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Abstract

When dating marine samples with
14

C, the reservoir-age effect is usually assumed to

be constant, although atmospheric
14

C production rate and ocean circulation changes

cause temporal and spatial reservoir-age variations. These lead to dating errors,

which can limit the interpretation of cause and effect in paleoclimate data. We used a5

global ocean circulation model forced by transient atmospheric ∆
14

C variations to cal-

culate reservoir ages for the last 45 000 years for a present day-like and a last glacial

maximum-like ocean circulation. A ∼30% reduced Atlantic meridonal overturning circu-

lation leads to increased reservoir ages by up to ∼500 years in high latitudes. Temporal

variations are proportional to the absolute value of the reservoir age; regions with large10

reservoir age also show large variation. Temporal variations range between ∼300 years

in parts of the subtropics and ∼1000 years in the Southern Ocean. For tropical regions,

which are generally assumed to have nearly stable reservoir ages, the model suggests

variations of several hundred years.

1 Introduction15

Late Quaternary sediments are frequently dated by means of their radiocarbon (
14

C)

content.
14

C originates in the atmosphere, where cosmic rays generate free neutrons

that can react with nitrogen to produce
14

C (Masarik and Beer, 1999). After exchange

with the other carbon reservoirs most of the radiocarbon is stored in the ocean, where it

decays. The finite exchange flux between the reservoirs causes the radiocarbon age of20

marine sample always to be higher than that of a coeval atmospheric sample (Stuiver

and Braziunas, 1993). This age difference is known as “reservoir age” and has to be

taken into account in the conversion from radiocarbon age to calendar age.

Present-day (PD) reservoir ages average globally at about 400 years (Hughen et al.,

2004a). Regional reservoir-age anomalies for the time before nuclear weapon tests25

are mainly known from sites along coastlines (Reimer and Reimer, 2001). Accordingly
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14
C dates are mostly corrected for a local but constant PD reservoir age instead of

the global mean. Temporal reservoir-age variations in contrast are hardly considered

when marine samples are dated, because they could only be scarcely reconstructed

for limited time periods and at a few locations (Southon et al., 1990; Bard et al., 1994;

Austin et al., 1995; Burr et al., 1998; Sikes et al., 2000; Siani et al., 2001; Waelbroeck5

et al., 2001; Keigwin and Schlegel, 2002; Kovanen and Easterbrook, 2002; Eiriksson

et al., 2004; Bard and Rostek, 2005; Fairbanks et al., 2005; Bondevik et al., 2006;

Schimmelmann et al., 2006; Hughen et al., 2006). These reconstructions suggest

that reservoir-age changes of several hundred years occurred in the late Quaternary.

Errors of such a magnitude might lead to misinterpretations of cause and effect in10

paleoclimate time series.

Changes in the geomagnetic field, which directly influences the atmospheric
14

C

production rate are considered to be the main reason for reservoir-age variations (Laj

et al., 1996). Model experiments suggest that of the strength Atlantic meridional over-

turning circulation (AMOC) also significantly influences atmospheric ∆
14

C (∆
14

Catm)15

and subsequently reservoir ages, too (Delaygue et al., 2003; Muscheler et al., 2004).

Running a spatially explicit ocean circulation model forced by changes in atmospheric
14

C offers the opportunity to assess a major part of reservoirs age variability, that is

induced by
14

C production-rate changes.

2 Model setup20

The reservoir-age calculation was done using a global model of intermediate com-

plexity, the University of Victoria Earth System Climate Model (UVic ESCM) in version

2.7 (Weaver et al., 2001). It consists of a three-dimensional ocean general circula-

tion model (Modular Ocean Model, version 2, Pacanowski, 1995), coupled to a two-

dimensional energy-moisture balance model of the atmosphere (Fanning and Weaver,25

1996) and a dynamic-thermodynamic sea-ice model (Bitz et al., 2001). The horizontal

resolution of all components is 3.6
◦

in longitude and 1.8
◦

in latitude. The ocean has
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19 levels of irregular depth, increasing from 50 m at the surface to 500 m at the deepest

levels (Weaver et al., 2001). It is driven by variations in solar insolation over a year at

the top of the atmosphere. The wind stress at the ocean surface is prescribed from a

monthly climatology (Kalnay et al., 1996). We used the option of a rotated grid to avoid

convergence of the meridians towards the North Pole. Sub-gridscale mixing is included5

following the Gent and McWilliams (1990) parametrization for mixing associated with

mesoscale eddies. Vertical diffusion is increasing from 0.3 cm
2

s
−1

in the thermocline

to 1.3 cm
2

s
−1

in the deep ocean (Bryan and Lewis, 1979).

To evaluate if the model simulates PD ocean circulation right, a control experiment

was set up, using PD parameters as a solar radiation and land-ice distribution of10

the year 1950 Common Era (C.E.), monthly mean winds from reanalysis data of the

20th century (Kalnay et al., 1996) and a pre-industrial atmospheric CO2 content of

280 ppmv. In this configuration the model shows a maximum North Atlantic overturn-

ing of 20 Sv and a southward export of North Atlantic Deep Water (NADW) at 30
◦
S of

14 Sv (Fig. 1a). Antarctic Bottom Water (AABW) reaches up to 30
◦
N. All these values15

agree fairly well with calculations based on observational data (Talley et al., 2003). Fi-

nally a circumpolar current of around 100 Sv is comparable with observations compiled

by Orsi et al. (1995).

In the ocean part of the model, radiocarbon was included as a passive tracer follow-

ing the guidelines of the Ocean Carbon Modeling Intercomparision Project (OCMIP-2,20

Orr et al., 2000):

Fair−sea = Kw

(

14Csat −
14 Csurf

)

with

14Csat = αC · pCO2 · (P/P0) · Rstd,

Kw = (1 − fice)
(

a · u2
)

(

Sc/660
)

1
2 ,25
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and

Sc = 2073.1 − 125.62 · SST + 3.63 · SST2
− 0.043 · SST3

where Fair−sea is the flux of
14

C from the atmosphere to the ocean, Kw is CO2 gas trans-

fer velocity,
14Csat and

14Csurf are the
14

C concentrations in the atmosphere and surface

ocean respectively, αC is the carbon solubility for water-vapor saturated air
[

mol
m3

·µatm

]

,5

pCO2 is partial pressure of CO2 in the atmosphere, P is local sea level air pressure, P0

is the mean sea-level air pressure of 1013,25 hPa, Rstd is the normalized ratio of
14

C
12C

,

fice is the modeled fraction of sea-ice coverage (height>1 cm), a is a constant to adjust

the global flux, u2
is windspeed in

[

m
s

]

and Sc is sea-surface temperature (SST[K])

dependend Schmidt number.10

The gas exchange with the atmosphere depends on the atmosphere to surface-

ocean
14

C gradient, windspeed, sea-ice cover and sea-surface temperature. In the

ocean the radiocarbon tracer is transported via diffusion and advection like all the

other tracers (e.g. temperature, salinity). A sink has been added to account for the

radiocarbon decay with the true half-life of 5730 years.15

The atmosphere is treated as one well-mixed box with respect to
14

C because the

atmospheric mixing time for
14

C is on the order of some years, which is much shorter

than the timescale of interest. Splitting the atmosphere into troposphere and strato-

sphere is not necessary, because this would only have an influence on variations at

timescales shorter than 20 years (Siegenthaler et al., 1980). The terrestrial biosphere20

has an effect if forcing variations are on timescales from a few decades to some cen-

turies (Siegenthaler et al., 1980). As we concentrated on even longer variations, the

terrestrial biosphere is also not taken into account, to make the model more efficient.
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3 Experiments and model forcing

3.1 Control run and model evaluation

In the control experiment ∆
14

Catm is held constant at 0‰, which is defined as the pre-

industrial
14

C/
12

C-ratio of the year 1850 C.E. To evaluate the model, we compared the

oceanic
14

C distribution with the global carbon climatology (Key et al., 2004). This5

dataset includes the radiocarbon measurements at the time of sampling as well as cal-

culated estimates for natural background and bomb-produced
14

C. The gas exchange

of the model was reduced by ∼20% compared to OCMIP recommendations (Orr et al.,

2000), which is in agreement with recent calculations (Sweeney et al., 2007).

3.2 Atmospheric ∆
14

C variations in a bomb
14

C experiment10

Since our main interest is to simulate temporal reservoirs-age variations, the model

response to
14

C production-rate changes needs to be verified. This can be achieved

in an experiment, which is forced by the well-known radiocarbon production due to

the test of nuclear weapons during the second half of the 20th century. Estimates for

the nuclear bomb strength were taken from Hesshaimer et al. (1994). The model was15

started from the the Suess-effect corrected PD equilibrium state described in the last

section and were run for 40 years. The ∆
14

Catm measurements used for comparison

are spatially weighted global means based on regional data of Hua and Barbetti (2004).

3.3 Influence of different ocean circulation states

To study the influence of different ocean circulation states on the
14

C distribution, the20

model was forced by LGM-like boundary conditions: insolation and land ice distribu-

tion were set to 21 kyr BP and the atmospheric CO2 concentration was reduced to

200 ppmv (Table 1). Using these parameters the Atlantic Meridional Overturning Cir-

culation (AMOC) became weaker by roughly one third and it became shallower, such
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that AABW could penetrate further northward in the deep Atlantic (Fig. 1). This weaker

and shallower overturning cell is consistent with the glacial nutrient distribution, Pa/Th

and most other circulation tracers (Schmittner et al., 2002; Meissner et al., 2003; Mc-

Manus et al., 2004; Lynch-Stieglitz et al., 2007). To assess the influence of this different

circulation on the reservoir ages we used the PD wind fields following Meissner et al.5

(2003).

3.4 Atmospheric ∆
14

C forcing

To study past changes in oceanic
14

C content, we prescribed the temporal ∆
14

C evolu-

tion based on reconstructions. For this we used the INTCAL04 dataset (Reimer et al.,

2004) up to 25 kyr BP. Between 25 and 50 kyr BP we used the reconstructions by Fair-10

banks et al. (2005) and Hughen et al. (2006) because they could remove some of the

uncertainties that caused disagreement in earlier reconstructions (e.g. Voelker et al.,

1998; Bard et al., 1998; Goslar et al., 2000; Kitagawa and van der Plicht, 2000; Beck

et al., 2001; Hughen et al., 2004b). The ∆
14

Catm model-forcing dataset was constructed

by interpolating an error weighted spline (Williams and Kelley, 2007) through all the re-15

constructed data (Fig. 2).

The long time period needed to reach an equilibrium between atmospheric and

oceanic
14

C concentrations requires a model spin-up time of several thousand years

(Siegenthaler et al., 1980). As ∆
14

Catm reconstructions do not exist prior to 50 kyr BP,

we spun up the model from 75 kyr BP using a
14

C production rate, calculated after (af-20

ter Masarik and Beer, 1999) from a global paleomagnetic intensity stack (GLOPIS, Laj

et al., 2004). At 50 kyr BP the forcing was switched to the interpolated ∆
14

C spline.

This change of forcings adds some uncertainty to the initial oceanic
14

C level, beside

the possibility of a different ocean circulation state.
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4 Results

4.1 Control run and bomb experiment

The modeled ∆
14

C distribution agrees with the pre-nuclear GLobal Ocean Data Anal-

ysis Project (GLODAP, Key et al., 2004) estimate mostly within ±10‰ (Fig. 3). Only

in upwelling areas the model predicts too negative ∆
14

C values. In the equilibrium5

experiment the global mean surface ocean ∆
14

C is −61‰ to the bomb
14

C corrected

GLODAP estimate of −65‰.

Forced by the
14

C production-rate changes due to nuclear weapon testing, the model

is able to predict temporal ∆
14

Catm variations in good agreement with observations

(Fig. 4).10

4.2 Time slices

We ran two simulations for the different circulation states of the ocean, both with the

same time-dependent ∆
14

Catm forcing. Three time slices of this simulation are plotted

in Fig. 5. One for the “Laschamp” event 41 kyr BP, which is important in relationship

to the radiocarbon history because the geomagnetic field collapsed almost completely,15

resulting in a high
14

C production (Laj et al., 2000). The LGM was chosen as a second

time slice because of its paleoclimatic importance, and finally PD for comparison.

The PD reservoir ages, reached at the end of the transient experiment for a mod-

ern ocean circulation (Fig. 5a), are slightly smaller than in the equilibrium experiment

because ∆
14

Catm had a decreasing trend over the last centuries before this snapshot20

was taken. Nevertheless the reservoir-age estimates agree with present day observa-

tion of 400–500 years in the northern North Atlantic, 300–400 years in the subtropical

oceans and up to 1000 years close to Antarctica. For an AMOC reduced by ∼30%, the

model suggests larger reservoir ages than with a modern circulation, reaching values

of 400–1400 years (Fig. 5b).25

The LGM falls in a time period of decreasing ∆
14

Catm. If the circulation would have
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been like today the model predicts reservoir ages to be below present day values,

ranging from 200 years in the subtropical ocean up to 900 years close to Antarctica

(Fig. 5c). The reduced AMOC leads to increased reservoir ages reaching from 300 to

1200 years (Fig. 5d).

During the Laschamp event and its high
14

C production rate the model suggests5

globally increased reservoir ages of 400–1400 years if the circulation would have been

like today (Fig. 5e) and of 500–1800 years in case of the reduced AMOC (Fig. 5f).

4.3 Temporal reservoir-age variations

The amplitude of the modeled temporal reservoir-age variations over the last 45 kyr

varies spatially. This is shown for the simulation with PD boundary conditions (Fig. 6).10

The amplitude of temporal variations with LGM boundary conditions is very similar,

only shifted to higher reservoir-ages. The smallest changes occur in some subtropical

regions but even there the range of temporal variation is rarely below 300 years. In the

northern North Atlantic these variation are larger and reach up to 700 years. Largest

reservoir-age variations were modeled for the Southern Ocean where they could ex-15

ceed 1000 years. Reservoir-age increases coincide with ∆
14

Catm increases and the

other way around.

4.4 Reduced Atlantic meridional overturning circulation

To analyze the influence of circulation change induced reservoir-age differences sep-

arated from the temporal ∆
14

Catm variations, the control experiment with the PD cir-20

culation is compared with an experiment of constant ∆
14

Catm and LGM-like boundary

conditions. In the LGM-like simulation ∆
14

Catm was set to zero instead of the recon-

structed LGM value to allow for a direct comparison of the results.

In an equilibrium state, reservoir ages increase globally with the LGM forcing (Fig. 7).

The circulation induced differences stay small at around 100–200 years in the subtropi-25

cal and tropical regions with strong stratification and slow diffusive mixing of deep water
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into the surface. Largest anomalies of 250–400 years could be seen in the Southern

Ocean and even up to 500 years in the Arctic Ocean, probably a result of increased

sea-ice coverage that limits the gas exchange.

5 Discussion

5.1 Atmospheric
14

C forcing5

In principle there exist two possibilities to model atmospheric
14

C variations. One ap-

proach would be the forcing of the model with a
14

C production rate, the other option is

∆
14

Catm reconstructions. The
14

C production-rate variations can be calculated based

on reconstructions of geomagnetic intensity (e.g. Valet et al., 2005; Laj et al., 2004) or
10

Be (Muscheler et al., 2004) using the method of Masarik and Beer (1999).10

So far, no model has been able to reproduce the reconstructed ∆
14

C values of far

above 500‰ in the atmosphere during the last glacial, using
14

C production rates alone

(Beck et al., 2001; Laj et al., 2000, 2002; Hughen et al., 2004b; Muscheler et al., 2004).

More complex models showed even lower ∆
14

C values in the atmosphere than simple

models as it could be seen in the difference between a 17-box and a 4-box model (Laj15

et al., 2002). Forced with the
14

C production rate, based on the global paleointensity

stack (Laj et al., 2004), the UVic ESCM confirms the results of the box models used in

other studies before and only simulates up to ∼300‰. To reach the observed ∆
14

Catm

values, which are approximately twice as large, major changes in the carbon cycle

are required. One possible explanation would be a glacial deep-ocean carbon reser-20

voir that is well isolated from the atmosphere and stores radiocarbon depleted waters

(Marchitto et al., 2007).

Generally the absolute ∆
14

Catm value is irrelevant for the reservoir age, as it can be

seen in Fig. 6, in which glacial reservoir ages vary around the same level as ages in

the Holocene, although ∆
14

Catm was a few hundred permil higher. Instead, the rate of25

∆
14

Catm change is the essential factor. Hence, modeled reservoir-age variation do not
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have to differ in magnitude between the
14

C production rate and the ∆
14

Catm forcing, as

long as production-rate increase and AMOC reduction do not occur at the same time.

Still major reservoir-age changes would stay unconsidered because the production rate

can only explain half of the overall variability.

The ∆
14

C forcing has the advantage that the variations, which were not caused5

by atmospheric
14

C production-rate changes also appear in the simulated reservoir

ages. Measurement uncertainties in the
14

C reconstructions could be reduced, so the

large scatter between different datasets decreased over the last years. Nevertheless

the reconstructions before 12.4 kyr BP still do not agree with each other completely

(Fairbanks et al., 2005; Hughen et al., 2006), e.g. because the calibration to an age10

scale is often associated with some uncertainties or because an unknown reservoir age

has to be assumed for marine samples. To convert the marine ∆
14

C values from corals

and sediments to an atmospheric value, constant reservoir ages have been applied,

as no reservoir-age variation estimates exist for the low latitudes in the last glacial or

the deglaciation.15

If we assume reservoir-age variation in (sub)tropics, an temporally increased reser-

voir age implies that the reconstructed ∆
14

Catm is underestimated compared to the

value calculated with a constant reservoir age. If the real reservoir age is smaller

than the constant one, ∆
14

Catm is overestimated. This together might cause modeled

reservoir-age variations to be underestimated because reservoir-age increases coin-20

cide with ∆
14

C increases and the other way around (see Sect. 4.3).

Based on the bomb experiment we think that the ∆
14

Catm forcing can be treated

comparable to a
14

C production-rate forcing in the model. Simulating long-term varia-

tions, there will always be enough time for the ocean to equilibrate with the atmosphere

within the gas exchange rate limitations.25

The disadvantage of the ∆
14

Catm forcing is that any ∆
14

Catm increase acts as if it

was caused by a production-rate increase. This may lead to artifacts in deep-water

formation areas during times of reduced deep-water production, since the coupling of

the surface layer to the deep ocean remains unchanged. In these cases our modeled
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reservoir-age variations will be slightly underestimated again.

5.2 Reservoir-age variations

The comparably large oceanic carbon reservoir responds to atmospheric ∆
14

C

changes with a time lag due to limited gas exchange. A ∆
14

Catm increase leads to

a larger atmosphere-ocean
14

C difference and accordingly to a reservoir-age increase,5

because the ocean cannot react fast enough, e.g. around 41 kyr BP (Fig. 6). As soon

as ∆
14

Catm stops rising or is reduced, the reservoir ages decrease again. The opposite

is true when ∆
14

Catm declines, e.g. around 15 kyr BP.

Changes in reservoir ages occur globally nearly simultaneous because the fast vary-

ing and well mixed atmosphere is the key driver (Fig. 6). In contrast, the amplitude of10

the reservoir-age variations differs at any location. Regions of large reservoir ages are

as well areas of large reservoir-age variations, like the Southern Ocean with more than

1000 years of PD surface
14

C age and also variations of more than 1000 years (Figs. 5

and 6). In a period of a ∆
14

Catm increase the radiocarbon content of the atmosphere

increases while the radiocarbon depleted water that wells up from the deep ocean, was15

once at the sea surface, when atmospheric ∆
14

C was much lower. This causes the
14

C

gradient between atmosphere and ocean to be larger than caused by the limited gas

exchange alone. In the opposite case of a ∆
14

Catm decrease, upwelling water was in

contact with an atmosphere of higher ∆
14

C which leads to small reservoir ages.

In case of a reservoir-age change that is not caused by
14

C production-rate variation,20

the simulated reservoir-age change is correct, but not the level, at which the reser-

voir ages remain after that first change. Box models suggested that more deep-water

production will transport more radiocarbon into the deep ocean and finally decreases

atmospheric ∆
14

C. In contrast, a reduced AMOC will lead to a lower
14

C transport into

the deep ocean and to increased atmospheric ∆
14

C (Beck et al., 2001; Laj et al., 2002;25

Hughen et al., 2004b). The observed global reservoir-age increase in our simulation

with a reduced AMOC agrees with this finding (Fig. 7). Temporally stable reservoir-age
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shifts can be initiated by changes in the carbon reservoirs. A ∆
14

Catm increase in the

model forcing, increases the atmosphere-ocean
14

C difference in the first moment as

well, but because of the constant deep-water formation, the ocean starts to take up

more
14

C, too. This decreases the reservoir ages again in the model, while they would

remain larger in reality as long as the carbon reservoirs stay in a different state, like in5

the simulation with LGM boundary conditions.

Reservoir ages of more than 2000 years were reconstructed in the northern North

Atlantic (Bard et al., 1994; Sarnthein et al., 2001; Waelbroeck et al., 2001) and close

to New Zealand (Sikes et al., 2000). Further evidence for such large reservoir-age

variations comes from
14

C-plateau matching, which also suggests reservoir ages of10

2000 years and more in the early deglaciation after the LGM (Sarnthein et al., 2007).

If we add up the modeled temporal variations of up to 1000 years, variations subse-

quent to the reduced AMOC of up to 500 years or even more in case of a complete

deep-water formation shutdown and including the underestimated effects mentioned in

Sect. 5.1, reservoir-ages variations of above 2000 years, appear to be reasonable in15

some regions. From the model simulation we would expect such large variations only

in the Southern Ocean but not in the northern North Atlantic.

Modeled reservoir-age variation are not limited to high latitudes, they reach up to a

few hundred years in tropical oceans, which were believed to be nearly stable (Hughen

et al., 2004a). This has implications for the dating of atmospheric samples, because it20

adds some uncertainty to all
14

C calibration curves, which assume a constant reservoir

age prior to 12.4 kyr BP.

5.3 Potential of modeled reservoir ages

In contrast to reservoir-age reconstructions, estimates from an ocean circulation model

are available at every location, time and also at different depth levels. The depth is an25

important factor because reconstructions are often based on foraminifera that calcified

between sea surface and 250 m depth (Simstich et al., 2003; Schiebel and Hemleben,
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2005). The reservoir age of a species living in 250 m depth can severely differ from

the surface reservoir age. This occurs especially in the North Pacific where reservoir

ages in 250 m depth are up to 500 years larger than at the ocean surface. Model

results suggest that it is also important to consider the living depth of a species before

correcting for the reservoir age in other regions.5

5.4 Comparison of modeled and reconstructed reservoir ages for the Younger Dryas

Finally the reliability of modeled reservoir ages should be checked by a comparison with

reconstructions. For this purpose the North Atlantic is the best covered region. For the

time period from the Bølling to the Preboreal reservoir ages were reconstructed from

co-existing marine and terrestrial material (Björck et al., 1998; Bondevik et al., 1999,10

2006), from volcanic ash layers (Bard et al., 1994; Austin et al., 1995) and from corals

(Cao et al., 2007).

The reconstructions show large scatter and have large error bars, which nearly cover

the whole range of variations, e.g. reservoir ages from Norway at nearly the same

time between 13.7 and 13.8 kyr BP show ∼400 years difference (Fig. 8). Nevertheless15

there is a trend from PD-like reservoir ages around 400 years in the Bølling, over an

increase in the Allerød to the Younger Dryas reservoir ages of circa 600 years and fi-

nally a decrease towards a PD value in the Preboreal again. The model predicts the

Bølling reservoir age, the increase in the Allerød and the PD-like values in the Pre-

boreal very well in the run with the PD circulation. Only during the Younger Dryas20

(∼12.9–11.6 kyr BP) the modeled reservoir ages remain below the reconstructed val-

ues and they start to decrease too quickly after reaching a maximum at the beginning

of the Younger Dryas. It is thought that the cause of this reservoir-age increase was a

slowdown of the AMOC during the Younger Dryas (e.g. McManus et al., 2004). In the

model simulation with reduced AMOC, the predictions for Younger Dryas reach or even25

exceed the reconstructions. The fact that reservoir ages decrease too early with the PD

forcing demonstrates that a ∆
14

Catm model forcing changes reservoir ages temporally

like an atmospheric
14

C production-rate variations, but it can only generate the initial
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peak of an carbon reservoir change induced reservoir-age variation. The correct inter-

pretation and consideration of ocean circulation changes is therefore essential, when

simulated reservoir ages should be applied for an age correction of marine samples.

A compilation of reconstructions from different locations might create the wrong im-

pression that reservoir ages should be the same everywhere. Indeed, the existence5

of local differences can hardly be seen in the scatter of the data but simulation results

clearly show a ∼50 year reservoir-age difference between Norway and Orphans Knoll

(Fig. 8). The modeled reservoir ages for Sweden differ largely between the simulated

AMOC states. That highlights that a reduction of the AMOC always increases the

reservoir ages but by spatially different amounts.10

The comparison of modeling results and reconstructions shows that our model can

simulate the reservoir-age variation induced by changes in ∆
14

Catm in the correct order

of magnitude. It is difficult to determine the quality of the model results due to the large

scatter in the reconstructions.

6 Conclusions15

Our ocean general circulation model confirms the results of previous box-model ex-

periments that geomagnetic variations alone appear to be insufficient to explain recon-

structed atmospheric
14

C variations in the last glacial and the deglaciation.

Simulations of past reservoir-age variations, using a ∆
14

Catm forcing, emphasize

the need to make a temporal, spatial and depth depended reservoir-age correction20

when marine samples are dated with the radiocarbon method. The model suggests

reservoir-age variations of several hundred years within some centuries due to
14

C

production rate and ocean-circulation changes. The modeled reservoir-age variations

are not limited to high latitudes and can reach up to a few hundred years in tropical

oceans. This has implications for
14

C calibration curves, which are mainly based on25

coral data and a constant reservoir age.

For regions and time periods, where no reservoir-age variation can be reconstructed,
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the model results will be a useful tool to estimate reservoir ages for any marine sample.

Modeled reservoir ages are available online (http://www.reservoirage.uni-bremen.de).
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Table 1. Forcing of different reservoir-age simulations.

PD LGM

Insolation 1950 C.E. 21 kyr BP

Land ice 1950 C.E. 21 kyr BP

ICE-5G
a

CO2 280 ppmv 200 ppmv

Windfields recent NCEP/NCAR recent NCEP/NCAR

Reanalysis
b

Reanalysis
b

a
Peltier (2004)

b
Kalnay et al. (1996)
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Fig. 1. (a) Atlantic Ocean meridional streamfunction [Sv] of the model simulation with PD

forcing and in (b) with LGM forcing. With LGM-like boundary conditions the AMOC is reduced

by approximately one third and shallower such that AABW can reach further north at the bottom

of the ocean.
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Fig. 2. INTCAL04 ∆
14

Catm and its 1σ error estimate (Reimer et al., 2004, orange), coral data

(Fairbanks et al., 2005, red) and Cariaco Basin sediment data (Hughen et al., 2006, blue). A

spline function (black) was interpolated through the data weighted by the 1σ error of all the

reconstructed values.
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Fig. 3. Model/data comparison: (a) Surface ocean background ∆
14

C (measured value minus

calculated bomb fraction) from the GLODAP carbon data compilation (Key et al., 2004). (b)

Surface ocean ∆
14

C in the UVic ESCM PD control run with constant ∆
14

C=0‰. (c) Interpolated

zonal mean Atlantic ∆
14

C depth profile from the GLODAP dataset; (d) modeled Atlantic; (e)

GLODAP zonal mean profile for the Pacific and (f) the modeled Pacific.
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Fig. 4. Observed and modeled ∆
14

Catm due to nuclear weapon tests. The blue bars represent

the
14

C production which was caused by nuclear weapon tests (Hesshaimer et al., 1994). The

red curve shows the observed and globally averaged ∆
14

Catm (Hua and Barbetti, 2004), while

the black curve is the response of the model to the production-rate forcing.
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Fig. 5. Modeled reservoir ages for selected time slices, for PD (a and b), the LGM 21 kyr BP

(c and d) and for the “Laschamp” event 41 kyr BP (e and f), when the geomagnetic field broke

down nearly completely, resulting in a high
14

C production. The figures (a), (c) and (e) on the

left hand site were generated from the simulation with PD forcing, (b), (d) and (f) on the right

hand site with the reduced AMOC under LGM boundary conditions.
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Fig. 6. Modeled range of reservoir-age variations over the time period from 45 kyr BP to PD

in (a). In (b) the regional mean reservoir-age variations are plotted for the areas indicated by

equally colored rectangles in (a).

108

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/4/81/2008/cpd-4-81-2008-print.pdf
http://www.clim-past-discuss.net/4/81/2008/cpd-4-81-2008-discussion.html
http://www.egu.eu


CPD

4, 81–110, 2008

Modeling marine

reservoir-ages

variations

J. Franke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 7. Anomaly map of the equilibrium reservoir age modeled with reduced AMOC minus

reservoir age simulated with present day AMOC.
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Fig. 8. Reconstructed and modeled reservoir ages from the Bølling/Allerød over the Younger

Dryas to the Preboreal: The symbols represent the reconstructed reservoir ages for three

regions in the northern North Atlantic, Sweden (Björck et al., 1998), Norway (Bondevik et al.,

1999, 2006) and Orphans Knoll (Cao et al., 2007). The modeled mean reservoir ages at the

sample locations are plotted for the PD circulation (solid curve) and for the reduced AMOC

simulation (dashed curve).
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