.04800566944 J/(kg K)
free energy −12595.3916877596 J/kg
int. energy −354439.874379674 J/kg
heat capacity 2020.7449703507 J/(kg K)
therm. exp. 0.000152986656258943 1/K
isoth. compr. 1.15407606767378e-10 1/Pa
isent. compr. 1.12091901460767e-10 1/Pa
press. coeff. 0.13123229564815 1/K
d(isent. compr)/dP −5.99025933097888e-20 1/Pa²

The LINUX output:
T_abs 263.15 K
P_abs 10101325 Pa
g −1606.45117448957 J/kg
dgdT 1299.04800566944 J/(kg K)
dgdP 0.00108787119642917 m³/kg
d2gdT2 −7.67906117056837 J/(kg K²)
d2gdTdP 1.66429674881775e-07 m³/(kg K)
d2gdP2 −1.25548611251055e-13 m³/(kg Pa)
d3gdT2dP 5.61033076359349e-10 m³/(kg K²)
d3gdTdP2 −2.15950418441554e-16 m³/(kg K Pa)
d3gdP3 8.83364207555687e-23 m³/(kg Pa²)
spec. volume 0.00108787119642917 m³/kg
density 919.226470268169 kg/m³
enthalpy −343450.933866404 J/kg
entropy −1299.04800566944 J/(kg K)
The values above may serve to check whether the implementation works properly. Note slight differences in the values of \(g \), free energy, and \(d(\text{isent. compr})/dP \) produced by the Windows and the LINUX executables.

The thermodynamic functions provided in the module \texttt{Icelh_FW.cpp} contain the functions listed in Table 6. Auxiliary (private) functions not intended for public calls are contained in the module \texttt{Icelh_FW_Aux.cpp}. All of the functions listed in the Table 6 are embedded in the namespace \texttt{Icelh_FW} which protects them against possible naming conflicts.

4. Aqueous phase equilibria

Equilibria between ice and liquid water or water vapour require equal chemical potentials of water of the coexisting phases, which are available from the IAPWS-95 free enthalpy of liquid pure water, \(g^W(T,P) \), and of water vapour, \(g^V(T,P) \) (Wagner and Prüß 2002).

Melting point temperature of ice, \(T_M(P) \), is implicitly given by

\[
g(T_M, P) = g^W(T_M, P). \tag{20}
\]

Vapour pressure, \(P_{vap}(T, P) \), over ice at pressure \(P \), is implicitly given by

\[
g(T, P) = g^V(T, P_{vap}). \tag{21}
\]
Equilibria between ice and seawater (i.e. sea ice) require equal chemical potentials of water of those phases, which are available from the free enthalpy of seawater, $g^{SW}(S, T, P)$ (Feistel, 2003, 2004). Here, S is the practical salinity of the liquid phase (i.e. seawater).

Freezing point temperature of seawater, $T_F(S, P)$, is implicitly given by

$$g(T_F, P) = g^{SW}(S, T_F, P) - S \left(\frac{\partial g^{SW}}{\partial S} \right)_{P, T = T_F}. \quad (22)$$

For vanishing salinity, $S=0$, this formula can be used instead of Eq. (20).

Brine salinity of sea ice, $S_B(T, P)$, is implicitly given by

$$g(T, P) = g^{SW}(S_B, T, P) - S_B \left(\frac{\partial g^{SW}}{\partial S} \right)_{T, P, S = S_B}. \quad (23)$$

Given the bulk salinity s of sea ice, which equals its practical salinity after complete melting, the (liquid) mass fraction of brine, w, is given by,

$$w(s, T, P) = \frac{s}{S_B(T, P)}. \quad (24)$$

Free enthalpy of sea ice, g^{SI}, as a function of bulk salinity, temperature and pressure, is obtained as (Feistel and Hagen, 1998)

$$g^{SI}(s, T, P) = (1 - w(s, T, P)) \cdot g(T, P) + w(s, T, P) \cdot g^{SW}(S_B(T, P), T, P). \quad (25)$$

All properties of sea ice with constant bulk salinity can be computed from this function in analogy to Eqs. (1)–(12) by substituting g by g^{SI}. Some important formulae are the following ones (Feistel and Hagen, 1998):

Specific volume, ν^{SI}, and density, $\rho^{SI} = 1/\nu^{SI}$, of sea ice is given by

$$\nu^{SI} = \left(\frac{\partial g^{SI}}{\partial P} \right)_{s, T} = (1 - w) \cdot \nu + w \cdot \nu^{SW}(S_B, T, P) \quad (26)$$
with \(v^{SW}(S, T, P) = \left(\frac{\partial g^{SW}}{\partial P} \right)_{T, S} \).

Specific enthalpy, \(h^{SI} \), of sea ice is given by

\[
h^{SI} = g^{SI} - T \left(\frac{\partial g^{SI}}{\partial T} \right)_{s,P} = (1 - w) \cdot h + w \cdot h^{SW}(S_B, T, P)
\]

(27)

with \(h^{SW}(S, T, P) = g^{SW}(S, T, P) - T \left(\frac{\partial g^{SW}}{\partial T} \right)_{P,S} \).

Specific heat capacity, \(c^{SI}_P \), of sea ice is given by

\[
c^{SI}_P = \left(\frac{\partial h^{SI}}{\partial T} \right)_{s,P} = (1 - w) \cdot c_P + w \cdot \left[c^{SW}_P(S_B, T, P) + c^{Melt}_P(S_B, T, P) \right]
\]

(28)

with \(c^{SW}_P(S, T, P) = \left(\frac{\partial h^{SW}}{\partial T} \right)_{P,S} \)

and \(c^{Melt}_P(S, T, P) = \left[\frac{(h^{SW} - h)/S - (\partial h^{SW}/\partial S)_{T,P}}{T \cdot (\partial^2 g^{SW}/\partial S^2)_{T,P}} \right]^2 \).

Isothermal compressibility, \(K^{SI} \), of sea ice is given by

\[
v^{SI} K^{SI} = -\left(\frac{\partial v^{SI}}{\partial P} \right)_{s,T} = (1 - w) \cdot v \cdot K + w \cdot v^{SW} \cdot \left[K^{SW}(S_B, T, P) + K^{Melt}(S_B, T, P) \right]
\]

(29)

with \(K^{SW}(S, T, P) = -\frac{1}{v^{SW}} \left(\frac{\partial v^{SW}}{\partial P} \right)_{T,S} \)

and \(K^{Melt}(S, T, P) = \frac{1}{v^{SW}} \left[(v^{SW} - v)/S - (\partial v^{SW}/\partial S)_{T,P} \right]^2 \).
Cubic thermal expansion coefficient, α^{SI}, of sea ice is given by

$$v^{SI}\alpha^{SI} = \left(\frac{\partial v^{SI}}{\partial T} \right)_{s,P} = (1 - w) \cdot v \cdot \alpha + w \cdot v^{SW} \cdot \left[\alpha^{SW} (S_B, T, P) + \alpha^{Melt} (S_B, T, P) \right] (30)$$

with $\alpha^{SW} (S, T, P) = \frac{1}{v^{SW}} \left(\frac{\partial v^{SW}}{\partial T} \right)_{P,S}$

and $\alpha^{Melt} (S, T, P) = \frac{1}{v^{SW}} \left[\frac{(v^{SW} - v)}{S - \frac{\partial v^{SW}}{\partial S}} \right]_{T,P} \left[\frac{(h^{SW} - h)}{S - \frac{\partial h^{SW}}{\partial S}} \right]_{T,P}$.

The “melting” contributions to heat capacity, c_P^{Melt}, compressibility, K^{Melt}, and thermal expansion, α^{Melt}, consist of the latent parts due to the partial transition process between ice and water, as well as effects due to varying brine salinity, haline contraction and dilution heat. They are numerically very important and may even exceed the single contributions of both “pure” phases, ice and brine.

References

Table 1. Special constants and values used in this paper.

<table>
<thead>
<tr>
<th>quantity</th>
<th>symbol</th>
<th>value</th>
<th>unit</th>
<th>abs. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>triple point pressure</td>
<td>P_t</td>
<td>611.657</td>
<td>Pa</td>
<td>0.010</td>
</tr>
<tr>
<td>normal pressure</td>
<td>P_0</td>
<td>101325</td>
<td>Pa</td>
<td>exact</td>
</tr>
<tr>
<td>triple point temperature</td>
<td>T_t</td>
<td>273.160</td>
<td>K</td>
<td>exact</td>
</tr>
<tr>
<td>Celsius zero point</td>
<td>T_0</td>
<td>273.150</td>
<td>K</td>
<td>exact</td>
</tr>
<tr>
<td>normal melting point</td>
<td>T_M</td>
<td>273.152518</td>
<td>K</td>
<td>2E-6</td>
</tr>
<tr>
<td>temperature scale factor</td>
<td>$\tau = T_t / 1$ K</td>
<td>273.160</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>pressure scale factor</td>
<td>$\psi = P_t / 1$ Pa</td>
<td>611.657</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>normal pressure constant</td>
<td>$\rho_0 = P_0 / P_t$</td>
<td>165.6565689594</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>unit specific free enthalpy</td>
<td>g_U</td>
<td>1</td>
<td>J/kg</td>
<td></td>
</tr>
<tr>
<td>unit specific entropy</td>
<td>σ_U</td>
<td>1</td>
<td>J/(kg K)</td>
<td></td>
</tr>
<tr>
<td>unit specific volume</td>
<td>v_U</td>
<td>1</td>
<td>m³/kg</td>
<td></td>
</tr>
<tr>
<td>unit specific heat capacity</td>
<td>c_U</td>
<td>1</td>
<td>J/(kg K)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Coefficients of the Gibbs function, Eqs. (1) and (2).

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Real part</th>
<th>Imaginary part</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{00}</td>
<td>-632578.704355102</td>
<td></td>
</tr>
<tr>
<td>g_{01}</td>
<td>0.655029997804786</td>
<td></td>
</tr>
<tr>
<td>g_{02}</td>
<td>-1.89952376891314E-08</td>
<td></td>
</tr>
<tr>
<td>g_{03}</td>
<td>3.40692612753936E-15</td>
<td></td>
</tr>
<tr>
<td>g_{04}</td>
<td>-5.78593658679522E-22</td>
<td></td>
</tr>
<tr>
<td>σ_0</td>
<td>-3333.18160308627</td>
<td></td>
</tr>
<tr>
<td>t_1</td>
<td>3.71539090346389E-02</td>
<td>5.10464771184122E-02</td>
</tr>
<tr>
<td>r_1</td>
<td>45.951447199735</td>
<td>65.223705014775</td>
</tr>
<tr>
<td>t_2</td>
<td>0.345095829562823</td>
<td>0.343315892017841</td>
</tr>
<tr>
<td>r_{20}</td>
<td>-75.8695106343435</td>
<td>-80.9878506462645</td>
</tr>
<tr>
<td>r_{21}</td>
<td>-5.75529765634353E-05</td>
<td>5.09059011946526E-05</td>
</tr>
<tr>
<td>r_{22}</td>
<td>2.39617513518116E-11</td>
<td>-2.73297877749166E-11</td>
</tr>
</tbody>
</table>
Table 3. Factorisation of the Gibbs potential function, Eq. (13).

<table>
<thead>
<tr>
<th>k</th>
<th>$\Theta_k(T)$</th>
<th>$\Phi_k(P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\tau \cdot \left[(t_1 - t) \ln(t_1 - t) + (t_1 + t) \ln(t_1 + t) - 2t_1 \ln t_1 - \frac{t^2}{t_1} \right]$</td>
<td>r_1</td>
</tr>
<tr>
<td>2</td>
<td>$\tau \cdot \left[(t_2 - t) \ln(t_2 - t) + (t_2 + t) \ln(t_2 + t) - 2t_2 \ln t_2 - \frac{t^2}{t_2} \right]$</td>
<td>$\sum_{j=0}^{2} r_{2j} \cdot (p - p_0)^j$</td>
</tr>
<tr>
<td>3</td>
<td>$\tau \cdot t$</td>
<td>$-\sigma_0$</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>$\sum_{j=0}^{4} g_{0j} \cdot (p - p_0)^j$</td>
</tr>
</tbody>
</table>
Table 4. Ice properties implemented in VB and their calls.

<table>
<thead>
<tr>
<th>quantity</th>
<th>function call</th>
<th>unit</th>
<th>eq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g)</td>
<td>ice_g(T, P)</td>
<td>J/kg</td>
<td>1</td>
</tr>
<tr>
<td>((\partial g / \partial T)_p)</td>
<td>ice_dgdt(T, P)</td>
<td>J/(kg K)</td>
<td>4</td>
</tr>
<tr>
<td>((\partial g / \partial P)_T)</td>
<td>ice_dgdp(T, P)</td>
<td>m³/kg</td>
<td>3</td>
</tr>
<tr>
<td>((\partial^2 g / \partial T^2)_p)</td>
<td>ice_d2gdt2(T, P)</td>
<td>J/(kg K²)</td>
<td>10</td>
</tr>
<tr>
<td>((\partial^2 g / \partial T \partial P))</td>
<td>ice_d2gdtdp(T, P)</td>
<td>m³/(kg K)</td>
<td>9</td>
</tr>
<tr>
<td>((\partial^2 g / \partial P^2)_T)</td>
<td>ice_d2gdp2(T, P)</td>
<td>m³/(kg Pa)</td>
<td>8</td>
</tr>
<tr>
<td>((\partial^3 g / \partial T^3)_p)</td>
<td>ice_d3gdt3(T, P)</td>
<td>J/(kg K³)</td>
<td></td>
</tr>
<tr>
<td>((\partial^3 g / \partial T^2 \partial P))</td>
<td>ice_d3gdt2dp(T, P)</td>
<td>m³/(kg K²)</td>
<td>8</td>
</tr>
<tr>
<td>((\partial^3 g / \partial T \partial P^2))</td>
<td>ice_d3gdtdp2(T, P)</td>
<td>m³/(kg K Pa)</td>
<td>8</td>
</tr>
<tr>
<td>((\partial^3 g / \partial P^3)_T)</td>
<td>ice_d3gdp3(T, P)</td>
<td>m³/(kg Pa²)</td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>ice_density(T, P)</td>
<td>kg/m³</td>
<td>3</td>
</tr>
<tr>
<td>(h)</td>
<td>ice_enthalpy(T, P)</td>
<td>J/kg</td>
<td>6</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>ice_entropy(T, P)</td>
<td>J/(kg K)</td>
<td>4</td>
</tr>
<tr>
<td>(f)</td>
<td>ice_free_energy(T, P)</td>
<td>J/kg</td>
<td>5</td>
</tr>
<tr>
<td>(g)</td>
<td>ice_free_enthalpy(T, P)</td>
<td>J/kg</td>
<td>1</td>
</tr>
<tr>
<td>(c_p)</td>
<td>ice_heat_capacity(T, P)</td>
<td>J/(kg K)</td>
<td>10</td>
</tr>
<tr>
<td>(e)</td>
<td>ice_internal_energy(T, P)</td>
<td>J/kg</td>
<td>7</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>ice_isentropic_compressibility(T, P)</td>
<td>1/Pa</td>
<td>11</td>
</tr>
<tr>
<td>(K)</td>
<td>ice_isothermal_compressibility(T, P)</td>
<td>1/Pa</td>
<td>8</td>
</tr>
<tr>
<td>(\beta)</td>
<td>ice_pressure_coefficient(T, P)</td>
<td>1/K</td>
<td>12</td>
</tr>
<tr>
<td>(v)</td>
<td>ice_specific_volume(T, P)</td>
<td>m³/kg</td>
<td>3</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>ice_thermal_expansion(T, P)</td>
<td>1/K</td>
<td>9</td>
</tr>
</tbody>
</table>
Table 5. Ice properties implemented in Fortran and their calls.

<table>
<thead>
<tr>
<th>quantity</th>
<th>function call</th>
<th>unit</th>
<th>eq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>ice_g(T, P)</td>
<td>J/kg</td>
<td>1</td>
</tr>
<tr>
<td>$(\partial g/\partial T)_p$</td>
<td>ice_dgdt(T, P)</td>
<td>J/(kg K)</td>
<td>4</td>
</tr>
<tr>
<td>$(\partial g/\partial P)_T$</td>
<td>ice_dgdp(T, P)</td>
<td>m³/kg</td>
<td>3</td>
</tr>
<tr>
<td>$(\partial^2 g/\partial T^2)_p$</td>
<td>ice_d2gdt2(T, P)</td>
<td>J/(kg K²)</td>
<td>10</td>
</tr>
<tr>
<td>$(\partial^2 g/\partial T \partial P)$</td>
<td>ice_d2gdtdp(T, P)</td>
<td>m³/(kg K)</td>
<td>9</td>
</tr>
<tr>
<td>$(\partial^2 g/\partial P^2)_T$</td>
<td>ice_d2gdp2(T, P)</td>
<td>m³/(kg Pa)</td>
<td>8</td>
</tr>
<tr>
<td>$(\partial^3 g/\partial T^3)_p$</td>
<td>ice_d3gdt3(T, P)</td>
<td>J/(kg K³)</td>
<td></td>
</tr>
<tr>
<td>$(\partial^3 g/\partial T^2 \partial P)$</td>
<td>ice_d3gdt2dp(T, P)</td>
<td>m³/(kg K²)</td>
<td></td>
</tr>
<tr>
<td>$(\partial^3 g/\partial T \partial P^2)$</td>
<td>ice_d3gdt2dp2(T, P)</td>
<td>m³/(kg K Pa)</td>
<td></td>
</tr>
<tr>
<td>$(\partial^3 g/\partial P^3)_T$</td>
<td>ice_d3gdp3(T, P)</td>
<td>m³/(kg Pa²)</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>ice_density(T, P)</td>
<td>kg/m³</td>
<td>3</td>
</tr>
<tr>
<td>h</td>
<td>ice_enthalpy(T, P)</td>
<td>J/kg</td>
<td>6</td>
</tr>
<tr>
<td>σ</td>
<td>ice_entropy(T, P)</td>
<td>J/(kg K)</td>
<td>4</td>
</tr>
<tr>
<td>f</td>
<td>ice_free_energy(T, P)</td>
<td>J/kg</td>
<td>5</td>
</tr>
<tr>
<td>g</td>
<td>ice_free_enthalpy(T, P)</td>
<td>J/kg</td>
<td>1</td>
</tr>
<tr>
<td>c_p</td>
<td>ice_heat_capacity(T, P)</td>
<td>J/(kg K)</td>
<td>10</td>
</tr>
<tr>
<td>e</td>
<td>ice_internal_energy(T, P)</td>
<td>J/kg</td>
<td>7</td>
</tr>
<tr>
<td>κ</td>
<td>ice_isentropic_compressibility(T, P)</td>
<td>1/Pa</td>
<td>11</td>
</tr>
<tr>
<td>$(\partial \kappa/\partial P)_T$</td>
<td>ice_disentropic_compressibilitydp(T, P)</td>
<td>1/Pa²</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>ice_isothermal_compressibility(T, P)</td>
<td>1/Pa</td>
<td>8</td>
</tr>
<tr>
<td>β</td>
<td>ice_pressure_coefficient(T, P)</td>
<td>1/K</td>
<td>12</td>
</tr>
<tr>
<td>ν</td>
<td>ice_specific_volume(T, P)</td>
<td>m³/kg</td>
<td>3</td>
</tr>
<tr>
<td>α</td>
<td>ice_thermal_expansion(T, P)</td>
<td>1/K</td>
<td>9</td>
</tr>
</tbody>
</table>
Table 6. Ice properties implemented in C++ and their calls.

<table>
<thead>
<tr>
<th>quantity</th>
<th>function call</th>
<th>unit</th>
<th>eq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>ice_g(T, P)</td>
<td>J/kg</td>
<td>1</td>
</tr>
<tr>
<td>$(\partial g / \partial T)_p$</td>
<td>ice_dgdT(T, P)</td>
<td>J/(kg K)</td>
<td>4</td>
</tr>
<tr>
<td>$(\partial g / \partial P)_T$</td>
<td>ice_dgdP(T, P)</td>
<td>m³/kg</td>
<td>3</td>
</tr>
<tr>
<td>$(\partial^2 g / \partial T^2)_p$</td>
<td>ice_d2gdT2(T, P)</td>
<td>J/(kg K²)</td>
<td>10</td>
</tr>
<tr>
<td>$(\partial^2 g / \partial T \partial P)$</td>
<td>ice_d2gdTdp(T, P)</td>
<td>m³/(kg K)</td>
<td>9</td>
</tr>
<tr>
<td>$(\partial^2 g / \partial P^2)_T$</td>
<td>ice_d2gdP2(T, P)</td>
<td>m³/(kg Pa)</td>
<td>8</td>
</tr>
<tr>
<td>$(\partial^3 g / \partial T^2 \partial P)$</td>
<td>ice_d3gdT2dp(T, P)</td>
<td>m³/(kg K Pa)</td>
<td></td>
</tr>
<tr>
<td>$(\partial^3 g / \partial T \partial P^2)$</td>
<td>ice_d3gdTdp2(T, P)</td>
<td>m³/(kg K Pa)</td>
<td></td>
</tr>
<tr>
<td>$(\partial^3 g / \partial P^3)_T$</td>
<td>ice_d3gdP3(T, P)</td>
<td>m³/(kg Pa²)</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>ice_density(T, P)</td>
<td>kg/m³</td>
<td>3</td>
</tr>
<tr>
<td>h</td>
<td>ice_enthalpy(T, P)</td>
<td>J/kg</td>
<td>6</td>
</tr>
<tr>
<td>σ</td>
<td>ice_entropy(T, P)</td>
<td>J/(kg K)</td>
<td>4</td>
</tr>
<tr>
<td>f</td>
<td>ice_free_energy(T, P)</td>
<td>J/kg</td>
<td>5</td>
</tr>
<tr>
<td>c_p</td>
<td>ice_heat_capacity(T, P)</td>
<td>J/(kg K)</td>
<td>10</td>
</tr>
<tr>
<td>e</td>
<td>ice_internal_energy(T, P)</td>
<td>J/kg</td>
<td>7</td>
</tr>
<tr>
<td>κ</td>
<td>ice_isentropic_compressibility(T, P)</td>
<td>1/Pa</td>
<td>11</td>
</tr>
<tr>
<td>$(\partial \kappa / \partial P)_T$</td>
<td>ice_isentropic_compressibilitydp(T,P)</td>
<td>1/Pa²</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>ice_isothermal_compressibility(T, P)</td>
<td>1/Pa</td>
<td>8</td>
</tr>
<tr>
<td>β</td>
<td>ice_pressure_coefficient(T, P)</td>
<td>Pa/K</td>
<td>12</td>
</tr>
<tr>
<td>ν</td>
<td>ice_specific_volume(T, P)</td>
<td>m³/kg</td>
<td>3</td>
</tr>
<tr>
<td>α</td>
<td>ice_thermal_expansion(T, P)</td>
<td>1/K</td>
<td>9</td>
</tr>
</tbody>
</table>